Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 24 x + 368 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.282664668060$, $\pm0.334099696073$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.5918976.5 |
Galois group: | $D_{4}$ |
Jacobians: | $56$ |
Isomorphism classes: | 56 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10402$ | $165121348$ | $2088504749506$ | $26590307688869904$ | $339455531413240657282$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $90$ | $12930$ | $1447434$ | $163083334$ | $18424286250$ | $2081947200450$ | $235260502549050$ | $26584441875278974$ | $3004041941927335962$ | $339456739041390955650$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 56 curves (of which all are hyperelliptic):
- $y^2=20 x^6+46 x^5+111 x^4+86 x^3+31 x^2+78 x+87$
- $y^2=12 x^6+100 x^5+66 x^4+92 x^3+56 x^2+81 x+112$
- $y^2=22 x^6+33 x^5+80 x^4+23 x^3+62 x^2+27 x+91$
- $y^2=84 x^6+103 x^5+22 x^4+6 x^3+101 x^2+89 x+73$
- $y^2=111 x^6+17 x^4+5 x^3+45 x^2+69 x+21$
- $y^2=35 x^6+27 x^5+38 x^4+93 x^3+58 x^2+62 x+31$
- $y^2=21 x^6+5 x^5+42 x^4+112 x^3+105 x^2+89 x+55$
- $y^2=39 x^6+35 x^5+18 x^4+67 x^3+75 x^2+48 x+63$
- $y^2=62 x^6+58 x^5+7 x^4+89 x^3+62 x^2+34 x+93$
- $y^2=109 x^6+111 x^5+93 x^4+7 x^3+54 x^2+93 x+39$
- $y^2=107 x^6+46 x^5+42 x^4+64 x^3+78 x^2+4 x+48$
- $y^2=10 x^6+63 x^5+68 x^4+78 x^3+50 x^2+24 x+85$
- $y^2=105 x^6+40 x^5+76 x^4+24 x^3+56 x^2+3 x+11$
- $y^2=81 x^6+68 x^5+95 x^4+50 x^3+58 x^2+109 x+60$
- $y^2=28 x^6+78 x^5+33 x^4+61 x^3+25 x^2+52 x+52$
- $y^2=2 x^6+101 x^5+2 x^4+11 x^3+88 x^2+13 x+87$
- $y^2=85 x^6+75 x^5+29 x^4+97 x^3+102 x^2+85 x+47$
- $y^2=31 x^6+38 x^5+43 x^4+31 x^3+99 x^2+103 x+29$
- $y^2=3 x^6+3 x^5+53 x^4+16 x^3+102 x^2+42 x+86$
- $y^2=19 x^6+5 x^5+22 x^4+73 x^3+86 x^2+15 x+10$
- and 36 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.5918976.5. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.y_oe | $2$ | (not in LMFDB) |