Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 24 x + 362 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.254308800648$, $\pm0.358021715494$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.341568.1 |
Galois group: | $D_{4}$ |
Jacobians: | $132$ |
Isomorphism classes: | 168 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10396$ | $164963728$ | $2087880420892$ | $26589481860916224$ | $339456075271914430876$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $90$ | $12918$ | $1447002$ | $163078270$ | $18424315770$ | $2081948939574$ | $235260524991162$ | $26584441901734270$ | $3004041938504807322$ | $339456738988006872438$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 132 curves (of which all are hyperelliptic):
- $y^2=40 x^6+59 x^5+85 x^4+92 x^3+105 x^2+21 x+84$
- $y^2=66 x^6+32 x^5+78 x^4+91 x^3+110 x^2+60 x+4$
- $y^2=23 x^6+48 x^5+26 x^4+31 x^3+63 x^2+105$
- $y^2=110 x^6+79 x^5+78 x^4+99 x^3+93 x^2+106 x+44$
- $y^2=35 x^6+53 x^5+103 x^4+71 x^3+61 x^2+7 x+48$
- $y^2=89 x^6+13 x^5+55 x^4+78 x^3+3 x^2+81 x+32$
- $y^2=87 x^6+67 x^5+59 x^4+60 x^3+69 x^2+108 x+2$
- $y^2=53 x^6+55 x^5+107 x^4+43 x^3+2 x^2+91 x+110$
- $y^2=56 x^6+66 x^5+35 x^4+45 x^3+109 x+45$
- $y^2=96 x^6+49 x^5+108 x^4+27 x^3+13 x^2+37 x+61$
- $y^2=61 x^6+52 x^5+55 x^4+70 x^3+25 x^2+48 x+94$
- $y^2=96 x^6+110 x^5+93 x^4+91 x^3+105 x^2+81 x+76$
- $y^2=53 x^6+50 x^5+62 x^4+56 x^3+100 x^2+23 x+65$
- $y^2=22 x^6+27 x^5+91 x^4+27 x^3+56 x^2+53 x+107$
- $y^2=8 x^6+29 x^5+6 x^4+69 x^3+12 x^2+77 x+62$
- $y^2=66 x^6+43 x^5+112 x^4+35 x^3+23 x^2+99 x+19$
- $y^2=28 x^6+101 x^5+78 x^4+62 x^3+61 x^2+52 x+14$
- $y^2=6 x^6+85 x^5+95 x^4+74 x^3+93 x^2+26 x+4$
- $y^2=2 x^6+46 x^5+72 x^4+15 x^3+90 x^2+7 x+71$
- $y^2=50 x^6+28 x^5+23 x^4+74 x^3+10 x^2+40 x+84$
- and 112 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.341568.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.y_ny | $2$ | (not in LMFDB) |