Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 23 x + 271 x^{2} - 2599 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0633394078667$, $\pm0.467616104285$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.962349701.1 |
Galois group: | $D_{4}$ |
Jacobians: | $45$ |
Isomorphism classes: | 45 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10419$ | $163192797$ | $2080127938059$ | $26577705720223269$ | $339451579345745554224$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $91$ | $12783$ | $1441633$ | $163006043$ | $18424071746$ | $2081953055223$ | $235260562662629$ | $26584441712023411$ | $3004041935992324639$ | $339456739026584323518$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 45 curves (of which all are hyperelliptic):
- $y^2=83 x^6+40 x^5+69 x^4+86 x^3+62 x^2+83 x$
- $y^2=74 x^6+56 x^5+109 x^4+112 x^3+14 x^2+76 x+92$
- $y^2=30 x^6+68 x^5+42 x^4+72 x^3+5 x^2+93 x+29$
- $y^2=56 x^6+21 x^5+49 x^4+67 x^3+86 x^2+52 x+92$
- $y^2=108 x^6+8 x^5+76 x^4+10 x^3+33 x^2+23 x+84$
- $y^2=100 x^6+34 x^5+63 x^4+98 x^3+52 x^2+98 x+58$
- $y^2=71 x^6+73 x^5+34 x^4+109 x^3+3 x^2+81 x+82$
- $y^2=24 x^6+70 x^5+3 x^4+46 x^3+104 x^2+9 x+73$
- $y^2=14 x^6+61 x^5+49 x^4+8 x^3+15 x^2+108 x+12$
- $y^2=16 x^6+112 x^5+99 x^4+101 x^3+4 x^2+105 x+108$
- $y^2=14 x^6+69 x^5+110 x^4+6 x^3+53 x^2+92 x+61$
- $y^2=99 x^6+31 x^5+96 x^4+19 x^3+35 x^2+27 x+35$
- $y^2=4 x^6+81 x^5+73 x^4+83 x^3+85 x^2+39 x+109$
- $y^2=58 x^6+15 x^5+69 x^4+18 x^3+21 x^2+21 x+90$
- $y^2=65 x^6+98 x^5+91 x^4+71 x^3+76 x^2+52 x+70$
- $y^2=13 x^6+19 x^5+72 x^4+73 x^3+26 x^2+9 x+37$
- $y^2=83 x^6+44 x^5+76 x^4+110 x^3+101 x^2+11 x$
- $y^2=7 x^6+57 x^5+70 x^4+9 x^3+6 x^2+99 x+66$
- $y^2=93 x^6+86 x^5+83 x^4+62 x^3+10 x^2+41 x+75$
- $y^2=x^6+17 x^5+89 x^4+2 x^3+19 x^2+56 x+96$
- and 25 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.962349701.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.x_kl | $2$ | (not in LMFDB) |