Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
2.113.ay_nd |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 341 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$90$ |
$[90, 12876, 1445490, 163059412, 18424351050, 2081953301694, 235260585058890, 26584442133280228, 3004041934474267410, 339456738918946579836]$ |
$10375$ |
$[10375, 164412625, 2085695878000, 26586406824485625, 339456725247866989375, 4334526325311699366304000, 55347534174299288765604211375, 706732558108759047210313404515625, 9024267954624088519378287888897334000, 115230877622359803670316689594440723750625]$ |
$224$ |
$224$ |
$2$ |
$2$ |
$1$ |
4.0.51416217.1 |
$D_{4}$ |
simple |
2.113.ay_ne |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 342 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$90$ |
$[90, 12878, 1445562, 163060350, 18424351770, 2081953155854, 235260582937722, 26584442120675710, 3004041934455472602, 339456738918711657038]$ |
$10376$ |
$[10376, 164438848, 2085799882952, 26586559768351744, 339456738513282543176, 4334526021679738696388416, 55347533675272098836222849288, 706732557773674964667555460497408, 9024267954567628127717704617184627976, 115230877622280057543401342530515970938688]$ |
$140$ |
$140$ |
$2$ |
$2$ |
$1$ |
4.0.12205312.1 |
$D_{4}$ |
simple |
2.113.ay_nf |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 343 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$90$ |
$[90, 12880, 1445634, 163061284, 18424352250, 2081953003750, 235260580736250, 26584442107984324, 3004041934452456162, 339456738918772620400]$ |
$10377$ |
$[10377, 164465073, 2085903889956, 26586712060809129, 339456747357001989657, 4334525705006447301507600, 55347533157352546357052780313, 706732557436281544635397833155529, 9024267954558566615177609240396882724, 115230877622300751967461609839208871049553]$ |
$128$ |
$128$ |
$2$ |
$2$ |
$1$ |
4.0.9130896.1 |
$D_{4}$ |
simple |
2.113.ay_ng |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 344 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$90$ |
$[90, 12882, 1445706, 163062214, 18424352490, 2081952845394, 235260578455482, 26584442095244926, 3004041934466077338, 339456738919139566482]$ |
$10378$ |
$[10378, 164491300, 2086007899018, 26586863701866000, 339456751779030031498, 4334525375316810113659300, 55347532620777774265274550154, 706732557097611752229067333632000, 9024267954599485198787743608923090122, 115230877622425314287829839816981364206500]$ |
$136$ |
$136$ |
$2$ |
$2$ |
$1$ |
4.0.698151168.1 |
$D_{4}$ |
simple |
2.113.ay_nh |
$2$ |
$\F_{113}$ |
$113$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 17 x + 113 x^{2} )( 1 - 7 x + 113 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$90$ |
$[90, 12884, 1445778, 163063140, 18424352490, 2081952680798, 235260576096426, 26584442082496324, 3004041934497190194, 339456738919822328564]$ |
$10379$ |
$[10379, 164517529, 2086111910144, 26587014691530601, 339456751779371412539, 4334525032635812095983616, 55347532065784925512005124859, 706732556758697276514726217542729, 9024267954692949522625312103904870656, 115230877622657082477668267748143793433849]$ |
$30$ |
$30$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-163}) \), \(\Q(\sqrt{-403}) \) |
$C_2$, $C_2$ |
1.113.ar $\times$ 1.113.ah |
2.113.ay_ni |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 346 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$90$ |
$[90, 12886, 1445850, 163064062, 18424352250, 2081952509974, 235260573660090, 26584442069777278, 3004041934546643610, 339456738920830476886]$ |
$10380$ |
$[10380, 164543760, 2086215923340, 26587165029811200, 339456747358030917900, 4334524676988438243010320, 55347531492611143062529832460, 706732556420568530509604628480000, 9024267954841509657815033483456251020, 115230877622999305219438648075598018518800]$ |
$400$ |
$400$ |
$2$ |
$2$ |
$1$ |
4.0.2405952.1 |
$D_{4}$ |
simple |
2.113.ay_nj |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 347 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$90$ |
$[90, 12888, 1445922, 163064980, 18424351770, 2081952332934, 235260571147482, 26584442057126500, 3004041934615281282, 339456738922173318888]$ |
$10381$ |
$[10381, 164569993, 2086319938612, 26587314716716089, 339456738515013374101, 4334524308399673580906896, 55347530901493569896536038373, 706732556084254651182134978722473, 9024267955047700102529194071361233076, 115230877623455141986371887221380696943513]$ |
$72$ |
$72$ |
$2$ |
$2$ |
$1$ |
4.0.575357328.1 |
$D_{4}$ |
simple |
2.113.ay_nk |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 348 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$90$ |
$[90, 12890, 1445994, 163065894, 18424351050, 2081952149690, 235260568559610, 26584442044582654, 3004041934703941722, 339456738923859899450]$ |
$10382$ |
$[10382, 164596228, 2086423955966, 26587463752253584, 339456725250323649182, 4334523926894503167727300, 55347530292669349008348559598, 706732555750783499452088281042944, 9024267955314039781987702306251011054, 115230877624027663123937677071661408041028]$ |
$60$ |
$60$ |
$2$ |
$2$ |
$1$ |
4.0.535296256.1 |
$D_{4}$ |
simple |
2.113.ay_nl |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 349 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$90$ |
$[90, 12892, 1446066, 163066804, 18424350090, 2081951960254, 235260565897482, 26584442032184356, 3004041934813458258, 339456738925899001132]$ |
$10383$ |
$[10383, 164622465, 2086527975408, 26587612136432025, 339456707563966652823, 4334523532497912093661440, 55347529666375623407166822759, 706732555421181660190712445544425, 9024267955643032048458144669387887472, 115230877624719849931314129141034864755825]$ |
$296$ |
$296$ |
$2$ |
$2$ |
$1$ |
4.0.30990393.1 |
$D_{4}$ |
simple |
2.113.ay_nm |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 350 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$90$ |
$[90, 12894, 1446138, 163067710, 18424348890, 2081951764638, 235260563162106, 26584442019970174, 3004041934944659034, 339456738928299144414]$ |
$10384$ |
$[10384, 164648704, 2086631996944, 26587759869259776, 339456685455947336464, 4334523125234885481285376, 55347529022849536117303771024, 706732555096474442220872555495424, 9024267956037164681255843009308494736, 115230877625534594742857409431132279367424]$ |
$312$ |
$312$ |
$2$ |
$2$ |
$1$ |
4.0.111600.3 |
$D_{4}$ |
simple |
2.113.ay_nn |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 351 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$90$ |
$[90, 12896, 1446210, 163068612, 18424347450, 2081951562854, 235260560354490, 26584442007978628, 3004041935098367010, 339456738931068587936]$ |
$10385$ |
$[10385, 164674945, 2086736020580, 26587906950745225, 339456658926270693425, 4334522705130408485812240, 55347528362328230178426524945, 706732554777685878317193136175625, 9024267956498909886743913281704848740, 115230877626474701009571373998764028892225]$ |
$56$ |
$56$ |
$2$ |
$2$ |
$1$ |
4.0.419204752.1 |
$D_{4}$ |
simple |
2.113.ay_no |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 352 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$90$ |
$[90, 12898, 1446282, 163069510, 18424345770, 2081951354914, 235260557475642, 26584441996248190, 3004041935275399962, 339456738934215328738]$ |
$10386$ |
$[10386, 164701188, 2086840046322, 26588053380896784, 339456627974941759026, 4334522272209466295343876, 55347527685048848645798802258, 706732554465838725206202430783488, 9024267957030724298333325723048043026, 115230877627542883380577205248994106243588]$ |
$160$ |
$160$ |
$2$ |
$2$ |
$1$ |
4.0.4718848.2 |
$D_{4}$ |
simple |
2.113.ay_np |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 353 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$90$ |
$[90, 12900, 1446354, 163070404, 18424343850, 2081951140830, 235260554526570, 26584441984817284, 3004041935476570482, 339456738937747102500]$ |
$10387$ |
$[10387, 164727433, 2086944074176, 26588199159722889, 339456592601965610707, 4334521826497044131123200, 55347526991248534590525101683, 706732554161954463566478697497609, 9024267957635048976482966476586037184, 115230877628741767784583048968736448231753]$ |
$144$ |
$144$ |
$2$ |
$2$ |
$1$ |
4.0.21642921.1 |
$D_{4}$ |
simple |
2.113.ay_nq |
$2$ |
$\F_{113}$ |
$113$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 16 x + 113 x^{2} )( 1 - 8 x + 113 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$90$ |
$[90, 12902, 1446426, 163071294, 18424341690, 2081950920614, 235260551508282, 26584441973724286, 3004041935702685978, 339456738941671383782]$ |
$10388$ |
$[10388, 164753680, 2087048104148, 26588344287232000, 339456552807347368148, 4334521368018127247787280, 55347526281164431099796655764, 706732553867053298028798541824000, 9024267958314309408699700689474001172, 115230877630073891511353652116654104752400]$ |
$144$ |
$144$ |
$8$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-97}) \) |
$C_2$, $C_2$ |
1.113.aq $\times$ 1.113.ai |
2.113.ay_nr |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 355 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$90$ |
$[90, 12904, 1446498, 163072180, 18424339290, 2081950694278, 235260548421786, 26584441963007524, 3004041935954548674, 339456738945995386264]$ |
$10389$ |
$[10389, 164779929, 2087152136244, 26588488763432601, 339456508591092193389, 4334520896797700933621136, 55347525555033681277139157789, 706732553582154157176287298401769, 9024267959070915509538437099923048116, 115230877631541703293180001385334358674249]$ |
$84$ |
$84$ |
$2$ |
$2$ |
$1$ |
4.0.277952400.1 |
$D_{4}$ |
simple |
2.113.ay_ns |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 356 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$90$ |
$[90, 12906, 1446570, 163073062, 18424336650, 2081950461834, 235260545268090, 26584441952705278, 3004041936232955610, 339456738950726062986]$ |
$10390$ |
$[10390, 164806180, 2087256170470, 26588632588333200, 339456459953205290950, 4334520412860750510812260, 55347524813093428242662267830, 706732553308274693544571476480000, 9024267959907261620602194133380921910, 115230877633147563386348962551906326620900]$ |
$128$ |
$128$ |
$2$ |
$2$ |
$1$ |
4.0.245774592.1 |
$D_{4}$ |
simple |
2.113.ay_nt |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 357 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$90$ |
$[90, 12908, 1446642, 163073940, 18424333770, 2081950223294, 235260542048202, 26584441942855780, 3004041936538698642, 339456738955870106588]$ |
$10391$ |
$[10391, 164832433, 2087360206832, 26588775761942329, 339456406893691907951, 4334519916232261335705856, 55347524055580815133310902943, 706732553046431283621933283318953, 9024267960825726510542167526886302576, 115230877634893743652612920633462270678913]$ |
$70$ |
$70$ |
$2$ |
$2$ |
$1$ |
4.0.13441753.1 |
$D_{4}$ |
simple |
2.113.ay_nu |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 358 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$90$ |
$[90, 12910, 1446714, 163074814, 18424330650, 2081949978670, 235260538763130, 26584441933497214, 3004041936872564442, 339456738961433949550]$ |
$10392$ |
$[10392, 164858688, 2087464245336, 26588918284268544, 339456349412557334232, 4334519406937218799060800, 55347523282732985103118316568, 706732552797639027849467239809024, 9024267961828673375057799500866851864, 115230877636782427640659420863839833681728]$ |
$252$ |
$252$ |
$2$ |
$2$ |
$1$ |
4.0.2905344.2 |
$D_{4}$ |
simple |
2.113.ay_nv |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 359 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$90$ |
$[90, 12912, 1446786, 163075684, 18424327290, 2081949727974, 235260535413882, 26584441924667716, 3004041937235334498, 339456738967423764432]$ |
$10393$ |
$[10393, 164884945, 2087568285988, 26589060155320425, 339456287509806902473, 4334518885000608326306320, 55347522494787081323460972169, 706732552562911750621238902641225, 9024267962918449836896849497779943972, 115230877638815710667580810508519679746225]$ |
$56$ |
$56$ |
$2$ |
$2$ |
$1$ |
4.0.158506128.1 |
$D_{4}$ |
simple |
2.113.ay_nw |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 360 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$90$ |
$[90, 12914, 1446858, 163076550, 18424323690, 2081949471218, 235260532001466, 26584441916405374, 3004041937627785114, 339456738973845464114]$ |
$10394$ |
$[10394, 164911204, 2087672328794, 26589201375106576, 339456221185445988314, 4334518350447415377799396, 55347521691980246983315216154, 706732552343262000284445707403264, 9024267964097387945855466507124211546, 115230877640995599900343881534591580804324]$ |
$40$ |
$40$ |
$2$ |
$2$ |
$1$ |
4.0.132870400.1 |
$D_{4}$ |
simple |
2.113.ay_nx |
$2$ |
$\F_{113}$ |
$113$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 15 x + 113 x^{2} )( 1 - 9 x + 113 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$90$ |
$[90, 12916, 1446930, 163077412, 18424319850, 2081949208414, 235260528526890, 26584441908748228, 3004041938050687410, 339456738980704702036]$ |
$10395$ |
$[10395, 164937465, 2087776373760, 26589341943635625, 339456150439480010475, 4334517803302625449082880, 55347520874549625289515755115, 706732552139701049139579947015625, 9024267965367804178778262996479585280, 115230877643324014437259514152941842604825]$ |
$280$ |
$280$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-227}) \), \(\Q(\sqrt{-371}) \) |
$C_2$, $C_2$ |
1.113.ap $\times$ 1.113.aj |
2.113.ay_ny |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 362 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$90$ |
$[90, 12918, 1447002, 163078270, 18424315770, 2081948939574, 235260524991162, 26584441901734270, 3004041938504807322, 339456738988006872438]$ |
$10396$ |
$[10396, 164963728, 2087880420892, 26589481860916224, 339456075271914430876, 4334517243591224071144336, 55347520042732359467015942428, 706732551953238893440593899962368, 9024267966731999439558390468363416476, 115230877645802785389452321250016113689488]$ |
$132$ |
$132$ |
$2$ |
$2$ |
$1$ |
4.0.341568.1 |
$D_{4}$ |
simple |
2.113.ay_nz |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 363 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$90$ |
$[90, 12920, 1447074, 163079124, 18424311450, 2081948664710, 235260521395290, 26584441895401444, 3004041938990905602, 339456738995757110600]$ |
$10397$ |
$[10397, 164989993, 2087984470196, 26589621126957049, 339455995682754754757, 4334516671338196810675600, 55347519196765592759149879253, 706732551784884253395067122811689, 9024267968192259059137616662820545844, 115230877648433655962330293726714071800953]$ |
$32$ |
$32$ |
$2$ |
$2$ |
$1$ |
4.0.67870096.1 |
$D_{4}$ |
simple |
2.113.ay_oa |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 364 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$90$ |
$[90, 12922, 1447146, 163079974, 18424306890, 2081948383834, 235260517740282, 26584441889787646, 3004041939509737818, 339456739003960293082]$ |
$10398$ |
$[10398, 165016260, 2088088521678, 26589759741766800, 339455911672006530798, 4334516086568529270333060, 55347518336886468427896334974, 706732551635644573164375921561600, 9024267969750852795506404425795818622, 115230877651218281537054446762176237687300]$ |
$120$ |
$120$ |
$2$ |
$2$ |
$1$ |
4.0.50542848.1 |
$D_{4}$ |
simple |
2.113.ay_ob |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 365 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$90$ |
$[90, 12924, 1447218, 163080820, 18424302090, 2081948096958, 235260514027146, 26584441884930724, 3004041940062054354, 339456739012621037964]$ |
$10399$ |
$[10399, 165042529, 2088192575344, 26589897705354201, 339455823239675351239, 4334515489307207088998656, 55347517463332129754144492119, 706732551506526020863865016386409, 9024267971410034833703992263468545776, 115230877654158229752008467020428229957649]$ |
$64$ |
$64$ |
$2$ |
$2$ |
$1$ |
4.0.2223225.1 |
$D_{4}$ |
simple |
2.113.ay_oc |
$2$ |
$\F_{113}$ |
$113$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 14 x + 113 x^{2} )( 1 - 10 x + 113 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$90$ |
$[90, 12926, 1447290, 163081662, 18424297050, 2081947804094, 235260510256890, 26584441880868478, 3004041940648600410, 339456739021743705086]$ |
$10400$ |
$[10400, 165068800, 2088296631200, 26590035017728000, 339455730385766852000, 4334514879579215942041600, 55347516576339720037961520800, 706732551398533488563021414400000, 9024267973172043785818476602859773600, 115230877657254980584268360818054150144000]$ |
$106$ |
$106$ |
$8$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-22}) \) |
$C_2$, $C_2$ |
1.113.ao $\times$ 1.113.ak |
2.113.ay_od |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 367 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$90$ |
$[90, 12928, 1447362, 163082500, 18424291770, 2081947505254, 235260506430522, 26584441877638660, 3004041941270116002, 339456739031332396288]$ |
$10401$ |
$[10401, 165095073, 2088400689252, 26590171678896969, 339455633110286712801, 4334514257409541541580816, 55347515676146382598861987713, 706732551312670592285650505092233, 9024267975039102690986895779154949476, 115230877660509926431072103271278478065313]$ |
$54$ |
$54$ |
$2$ |
$2$ |
$1$ |
4.0.13146768.1 |
$D_{4}$ |
simple |
2.113.ay_oe |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 368 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$90$ |
$[90, 12930, 1447434, 163083334, 18424286250, 2081947200450, 235260502549050, 26584441875278974, 3004041941927335962, 339456739041390955650]$ |
$10402$ |
$[10402, 165121348, 2088504749506, 26590307688869904, 339455531413240657282, 4334513622823169636748100, 55347514762989260776079104738, 706732551249939672010054393135104, 9024267977013419015395315770316659874, 115230877663924372191289288441044867599428]$ |
$56$ |
$56$ |
$2$ |
$2$ |
$1$ |
4.0.5918976.5 |
$D_{4}$ |
simple |
2.113.ay_of |
$2$ |
$\F_{113}$ |
$113$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 13 x + 113 x^{2} )( 1 - 11 x + 113 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$90$ |
$[90, 12932, 1447506, 163084164, 18424280490, 2081946889694, 235260498613482, 26584441873827076, 3004041942620989938, 339456739051922969732]$ |
$10403$ |
$[10403, 165147625, 2088608811968, 26590443047655625, 339455425294634453123, 4334512975845086013952000, 55347513837105497928837822179, 706732551211341791669212483295625, 9024267979097184652278917699694567872, 115230877667499535346890780494890565675625]$ |
$27$ |
$27$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-283}) \), \(\Q(\sqrt{-331}) \) |
$C_2$, $C_2$ |
1.113.an $\times$ 1.113.al |
2.113.ay_og |
$2$ |
$\F_{113}$ |
$113$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 12 x + 113 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$90$ |
$[90, 12934, 1447578, 163084990, 18424274490, 2081946572998, 235260494624826, 26584441873320574, 3004041943351802394, 339456739062931767814]$ |
$10404$ |
$[10404, 165173904, 2088712876644, 26590577755262976, 339455314754473912164, 4334512316500276497142416, 55347512898732237436629771684, 706732551197876739150964332232704, 9024267981292575921922087127472491556, 115230877671236546044418365904626836334224]$ |
$120$ |
$120$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-77}) \) |
$C_2$ |
1.113.am 2 |
2.113.ax_kd |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 263 x^{2} - 2599 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$91$ |
$[91, 12767, 1441081, 162997659, 18423972386, 2081951414039, 235260534065165, 26584441345152691, 3004041932195664223, 339456738980643275582]$ |
$10411$ |
$[10411, 162984205, 2079331488403, 26576338929269125, 339449748711942552496, 4334522395300031112513205, 55347522177486782307489632587, 706732537156828408081697440105125, 9024267947779068991148225920190177707, 115230877643303162812583031314604597126400]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.1887093.2 |
$D_{4}$ |
simple |
2.113.ax_ke |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 264 x^{2} - 2599 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$91$ |
$[91, 12769, 1441150, 162998721, 18423985611, 2081951641342, 235260538060219, 26584441398180609, 3004041932796482206, 339456738988527343809]$ |
$10412$ |
$[10412, 163010272, 2079431039024, 26576512059860864, 339449992373006841772, 4334522868534592608698368, 55347523117365423317798875628, 706732538566546000995385745219072, 9024267949583951407800792937686805808, 115230877645979462903146156641171344738272]$ |
$30$ |
$30$ |
$2$ |
$2$ |
$1$ |
4.0.35247992.2 |
$D_{4}$ |
simple |
2.113.ax_kf |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 265 x^{2} - 2599 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$91$ |
$[91, 12771, 1441219, 162999779, 18423998606, 2081951862291, 235260541933235, 26584441449084163, 3004041933359212603, 339456738995756255646]$ |
$10413$ |
$[10413, 163036341, 2079530591229, 26576684538519141, 339450231796398747648, 4334523328540410001364277, 55347524028533338629528203469, 706732539919788563433508255670853, 9024267951274417118813265667495254333, 115230877648433365742003870857337689276416]$ |
$53$ |
$53$ |
$2$ |
$2$ |
$1$ |
4.0.274501517.1 |
$D_{4}$ |
simple |
2.113.ax_kg |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 266 x^{2} - 2599 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$91$ |
$[91, 12773, 1441288, 163000833, 18424011371, 2081952076898, 235260545685179, 26584441497901441, 3004041933884871784, 339456739002351986693]$ |
$10414$ |
$[10414, 163062412, 2079630145024, 26576856365250304, 339450466982120291374, 4334523775342466655318016, 55347524911217789774517043342, 706732541217568643600455230643200, 9024267952853519342295582162938185216, 115230877650672331094670941371199871600652]$ |
$24$ |
$24$ |
$2$ |
$2$ |
$1$ |
4.0.4969036.1 |
$D_{4}$ |
simple |
2.113.ax_kh |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 267 x^{2} - 2599 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$91$ |
$[91, 12775, 1441357, 163001883, 18424023906, 2081952285175, 235260549317017, 26584441544670483, 3004041934374471151, 339456739008336258750]$ |
$10415$ |
$[10415, 163088485, 2079729700415, 26577027540060725, 339450697930173526000, 4334524208965745950201165, 55347525765646038286358003615, 706732542460897513646540611062725, 9024267954324296372277031425586166615, 115230877652703732572541782851748275744000]$ |
$54$ |
$54$ |
$2$ |
$2$ |
$1$ |
4.0.525039725.1 |
$D_{4}$ |
simple |
2.113.ax_ki |
$2$ |
$\F_{113}$ |
$113$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 21 x + 113 x^{2} )( 1 - 2 x + 113 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$91$ |
$[91, 12777, 1441426, 163002929, 18424036211, 2081952487134, 235260552829715, 26584441589429281, 3004041934829017138, 339456739013730540057]$ |
$10416$ |
$[10416, 163114560, 2079829257408, 26577198062956800, 339450924640560536496, 4334524629435231280680960, 55347526592045345700513571632, 706732543650785169668029813785600, 9024267955689771578706250377232304832, 115230877654534857714360071433612823156800]$ |
$80$ |
$80$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-7}) \) |
$C_2$, $C_2$ |
1.113.av $\times$ 1.113.ac |
2.113.ax_kj |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 269 x^{2} - 2599 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$91$ |
$[91, 12779, 1441495, 163003971, 18424048286, 2081952682787, 235260556224239, 26584441632215779, 3004041935249511211, 339456739018556045534]$ |
$10417$ |
$[10417, 163140637, 2079928816009, 26577367933944949, 339451147113283439872, 4334525036775906056642173, 55347527390642973554434152193, 706732544788240331707168534369317, 9024267956952953407451221182410489833, 115230877656172908067688358941230362038272]$ |
$48$ |
$48$ |
$2$ |
$2$ |
$1$ |
4.0.754115733.1 |
$D_{4}$ |
simple |
2.113.ax_kk |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 270 x^{2} - 2599 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$91$ |
$[91, 12781, 1441564, 163005009, 18424060131, 2081952872146, 235260559501555, 26584441673067873, 3004041935636949868, 339456739022833737021]$ |
$10418$ |
$[10418, 163166716, 2080028376224, 26577537153031616, 339451365348344385298, 4334525431012753703379712, 55347528161666183387677451714, 706732545874270443752212569175808, 9024267958116835380299268931052950688, 115230877657624999270377687136767256368316]$ |
$44$ |
$44$ |
$2$ |
$2$ |
$1$ |
4.0.860798972.1 |
$D_{4}$ |
simple |
2.113.ax_kl |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 271 x^{2} - 2599 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$91$ |
$[91, 12783, 1441633, 163006043, 18424071746, 2081953055223, 235260562662629, 26584441712023411, 3004041935992324639, 339456739026584323518]$ |
$10419$ |
$[10419, 163192797, 2080127938059, 26577705720223269, 339451579345745554224, 4334525812170757661791941, 55347528905342236742029213107, 706732546909881673737458667591525, 9024267959184396094957059690979706211, 115230877658898161132037201996230476676352]$ |
$45$ |
$45$ |
$2$ |
$2$ |
$1$ |
4.0.962349701.1 |
$D_{4}$ |
simple |
2.113.ax_km |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 272 x^{2} - 2599 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$91$ |
$[91, 12785, 1441702, 163007073, 18424083131, 2081953232030, 235260565708427, 26584441749120193, 3004041936316622086, 339456739029828261425]$ |
$10420$ |
$[10420, 163218880, 2080227501520, 26577873635526400, 339451789105489160500, 4334526180274901388574720, 55347529621898395161625306420, 706732547896078913543276425190400, 9024267960158599225050598940009747920, 115230877659999337715503768018301562712000]$ |
$112$ |
$112$ |
$2$ |
$2$ |
$1$ |
4.0.66177900.3 |
$D_{4}$ |
simple |
2.113.ax_kn |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 273 x^{2} - 2599 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$91$ |
$[91, 12787, 1441771, 163008099, 18424094286, 2081953402579, 235260568639915, 26584441784395971, 3004041936610823803, 339456739032585754782]$ |
$10421$ |
$[10421, 163244965, 2080327066613, 26578040898947525, 339451994627577450496, 4334526535350168356416165, 55347530311561920193075180277, 706732548833865778996141228705925, 9024267961042393520125230387581407157, 115230877660935387418311582570529870643200]$ |
$86$ |
$86$ |
$2$ |
$2$ |
$1$ |
4.0.1150367933.1 |
$D_{4}$ |
simple |
2.113.ax_ko |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 274 x^{2} - 2599 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$91$ |
$[91, 12789, 1441840, 163009121, 18424105211, 2081953566882, 235260571458059, 26584441817888449, 3004041936875906416, 339456739034876755509]$ |
$10422$ |
$[10422, 163271052, 2080426633344, 26578207510493184, 339452195912012703222, 4334526877421542054192128, 55347530974560073385586679158, 706732549724244609868668263718912, 9024267961838712805645635195867335808, 115230877661713083054161790277624537829772]$ |
$56$ |
$56$ |
$2$ |
$2$ |
$1$ |
4.0.1236993548.1 |
$D_{4}$ |
simple |
2.113.ax_kp |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 275 x^{2} - 2599 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$91$ |
$[91, 12791, 1441909, 163010139, 18424115906, 2081953724951, 235260574163825, 26584441849635283, 3004041937112841583, 339456739036720963646]$ |
$10423$ |
$[10423, 163297141, 2080526201719, 26578373470169941, 339452392958797230448, 4334527206514005987162397, 55347531611120116291092231559, 706732550568216469879647596007813, 9024267962550475982995831610467870543, 115230877662339111934392097456688600233216]$ |
$60$ |
$60$ |
$2$ |
$2$ |
$1$ |
4.0.16281517.1 |
$D_{4}$ |
simple |
2.113.ax_kq |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 276 x^{2} - 2599 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$91$ |
$[91, 12793, 1441978, 163011153, 18424126371, 2081953876798, 235260576758179, 26584441879674081, 3004041937322595994, 339456739038137827593]$ |
$10424$ |
$[10424, 163323232, 2080625771744, 26578538777984384, 339452585767933376824, 4334527522652543677167616, 55347532221469310464376414072, 706732551366781146694080337548800, 9024267963180587029479175010865253856, 115230877662820075949446386604343684755552]$ |
$72$ |
$72$ |
$2$ |
$2$ |
$1$ |
4.0.348968984.1 |
$D_{4}$ |
simple |
2.113.ax_kr |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 277 x^{2} - 2599 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$91$ |
$[91, 12795, 1442047, 163012163, 18424136606, 2081954022435, 235260579242087, 26584441908042403, 3004041937506131371, 339456739039146544350]$ |
$10425$ |
$[10425, 163349325, 2080725343425, 26578703433943125, 339452774339423520000, 4334527825862138662826925, 55347532805834917463204896425, 706732552120937151923215908193125, 9024267963731934998318358390920251425, 115230877663162491650344330940799674880000]$ |
$133$ |
$133$ |
$2$ |
$2$ |
$1$ |
4.0.2349269.1 |
$D_{4}$ |
simple |
2.113.ax_ks |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 278 x^{2} - 2599 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$91$ |
$[91, 12797, 1442116, 163013169, 18424146611, 2081954161874, 235260581616515, 26584441934777761, 3004041937664404468, 339456739039766059757]$ |
$10426$ |
$[10426, 163375420, 2080824916768, 26578867438052800, 339452958673270070746, 4334528116167774499736320, 55347533364444198848454772522, 706732552831681721124590404089600, 9024267964207394018655413279792134432, 115230877663372790330151009016030716543100]$ |
$66$ |
$66$ |
$2$ |
$2$ |
$1$ |
4.0.1536135228.1 |
$D_{4}$ |
simple |
2.113.ax_kt |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 279 x^{2} - 2599 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$91$ |
$[91, 12799, 1442185, 163014171, 18424156386, 2081954295127, 235260583882429, 26584441959917619, 3004041937798367071, 339456739040015068734]$ |
$10427$ |
$[10427, 163401517, 2080924491779, 26579030790320069, 339453138769475473072, 4334528393594434760667733, 55347533897524416184246282523, 706732553500010813802066083960357, 9024267964609823295551711113762787483, 115230877663457318105446519383326895830272]$ |
$98$ |
$98$ |
$2$ |
$2$ |
$1$ |
4.0.1599483413.1 |
$D_{4}$ |
simple |
2.113.ax_ku |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 280 x^{2} - 2599 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$91$ |
$[91, 12801, 1442254, 163015169, 18424165931, 2081954422206, 235260586040795, 26584441983499393, 3004041937908965998, 339456739039912015521]$ |
$10428$ |
$[10428, 163427616, 2081024068464, 26579193490751616, 339453314628042204348, 4334528658167103035768832, 55347534405302831038075931004, 706732554126919113405871984378368, 9024267964942067109987965069545857648, 115230877663422335997795595345599884483616]$ |
$132$ |
$132$ |
$2$ |
$2$ |
$1$ |
4.0.414604808.1 |
$D_{4}$ |
simple |
2.113.ax_kv |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 281 x^{2} - 2599 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$91$ |
$[91, 12803, 1442323, 163016163, 18424175246, 2081954543123, 235260588092579, 26584442005560451, 3004041937997143099, 339456739039475093918]$ |
$10429$ |
$[10429, 163453717, 2081123646829, 26579355539354149, 339453486248972775424, 4334528909910762932763541, 55347534888006704980951006237, 706732554713400027332645675235525, 9024267965206954818864232369762377901, 115230877663274020015217219779930816970752]$ |
$36$ |
$36$ |
$2$ |
$2$ |
$1$ |
4.0.1713024621.1 |
$D_{4}$ |
simple |
2.113.ax_kw |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 282 x^{2} - 2599 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$91$ |
$[91, 12805, 1442392, 163017153, 18424184331, 2081954657890, 235260590038747, 26584442026138113, 3004041938063835256, 339456739038722247525]$ |
$10430$ |
$[10430, 163479820, 2081223226880, 26579516936134400, 339453653632269730750, 4334529148850398077153280, 55347535345863299587525505630, 706732555260445686925476166630400, 9024267965407300854999917071365178880, 115230877663018461233654240045959637615500]$ |
$76$ |
$76$ |
$2$ |
$2$ |
$1$ |
4.0.1763381900.1 |
$D_{4}$ |
simple |