Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 24 x + 344 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.202556468854$, $\pm0.394772061326$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.698151168.1 |
Galois group: | $D_{4}$ |
Jacobians: | $136$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10378$ | $164491300$ | $2086007899018$ | $26586863701866000$ | $339456751779030031498$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $90$ | $12882$ | $1445706$ | $163062214$ | $18424352490$ | $2081952845394$ | $235260578455482$ | $26584442095244926$ | $3004041934466077338$ | $339456738919139566482$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 136 curves (of which all are hyperelliptic):
- $y^2=66 x^6+20 x^5+42 x^4+16 x^3+12 x^2+3 x+110$
- $y^2=84 x^6+75 x^5+112 x^4+6 x^3+19 x^2+48 x+75$
- $y^2=94 x^6+43 x^5+43 x^4+111 x^3+53 x^2+45 x+42$
- $y^2=94 x^6+34 x^5+52 x^4+62 x^3+26 x^2+4 x+84$
- $y^2=46 x^6+77 x^5+46 x^4+72 x^3+72 x^2+39 x+97$
- $y^2=94 x^6+52 x^5+99 x^4+50 x^3+111 x^2+16 x+18$
- $y^2=5 x^6+61 x^5+14 x^4+80 x^3+86 x^2+81 x+14$
- $y^2=91 x^6+94 x^5+37 x^4+54 x^3+26 x^2+24 x+12$
- $y^2=108 x^6+30 x^5+51 x^4+104 x^3+39 x^2+110 x+40$
- $y^2=48 x^6+63 x^5+88 x^4+111 x^3+66 x^2+94 x+1$
- $y^2=17 x^6+17 x^5+103 x^4+4 x^3+28 x^2+89 x+75$
- $y^2=102 x^6+92 x^5+66 x^4+11 x^3+28 x^2+68 x+62$
- $y^2=85 x^6+85 x^5+85 x^4+66 x^3+58 x^2+11 x+56$
- $y^2=81 x^6+9 x^5+94 x^4+82 x^3+36 x^2+65 x+53$
- $y^2=108 x^6+55 x^4+67 x^3+14 x^2+27 x+74$
- $y^2=23 x^6+105 x^5+26 x^4+21 x^3+32 x^2+107 x+88$
- $y^2=72 x^6+20 x^5+37 x^4+14 x^3+67 x^2+5 x+96$
- $y^2=110 x^6+65 x^5+47 x^4+78 x^3+57 x^2+53 x+80$
- $y^2=73 x^6+57 x^5+55 x^4+43 x^3+50 x^2+64 x+10$
- $y^2=81 x^6+36 x^5+32 x^4+34 x^3+74 x^2+90 x$
- and 116 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.698151168.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.y_ng | $2$ | (not in LMFDB) |