Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 23 x + 270 x^{2} - 2599 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0591605281587$, $\pm0.468419306862$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.860798972.1 |
Galois group: | $D_{4}$ |
Jacobians: | $44$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10418$ | $163166716$ | $2080028376224$ | $26577537153031616$ | $339451365348344385298$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $91$ | $12781$ | $1441564$ | $163005009$ | $18424060131$ | $2081952872146$ | $235260559501555$ | $26584441673067873$ | $3004041935636949868$ | $339456739022833737021$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 44 curves (of which all are hyperelliptic):
- $y^2=109 x^6+63 x^4+89 x^3+105 x^2+12 x+103$
- $y^2=102 x^6+44 x^5+108 x^4+71 x^3+107 x^2+102 x+3$
- $y^2=31 x^6+22 x^5+4 x^4+83 x^3+51 x^2+103 x+78$
- $y^2=43 x^6+44 x^5+24 x^4+111 x^3+38 x^2+32 x+59$
- $y^2=78 x^6+31 x^5+59 x^4+96 x^3+102 x^2+4 x+84$
- $y^2=43 x^6+94 x^5+90 x^4+47 x^3+73 x^2+56 x+83$
- $y^2=102 x^6+24 x^5+54 x^4+9 x^3+15 x^2+97 x+11$
- $y^2=71 x^6+85 x^5+27 x^4+22 x^3+68 x+37$
- $y^2=50 x^6+110 x^5+87 x^4+68 x^3+75 x^2+2 x+21$
- $y^2=16 x^6+17 x^5+52 x^4+33 x^3+44 x^2+92 x+51$
- $y^2=74 x^6+82 x^5+63 x^4+77 x^3+91 x^2+106 x+39$
- $y^2=16 x^6+23 x^5+19 x^4+14 x^3+6 x^2+39 x+13$
- $y^2=29 x^6+3 x^5+46 x^4+112 x^3+102 x^2+22 x+29$
- $y^2=84 x^6+55 x^5+22 x^4+13 x^3+51 x^2+x+47$
- $y^2=106 x^6+77 x^5+100 x^4+69 x^3+72 x^2+100 x+29$
- $y^2=55 x^6+69 x^5+100 x^4+49 x^3+77 x^2+32 x+40$
- $y^2=69 x^6+15 x^5+39 x^4+94 x^3+13 x^2+79 x+33$
- $y^2=73 x^6+11 x^5+38 x^4+79 x^3+64 x^2+110 x+99$
- $y^2=39 x^6+99 x^5+36 x^4+49 x^3+69 x^2+56 x+87$
- $y^2=75 x^6+67 x^5+86 x^4+34 x^3+64 x^2+35 x+99$
- and 24 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.860798972.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.x_kk | $2$ | (not in LMFDB) |