-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 10396, 'abvar_counts': [10396, 164963728, 2087880420892, 26589481860916224, 339456075271914430876, 4334517243591224071144336, 55347520042732359467015942428, 706732551953238893440593899962368, 9024267966731999439558390468363416476, 115230877645802785389452321250016113689488], 'abvar_counts_str': '10396 164963728 2087880420892 26589481860916224 339456075271914430876 4334517243591224071144336 55347520042732359467015942428 706732551953238893440593899962368 9024267966731999439558390468363416476 115230877645802785389452321250016113689488 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.254308800648207, 0.358021715494086], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 90, 'curve_counts': [90, 12918, 1447002, 163078270, 18424315770, 2081948939574, 235260524991162, 26584441901734270, 3004041938504807322, 339456738988006872438], 'curve_counts_str': '90 12918 1447002 163078270 18424315770 2081948939574 235260524991162 26584441901734270 3004041938504807322 339456738988006872438 ', 'curves': ['y^2=40*x^6+59*x^5+85*x^4+92*x^3+105*x^2+21*x+84', 'y^2=66*x^6+32*x^5+78*x^4+91*x^3+110*x^2+60*x+4', 'y^2=23*x^6+48*x^5+26*x^4+31*x^3+63*x^2+105', 'y^2=110*x^6+79*x^5+78*x^4+99*x^3+93*x^2+106*x+44', 'y^2=35*x^6+53*x^5+103*x^4+71*x^3+61*x^2+7*x+48', 'y^2=89*x^6+13*x^5+55*x^4+78*x^3+3*x^2+81*x+32', 'y^2=87*x^6+67*x^5+59*x^4+60*x^3+69*x^2+108*x+2', 'y^2=53*x^6+55*x^5+107*x^4+43*x^3+2*x^2+91*x+110', 'y^2=56*x^6+66*x^5+35*x^4+45*x^3+109*x+45', 'y^2=96*x^6+49*x^5+108*x^4+27*x^3+13*x^2+37*x+61', 'y^2=61*x^6+52*x^5+55*x^4+70*x^3+25*x^2+48*x+94', 'y^2=96*x^6+110*x^5+93*x^4+91*x^3+105*x^2+81*x+76', 'y^2=53*x^6+50*x^5+62*x^4+56*x^3+100*x^2+23*x+65', 'y^2=22*x^6+27*x^5+91*x^4+27*x^3+56*x^2+53*x+107', 'y^2=8*x^6+29*x^5+6*x^4+69*x^3+12*x^2+77*x+62', 'y^2=66*x^6+43*x^5+112*x^4+35*x^3+23*x^2+99*x+19', 'y^2=28*x^6+101*x^5+78*x^4+62*x^3+61*x^2+52*x+14', 'y^2=6*x^6+85*x^5+95*x^4+74*x^3+93*x^2+26*x+4', 'y^2=2*x^6+46*x^5+72*x^4+15*x^3+90*x^2+7*x+71', 'y^2=50*x^6+28*x^5+23*x^4+74*x^3+10*x^2+40*x+84', 'y^2=9*x^6+5*x^5+7*x^4+51*x^3+9*x^2+110*x+10', 'y^2=96*x^6+41*x^5+16*x^4+23*x^3+41*x^2+91*x+1', 'y^2=29*x^6+51*x^5+109*x^4+55*x^3+55*x^2+89*x+72', 'y^2=102*x^6+26*x^5+21*x^4+21*x^3+107*x^2+42*x+52', 'y^2=69*x^6+65*x^5+40*x^4+101*x^3+48*x^2+73*x+104', 'y^2=42*x^6+9*x^5+105*x^4+12*x^3+73*x^2+19*x+83', 'y^2=107*x^6+94*x^5+69*x^4+9*x^3+92*x^2+63*x+80', 'y^2=100*x^6+41*x^5+86*x^4+14*x^3+54*x^2+60*x+23', 'y^2=29*x^6+37*x^5+88*x^4+89*x^3+21*x^2+35*x+20', 'y^2=98*x^6+29*x^4+41*x^3+24*x^2+45*x+95', 'y^2=20*x^6+74*x^5+11*x^4+98*x^3+105*x^2+88*x+47', 'y^2=8*x^6+78*x^5+22*x^4+28*x^3+101*x^2+92*x+78', 'y^2=94*x^6+48*x^5+52*x^4+91*x^3+37*x^2+76*x+75', 'y^2=32*x^6+88*x^5+15*x^4+44*x^3+17*x^2+92*x+14', 'y^2=108*x^6+50*x^5+23*x^4+99*x^3+23*x^2+9*x+9', 'y^2=35*x^6+81*x^5+x^4+106*x^3+106*x^2+x+94', 'y^2=76*x^6+78*x^5+5*x^4+46*x^3+38*x^2+87*x+29', 'y^2=93*x^6+63*x^5+104*x^4+51*x^3+68*x^2+99*x+50', 'y^2=96*x^6+74*x^5+106*x^4+58*x^3+46*x^2+10*x+82', 'y^2=96*x^6+102*x^5+4*x^4+43*x^3+76*x^2+56*x+52', 'y^2=91*x^6+74*x^5+67*x^4+52*x^3+94*x^2+46*x+43', 'y^2=92*x^6+93*x^5+10*x^4+13*x^3+56*x^2+109*x+112', 'y^2=87*x^6+18*x^5+4*x^4+99*x^3+33*x^2+99*x+84', 'y^2=54*x^6+48*x^5+45*x^4+70*x^3+104*x^2+89*x+64', 'y^2=56*x^6+47*x^5+67*x^4+85*x^3+100*x^2+101*x+38', 'y^2=29*x^6+11*x^5+9*x^4+98*x^3+40*x^2+8*x+110', 'y^2=87*x^6+61*x^5+107*x^4+35*x^3+97*x^2+31*x+29', 'y^2=78*x^6+105*x^5+57*x^4+33*x^3+89*x^2+62*x+66', 'y^2=54*x^6+71*x^5+19*x^4+106*x^3+89*x^2+34*x+97', 'y^2=74*x^6+13*x^5+14*x^4+79*x^3+15*x^2+100*x+35', 'y^2=38*x^6+9*x^5+66*x^4+68*x^3+108*x^2+11*x+107', 'y^2=36*x^6+59*x^5+67*x^4+71*x^3+96*x^2+90*x+28', 'y^2=83*x^6+47*x^5+26*x^4+20*x^3+20*x^2+105*x+42', 'y^2=79*x^6+110*x^5+5*x^4+91*x^3+77*x^2+98*x+79', 'y^2=43*x^6+11*x^5+37*x^4+103*x^3+13*x^2+33*x+43', 'y^2=79*x^5+97*x^4+60*x^3+20*x^2+12*x+82', 'y^2=20*x^6+86*x^5+74*x^4+18*x^3+75*x^2+51*x+94', 'y^2=90*x^6+48*x^5+25*x^4+88*x^3+33*x^2+22*x+54', 'y^2=60*x^6+42*x^5+50*x^4+86*x^3+7*x^2+48*x+42', 'y^2=36*x^6+44*x^5+29*x^4+32*x^3+53*x^2+x+74', 'y^2=36*x^6+85*x^5+51*x^4+55*x^3+12*x+108', 'y^2=35*x^6+58*x^5+9*x^4+67*x^3+65*x^2+110*x+71', 'y^2=84*x^6+13*x^5+64*x^4+66*x^3+31*x^2+93*x+62', 'y^2=51*x^6+46*x^5+57*x^4+100*x^3+36*x^2+14', 'y^2=59*x^6+13*x^5+78*x^4+101*x^3+90*x^2+9*x+35', 'y^2=28*x^6+3*x^5+31*x^4+6*x^3+12*x^2+67*x+69', 'y^2=66*x^6+61*x^5+76*x^4+16*x^3+16*x^2+85*x+103', 'y^2=84*x^6+58*x^5+98*x^4+111*x^3+106*x^2+x+91', 'y^2=84*x^6+40*x^5+82*x^4+26*x^3+28*x^2+108*x+75', 'y^2=90*x^6+92*x^5+105*x^4+71*x^3+64*x^2+86*x+24', 'y^2=34*x^6+42*x^5+44*x^4+45*x^3+52*x^2+9*x+89', 'y^2=61*x^6+95*x^5+48*x^4+30*x^3+5*x^2+10*x+101', 'y^2=43*x^6+23*x^5+52*x^4+18*x^3+97*x^2+50*x+17', 'y^2=62*x^6+25*x^5+28*x^4+110*x^3+10*x^2+91*x+86', 'y^2=108*x^6+28*x^5+57*x^4+3*x^2+x+100', 'y^2=71*x^6+41*x^5+37*x^4+108*x^3+34*x^2+97*x+65', 'y^2=21*x^6+7*x^5+19*x^4+39*x^3+29*x^2+62*x+64', 'y^2=33*x^6+4*x^5+26*x^4+28*x^3+54*x^2+19*x+22', 'y^2=45*x^6+48*x^5+65*x^4+64*x^3+89*x^2+104*x+74', 'y^2=39*x^6+68*x^5+31*x^4+45*x^3+32*x^2+17*x+34', 'y^2=84*x^6+13*x^5+81*x^4+51*x^3+55*x^2+24*x+104', 'y^2=108*x^6+81*x^5+44*x^4+60*x^3+43*x^2+112*x+11', 'y^2=99*x^6+83*x^5+57*x^4+97*x^3+97*x^2+62*x+23', 'y^2=80*x^6+65*x^5+110*x^4+73*x^3+28*x^2+42*x+6', 'y^2=43*x^6+8*x^5+68*x^4+71*x^3+65*x^2+64*x+68', 'y^2=2*x^6+50*x^5+44*x^4+101*x^3+76*x^2+21*x+78', 'y^2=42*x^6+38*x^5+40*x^4+55*x^3+45*x^2+17*x+21', 'y^2=107*x^6+15*x^5+11*x^4+110*x^3+51*x^2+72*x+24', 'y^2=92*x^6+30*x^5+43*x^4+108*x^3+44*x^2+82*x+100', 'y^2=16*x^6+109*x^5+81*x^4+112*x^3+100*x^2+20*x+15', 'y^2=71*x^6+58*x^5+16*x^4+35*x^3+24*x^2+96*x+108', 'y^2=83*x^6+67*x^5+79*x^4+58*x^3+106*x^2+87*x+64', 'y^2=12*x^6+15*x^5+16*x^4+109*x^3+72*x^2+55*x+41', 'y^2=85*x^6+3*x^5+51*x^4+62*x^3+82*x^2+100*x+6', 'y^2=38*x^6+25*x^5+72*x^4+47*x^3+104*x^2+30*x+9', 'y^2=44*x^6+83*x^5+46*x^4+80*x^3+11*x^2+2*x+67', 'y^2=62*x^6+25*x^5+94*x^4+62*x^3+24*x^2+17*x+60', 'y^2=64*x^6+90*x^5+50*x^4+66*x^3+44*x^2+59*x+10', 'y^2=8*x^6+77*x^5+79*x^4+99*x^3+86*x^2+62*x+48', 'y^2=73*x^6+91*x^5+82*x^4+3*x^3+57*x^2+85*x+110', 'y^2=35*x^6+56*x^5+64*x^4+74*x^3+37*x^2+104*x+97', 'y^2=83*x^6+47*x^5+51*x^4+99*x^3+20*x^2+6*x+49', 'y^2=46*x^6+105*x^5+26*x^4+107*x^3+77*x^2+35*x+40', 'y^2=74*x^6+100*x^5+90*x^4+40*x^3+66*x^2+28*x+20', 'y^2=25*x^6+95*x^5+95*x^4+90*x^3+91*x^2+97*x+94', 'y^2=112*x^6+51*x^5+34*x^4+74*x^3+95*x^2+52*x+24', 'y^2=74*x^6+25*x^5+51*x^4+71*x^3+2*x^2+100*x+92', 'y^2=101*x^6+40*x^5+50*x^4+78*x^3+71*x^2+33*x+32', 'y^2=73*x^6+98*x^5+61*x^4+17*x^3+61*x^2+60*x+25', 'y^2=24*x^6+97*x^5+46*x^4+17*x^3+65*x^2+4*x+80', 'y^2=29*x^6+108*x^5+78*x^4+62*x^3+36*x^2+2*x+24', 'y^2=54*x^6+19*x^5+64*x^4+94*x^3+39*x^2+38*x+59', 'y^2=81*x^6+50*x^5+95*x^4+104*x^3+53*x^2+50*x+52', 'y^2=109*x^6+44*x^5+74*x^4+37*x^3+112*x^2+60*x+12', 'y^2=64*x^6+62*x^5+111*x^4+76*x^3+107*x^2+60*x+12', 'y^2=89*x^6+84*x^5+71*x^4+92*x^3+27*x^2+34*x+88', 'y^2=100*x^6+36*x^5+64*x^4+110*x^3+110*x^2+83*x+43', 'y^2=10*x^6+30*x^5+51*x^4+64*x^3+40*x^2+9*x', 'y^2=69*x^6+5*x^5+56*x^4+13*x^3+63*x^2+64*x+61', 'y^2=39*x^6+107*x^5+40*x^4+66*x^3+40*x^2+83*x+79', 'y^2=13*x^6+20*x^5+40*x^4+59*x^3+34*x^2+46*x+54', 'y^2=22*x^6+34*x^5+28*x^4+75*x^3+85*x^2+5*x+42', 'y^2=49*x^6+57*x^5+21*x^4+88*x^3+73*x^2+30*x+76', 'y^2=101*x^6+27*x^5+88*x^4+11*x^3+4*x^2+38*x+15', 'y^2=36*x^6+80*x^5+37*x^4+103*x^3+70*x^2+40*x+84', 'y^2=41*x^6+28*x^5+6*x^4+56*x^3+44*x^2+43*x+78', 'y^2=10*x^6+80*x^5+95*x^4+51*x^3+49*x^2+15*x+5', 'y^2=76*x^6+48*x^5+75*x^4+81*x^3+49*x^2+21*x+59', 'y^2=95*x^5+19*x^4+31*x^3+18*x^2+34*x+47', 'y^2=101*x^6+78*x^5+37*x^4+54*x^3+41*x^2+91*x+109', 'y^2=61*x^6+92*x^5+10*x^4+84*x^3+112*x^2+88*x+92', 'y^2=40*x^6+57*x^5+105*x^4+27*x^3+53*x^2+42*x+110'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 5, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.341568.1'], 'geometric_splitting_field': '4.0.341568.1', 'geometric_splitting_polynomials': [[343, -38, 39, -2, 1]], 'group_structure_count': 2, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 132, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 132, 'label': '2.113.ay_ny', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.341568.1'], 'p': 113, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 7, 1, 18], [1, 3, 1, 2], [1, 23, 2, 18]], 'poly': [1, -24, 362, -2712, 12769], 'poly_str': '1 -24 362 -2712 12769 ', 'primitive_models': [], 'principal_polarization_count': 132, 'q': 113, 'real_poly': [1, -24, 136], 'simple_distinct': ['2.113.ay_ny'], 'simple_factors': ['2.113.ay_nyA'], 'simple_multiplicities': [1], 'singular_primes': ['2,-4*F-V+21'], 'size': 168, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.341568.1', 'splitting_polynomials': [[343, -38, 39, -2, 1]], 'twist_count': 2, 'twists': [['2.113.y_ny', '2.12769.fs_bnbq', 2]], 'weak_equivalence_count': 5, 'zfv_index': 16, 'zfv_index_factorization': [[2, 4]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_pic_size': 72, 'zfv_plus_index': 2, 'zfv_plus_index_factorization': [[2, 1]], 'zfv_plus_norm': 85392, 'zfv_singular_count': 2, 'zfv_singular_primes': ['2,-4*F-V+21']}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.113.ay_ny', 'extension_degree': 1, 'extension_label': '2.113.ay_ny', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0', '0', '0'], 'center': '4.0.341568.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.113.ay_ny', 'galois_group': '4T3', 'places': [['22', '1', '0', '0'], ['84', '1', '0', '0'], ['90', '1', '0', '0'], ['28', '1', '0', '0']]}