Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 23 x + 272 x^{2} - 2599 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0672842588722$, $\pm0.466808076726$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.66177900.3 |
Galois group: | $D_{4}$ |
Jacobians: | $112$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10420$ | $163218880$ | $2080227501520$ | $26577873635526400$ | $339451789105489160500$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $91$ | $12785$ | $1441702$ | $163007073$ | $18424083131$ | $2081953232030$ | $235260565708427$ | $26584441749120193$ | $3004041936316622086$ | $339456739029828261425$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 112 curves (of which all are hyperelliptic):
- $y^2=9 x^6+26 x^5+85 x^4+41 x^3+77 x^2+17 x+43$
- $y^2=105 x^6+72 x^5+82 x^4+97 x^3+20 x^2+93 x+10$
- $y^2=59 x^6+101 x^5+95 x^4+92 x^3+4 x^2+29 x+29$
- $y^2=21 x^6+25 x^5+72 x^4+81 x^3+6 x^2+14 x+110$
- $y^2=112 x^6+66 x^5+52 x^4+23 x^3+49 x^2+67 x+45$
- $y^2=40 x^6+13 x^5+55 x^4+43 x^3+98 x^2+71 x+85$
- $y^2=26 x^6+51 x^5+69 x^4+33 x^3+28 x^2+75 x+12$
- $y^2=37 x^6+70 x^4+96 x^3+77 x^2+91 x+84$
- $y^2=61 x^6+108 x^5+11 x^4+21 x^3+72 x^2+67 x+23$
- $y^2=59 x^6+10 x^5+24 x^4+65 x^3+6 x^2+2 x+60$
- $y^2=x^6+64 x^5+72 x^4+23 x^3+57 x^2+44 x+12$
- $y^2=65 x^6+52 x^5+80 x^4+100 x^3+25 x^2+66 x+27$
- $y^2=23 x^6+16 x^5+100 x^4+108 x^3+55 x^2+91 x+73$
- $y^2=100 x^6+110 x^5+66 x^4+51 x^3+61 x^2+90 x+12$
- $y^2=46 x^6+84 x^5+60 x^4+29 x^3+82 x^2+x+12$
- $y^2=91 x^6+76 x^5+104 x^4+3 x^3+105 x^2+63 x+73$
- $y^2=58 x^6+91 x^5+85 x^4+89 x^3+56 x^2+86 x+36$
- $y^2=48 x^6+13 x^5+48 x^4+5 x^3+15 x^2+36 x+44$
- $y^2=x^6+92 x^5+107 x^4+45 x^3+44 x^2+62 x+66$
- $y^2=94 x^6+81 x^5+36 x^4+41 x^3+45 x^2+38 x+68$
- and 92 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.66177900.3. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.x_km | $2$ | (not in LMFDB) |