Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 24 x + 367 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.276481731221$, $\pm0.339560301288$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.13146768.1 |
Galois group: | $D_{4}$ |
Jacobians: | $54$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10401$ | $165095073$ | $2088400689252$ | $26590171678896969$ | $339455633110286712801$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $90$ | $12928$ | $1447362$ | $163082500$ | $18424291770$ | $2081947505254$ | $235260506430522$ | $26584441877638660$ | $3004041941270116002$ | $339456739031332396288$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 54 curves (of which all are hyperelliptic):
- $y^2=25 x^6+74 x^5+39 x^4+104 x^3+37 x^2+60 x+89$
- $y^2=50 x^6+48 x^5+15 x^4+80 x^3+110 x^2+55 x+55$
- $y^2=69 x^6+74 x^5+93 x^4+16 x^3+14 x^2+96 x+108$
- $y^2=14 x^6+106 x^5+94 x^4+75 x^3+77 x^2+32 x+50$
- $y^2=38 x^6+19 x^5+72 x^4+7 x^3+46 x^2+68 x+17$
- $y^2=55 x^6+28 x^5+58 x^4+64 x^3+65 x^2+24 x+71$
- $y^2=92 x^6+79 x^5+70 x^4+36 x^3+48 x^2+33 x+20$
- $y^2=70 x^6+65 x^5+19 x^4+70 x^3+55 x^2+32 x+94$
- $y^2=106 x^6+93 x^5+51 x^4+91 x^3+64 x^2+21 x+17$
- $y^2=92 x^6+9 x^5+35 x^4+55 x^3+49 x^2+98 x+111$
- $y^2=36 x^6+112 x^5+24 x^4+48 x^3+88 x^2+102 x+97$
- $y^2=42 x^6+61 x^5+57 x^4+20 x^3+40 x^2+12 x+2$
- $y^2=52 x^6+10 x^5+24 x^4+112 x^3+99 x^2+82 x+65$
- $y^2=25 x^6+62 x^5+74 x^4+93 x^3+112 x^2+96 x+23$
- $y^2=16 x^6+30 x^5+32 x^4+73 x^3+89 x^2+87 x+98$
- $y^2=45 x^6+21 x^5+38 x^4+80 x^3+31 x^2+31 x+33$
- $y^2=80 x^6+40 x^5+81 x^4+46 x^3+2 x^2+64 x+89$
- $y^2=59 x^6+13 x^5+102 x^4+50 x^3+83 x^2+75 x+62$
- $y^2=72 x^6+102 x^5+86 x^4+12 x^3+95 x^2+5 x+39$
- $y^2=27 x^6+46 x^5+39 x^4+2 x^2+99 x+33$
- and 34 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.13146768.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.y_od | $2$ | (not in LMFDB) |