# Stored data for abelian variety isogeny class 2.113.ay_ny, downloaded from the LMFDB on 15 October 2025. {"abvar_count": 10396, "abvar_counts": [10396, 164963728, 2087880420892, 26589481860916224, 339456075271914430876, 4334517243591224071144336, 55347520042732359467015942428, 706732551953238893440593899962368, 9024267966731999439558390468363416476, 115230877645802785389452321250016113689488], "abvar_counts_str": "10396 164963728 2087880420892 26589481860916224 339456075271914430876 4334517243591224071144336 55347520042732359467015942428 706732551953238893440593899962368 9024267966731999439558390468363416476 115230877645802785389452321250016113689488 ", "all_polarized_product": false, "all_unpolarized_product": false, "angle_corank": 0, "angle_rank": 2, "angles": [0.254308800648207, 0.358021715494086], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 90, "curve_counts": [90, 12918, 1447002, 163078270, 18424315770, 2081948939574, 235260524991162, 26584441901734270, 3004041938504807322, 339456738988006872438], "curve_counts_str": "90 12918 1447002 163078270 18424315770 2081948939574 235260524991162 26584441901734270 3004041938504807322 339456738988006872438 ", "curves": ["y^2=40*x^6+59*x^5+85*x^4+92*x^3+105*x^2+21*x+84", "y^2=66*x^6+32*x^5+78*x^4+91*x^3+110*x^2+60*x+4", "y^2=23*x^6+48*x^5+26*x^4+31*x^3+63*x^2+105", "y^2=110*x^6+79*x^5+78*x^4+99*x^3+93*x^2+106*x+44", "y^2=35*x^6+53*x^5+103*x^4+71*x^3+61*x^2+7*x+48", "y^2=89*x^6+13*x^5+55*x^4+78*x^3+3*x^2+81*x+32", "y^2=87*x^6+67*x^5+59*x^4+60*x^3+69*x^2+108*x+2", "y^2=53*x^6+55*x^5+107*x^4+43*x^3+2*x^2+91*x+110", "y^2=56*x^6+66*x^5+35*x^4+45*x^3+109*x+45", "y^2=96*x^6+49*x^5+108*x^4+27*x^3+13*x^2+37*x+61", "y^2=61*x^6+52*x^5+55*x^4+70*x^3+25*x^2+48*x+94", "y^2=96*x^6+110*x^5+93*x^4+91*x^3+105*x^2+81*x+76", "y^2=53*x^6+50*x^5+62*x^4+56*x^3+100*x^2+23*x+65", "y^2=22*x^6+27*x^5+91*x^4+27*x^3+56*x^2+53*x+107", "y^2=8*x^6+29*x^5+6*x^4+69*x^3+12*x^2+77*x+62", "y^2=66*x^6+43*x^5+112*x^4+35*x^3+23*x^2+99*x+19", "y^2=28*x^6+101*x^5+78*x^4+62*x^3+61*x^2+52*x+14", "y^2=6*x^6+85*x^5+95*x^4+74*x^3+93*x^2+26*x+4", "y^2=2*x^6+46*x^5+72*x^4+15*x^3+90*x^2+7*x+71", "y^2=50*x^6+28*x^5+23*x^4+74*x^3+10*x^2+40*x+84", "y^2=9*x^6+5*x^5+7*x^4+51*x^3+9*x^2+110*x+10", "y^2=96*x^6+41*x^5+16*x^4+23*x^3+41*x^2+91*x+1", "y^2=29*x^6+51*x^5+109*x^4+55*x^3+55*x^2+89*x+72", "y^2=102*x^6+26*x^5+21*x^4+21*x^3+107*x^2+42*x+52", "y^2=69*x^6+65*x^5+40*x^4+101*x^3+48*x^2+73*x+104", "y^2=42*x^6+9*x^5+105*x^4+12*x^3+73*x^2+19*x+83", "y^2=107*x^6+94*x^5+69*x^4+9*x^3+92*x^2+63*x+80", "y^2=100*x^6+41*x^5+86*x^4+14*x^3+54*x^2+60*x+23", "y^2=29*x^6+37*x^5+88*x^4+89*x^3+21*x^2+35*x+20", "y^2=98*x^6+29*x^4+41*x^3+24*x^2+45*x+95", "y^2=20*x^6+74*x^5+11*x^4+98*x^3+105*x^2+88*x+47", "y^2=8*x^6+78*x^5+22*x^4+28*x^3+101*x^2+92*x+78", "y^2=94*x^6+48*x^5+52*x^4+91*x^3+37*x^2+76*x+75", "y^2=32*x^6+88*x^5+15*x^4+44*x^3+17*x^2+92*x+14", "y^2=108*x^6+50*x^5+23*x^4+99*x^3+23*x^2+9*x+9", "y^2=35*x^6+81*x^5+x^4+106*x^3+106*x^2+x+94", "y^2=76*x^6+78*x^5+5*x^4+46*x^3+38*x^2+87*x+29", "y^2=93*x^6+63*x^5+104*x^4+51*x^3+68*x^2+99*x+50", "y^2=96*x^6+74*x^5+106*x^4+58*x^3+46*x^2+10*x+82", "y^2=96*x^6+102*x^5+4*x^4+43*x^3+76*x^2+56*x+52", "y^2=91*x^6+74*x^5+67*x^4+52*x^3+94*x^2+46*x+43", "y^2=92*x^6+93*x^5+10*x^4+13*x^3+56*x^2+109*x+112", "y^2=87*x^6+18*x^5+4*x^4+99*x^3+33*x^2+99*x+84", "y^2=54*x^6+48*x^5+45*x^4+70*x^3+104*x^2+89*x+64", "y^2=56*x^6+47*x^5+67*x^4+85*x^3+100*x^2+101*x+38", "y^2=29*x^6+11*x^5+9*x^4+98*x^3+40*x^2+8*x+110", "y^2=87*x^6+61*x^5+107*x^4+35*x^3+97*x^2+31*x+29", "y^2=78*x^6+105*x^5+57*x^4+33*x^3+89*x^2+62*x+66", "y^2=54*x^6+71*x^5+19*x^4+106*x^3+89*x^2+34*x+97", "y^2=74*x^6+13*x^5+14*x^4+79*x^3+15*x^2+100*x+35", "y^2=38*x^6+9*x^5+66*x^4+68*x^3+108*x^2+11*x+107", "y^2=36*x^6+59*x^5+67*x^4+71*x^3+96*x^2+90*x+28", "y^2=83*x^6+47*x^5+26*x^4+20*x^3+20*x^2+105*x+42", "y^2=79*x^6+110*x^5+5*x^4+91*x^3+77*x^2+98*x+79", "y^2=43*x^6+11*x^5+37*x^4+103*x^3+13*x^2+33*x+43", "y^2=79*x^5+97*x^4+60*x^3+20*x^2+12*x+82", "y^2=20*x^6+86*x^5+74*x^4+18*x^3+75*x^2+51*x+94", "y^2=90*x^6+48*x^5+25*x^4+88*x^3+33*x^2+22*x+54", "y^2=60*x^6+42*x^5+50*x^4+86*x^3+7*x^2+48*x+42", "y^2=36*x^6+44*x^5+29*x^4+32*x^3+53*x^2+x+74", "y^2=36*x^6+85*x^5+51*x^4+55*x^3+12*x+108", "y^2=35*x^6+58*x^5+9*x^4+67*x^3+65*x^2+110*x+71", "y^2=84*x^6+13*x^5+64*x^4+66*x^3+31*x^2+93*x+62", "y^2=51*x^6+46*x^5+57*x^4+100*x^3+36*x^2+14", "y^2=59*x^6+13*x^5+78*x^4+101*x^3+90*x^2+9*x+35", "y^2=28*x^6+3*x^5+31*x^4+6*x^3+12*x^2+67*x+69", "y^2=66*x^6+61*x^5+76*x^4+16*x^3+16*x^2+85*x+103", "y^2=84*x^6+58*x^5+98*x^4+111*x^3+106*x^2+x+91", "y^2=84*x^6+40*x^5+82*x^4+26*x^3+28*x^2+108*x+75", "y^2=90*x^6+92*x^5+105*x^4+71*x^3+64*x^2+86*x+24", "y^2=34*x^6+42*x^5+44*x^4+45*x^3+52*x^2+9*x+89", "y^2=61*x^6+95*x^5+48*x^4+30*x^3+5*x^2+10*x+101", "y^2=43*x^6+23*x^5+52*x^4+18*x^3+97*x^2+50*x+17", "y^2=62*x^6+25*x^5+28*x^4+110*x^3+10*x^2+91*x+86", "y^2=108*x^6+28*x^5+57*x^4+3*x^2+x+100", "y^2=71*x^6+41*x^5+37*x^4+108*x^3+34*x^2+97*x+65", "y^2=21*x^6+7*x^5+19*x^4+39*x^3+29*x^2+62*x+64", "y^2=33*x^6+4*x^5+26*x^4+28*x^3+54*x^2+19*x+22", "y^2=45*x^6+48*x^5+65*x^4+64*x^3+89*x^2+104*x+74", "y^2=39*x^6+68*x^5+31*x^4+45*x^3+32*x^2+17*x+34", "y^2=84*x^6+13*x^5+81*x^4+51*x^3+55*x^2+24*x+104", "y^2=108*x^6+81*x^5+44*x^4+60*x^3+43*x^2+112*x+11", "y^2=99*x^6+83*x^5+57*x^4+97*x^3+97*x^2+62*x+23", "y^2=80*x^6+65*x^5+110*x^4+73*x^3+28*x^2+42*x+6", "y^2=43*x^6+8*x^5+68*x^4+71*x^3+65*x^2+64*x+68", "y^2=2*x^6+50*x^5+44*x^4+101*x^3+76*x^2+21*x+78", "y^2=42*x^6+38*x^5+40*x^4+55*x^3+45*x^2+17*x+21", "y^2=107*x^6+15*x^5+11*x^4+110*x^3+51*x^2+72*x+24", "y^2=92*x^6+30*x^5+43*x^4+108*x^3+44*x^2+82*x+100", "y^2=16*x^6+109*x^5+81*x^4+112*x^3+100*x^2+20*x+15", "y^2=71*x^6+58*x^5+16*x^4+35*x^3+24*x^2+96*x+108", "y^2=83*x^6+67*x^5+79*x^4+58*x^3+106*x^2+87*x+64", "y^2=12*x^6+15*x^5+16*x^4+109*x^3+72*x^2+55*x+41", "y^2=85*x^6+3*x^5+51*x^4+62*x^3+82*x^2+100*x+6", "y^2=38*x^6+25*x^5+72*x^4+47*x^3+104*x^2+30*x+9", "y^2=44*x^6+83*x^5+46*x^4+80*x^3+11*x^2+2*x+67", "y^2=62*x^6+25*x^5+94*x^4+62*x^3+24*x^2+17*x+60", "y^2=64*x^6+90*x^5+50*x^4+66*x^3+44*x^2+59*x+10", "y^2=8*x^6+77*x^5+79*x^4+99*x^3+86*x^2+62*x+48", "y^2=73*x^6+91*x^5+82*x^4+3*x^3+57*x^2+85*x+110", "y^2=35*x^6+56*x^5+64*x^4+74*x^3+37*x^2+104*x+97", "y^2=83*x^6+47*x^5+51*x^4+99*x^3+20*x^2+6*x+49", "y^2=46*x^6+105*x^5+26*x^4+107*x^3+77*x^2+35*x+40", "y^2=74*x^6+100*x^5+90*x^4+40*x^3+66*x^2+28*x+20", "y^2=25*x^6+95*x^5+95*x^4+90*x^3+91*x^2+97*x+94", "y^2=112*x^6+51*x^5+34*x^4+74*x^3+95*x^2+52*x+24", "y^2=74*x^6+25*x^5+51*x^4+71*x^3+2*x^2+100*x+92", "y^2=101*x^6+40*x^5+50*x^4+78*x^3+71*x^2+33*x+32", "y^2=73*x^6+98*x^5+61*x^4+17*x^3+61*x^2+60*x+25", "y^2=24*x^6+97*x^5+46*x^4+17*x^3+65*x^2+4*x+80", "y^2=29*x^6+108*x^5+78*x^4+62*x^3+36*x^2+2*x+24", "y^2=54*x^6+19*x^5+64*x^4+94*x^3+39*x^2+38*x+59", "y^2=81*x^6+50*x^5+95*x^4+104*x^3+53*x^2+50*x+52", "y^2=109*x^6+44*x^5+74*x^4+37*x^3+112*x^2+60*x+12", "y^2=64*x^6+62*x^5+111*x^4+76*x^3+107*x^2+60*x+12", "y^2=89*x^6+84*x^5+71*x^4+92*x^3+27*x^2+34*x+88", "y^2=100*x^6+36*x^5+64*x^4+110*x^3+110*x^2+83*x+43", "y^2=10*x^6+30*x^5+51*x^4+64*x^3+40*x^2+9*x", "y^2=69*x^6+5*x^5+56*x^4+13*x^3+63*x^2+64*x+61", "y^2=39*x^6+107*x^5+40*x^4+66*x^3+40*x^2+83*x+79", "y^2=13*x^6+20*x^5+40*x^4+59*x^3+34*x^2+46*x+54", "y^2=22*x^6+34*x^5+28*x^4+75*x^3+85*x^2+5*x+42", "y^2=49*x^6+57*x^5+21*x^4+88*x^3+73*x^2+30*x+76", "y^2=101*x^6+27*x^5+88*x^4+11*x^3+4*x^2+38*x+15", "y^2=36*x^6+80*x^5+37*x^4+103*x^3+70*x^2+40*x+84", "y^2=41*x^6+28*x^5+6*x^4+56*x^3+44*x^2+43*x+78", "y^2=10*x^6+80*x^5+95*x^4+51*x^3+49*x^2+15*x+5", "y^2=76*x^6+48*x^5+75*x^4+81*x^3+49*x^2+21*x+59", "y^2=95*x^5+19*x^4+31*x^3+18*x^2+34*x+47", "y^2=101*x^6+78*x^5+37*x^4+54*x^3+41*x^2+91*x+109", "y^2=61*x^6+92*x^5+10*x^4+84*x^3+112*x^2+88*x+92", "y^2=40*x^6+57*x^5+105*x^4+27*x^3+53*x^2+42*x+110"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 5, "g": 2, "galois_groups": ["4T3"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T3"], "geometric_number_fields": ["4.0.341568.1"], "geometric_splitting_field": "4.0.341568.1", "geometric_splitting_polynomials": [[343, -38, 39, -2, 1]], "group_structure_count": 2, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 132, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 132, "label": "2.113.ay_ny", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.341568.1"], "p": 113, "p_rank": 2, "p_rank_deficit": 0, "pic_prime_gens": [[1, 7, 1, 18], [1, 3, 1, 2], [1, 23, 2, 18]], "poly": [1, -24, 362, -2712, 12769], "poly_str": "1 -24 362 -2712 12769 ", "primitive_models": [], "principal_polarization_count": 132, "q": 113, "real_poly": [1, -24, 136], "simple_distinct": ["2.113.ay_ny"], "simple_factors": ["2.113.ay_nyA"], "simple_multiplicities": [1], "singular_primes": ["2,-4*F-V+21"], "size": 168, "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.341568.1", "splitting_polynomials": [[343, -38, 39, -2, 1]], "twist_count": 2, "twists": [["2.113.y_ny", "2.12769.fs_bnbq", 2]], "weak_equivalence_count": 5, "zfv_index": 16, "zfv_index_factorization": [[2, 4]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_pic_size": 72, "zfv_plus_index": 2, "zfv_plus_index_factorization": [[2, 1]], "zfv_plus_norm": 85392, "zfv_singular_count": 2, "zfv_singular_primes": ["2,-4*F-V+21"]}