Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 12 x + 113 x^{2} )^{2}$ |
$1 - 24 x + 370 x^{2} - 2712 x^{3} + 12769 x^{4}$ | |
Frobenius angles: | $\pm0.309095034261$, $\pm0.309095034261$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $120$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10404$ | $165173904$ | $2088712876644$ | $26590577755262976$ | $339455314754473912164$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $90$ | $12934$ | $1447578$ | $163084990$ | $18424274490$ | $2081946572998$ | $235260494624826$ | $26584441873320574$ | $3004041943351802394$ | $339456739062931767814$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 120 curves (of which all are hyperelliptic):
- $y^2=108 x^6+18 x^5+110 x^4+105 x^3+x^2+112 x+5$
- $y^2=39 x^6+26 x^5+94 x^4+40 x^3+94 x^2+26 x+39$
- $y^2=52 x^6+2 x^5+15 x^4+34 x^3+67 x^2+21 x+29$
- $y^2=53 x^6+89 x^5+101 x^4+2 x^3+31 x^2+71 x+12$
- $y^2=20 x^6+75 x^5+94 x^4+58 x^3+83 x^2+112 x+112$
- $y^2=39 x^6+19 x^5+27 x^4+64 x^3+55 x^2+59 x+24$
- $y^2=76 x^6+33 x^5+92 x^4+68 x^3+105 x^2+74 x+36$
- $y^2=3 x^6+95 x^5+87 x^4+80 x^3+87 x^2+95 x+3$
- $y^2=5 x^6+26 x^5+66 x^4+52 x^3+73 x^2+67 x+55$
- $y^2=33 x^6+69 x^5+59 x^4+17 x^3+8 x^2+67 x+74$
- $y^2=49 x^6+36 x^5+110 x^4+41 x^3+15 x^2+49 x+39$
- $y^2=39 x^6+4 x^5+63 x^4+51 x^3+x^2+81 x+100$
- $y^2=105 x^6+24 x^5+53 x^4+104 x^3+14 x^2+45 x+60$
- $y^2=59 x^6+80 x^5+57 x^4+17 x^3+105 x^2+9 x+94$
- $y^2=56 x^6+54 x^5+85 x^4+90 x^3+85 x^2+54 x+56$
- $y^2=3 x^6+111 x^5+65 x^4+10 x^3+36 x^2+44 x+25$
- $y^2=22 x^6+110 x^5+81 x^4+46 x^3+77 x^2+58 x+30$
- $y^2=59 x^6+13 x^5+38 x^4+96 x^3+17 x^2+26 x+29$
- $y^2=98 x^6+12 x^5+103 x^4+38 x^3+100 x^2+83 x+81$
- $y^2=42 x^6+110 x^5+20 x^4+105 x^3+27 x^2+77 x+50$
- and 100 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The isogeny class factors as 1.113.am 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-77}) \)$)$ |
Base change
This is a primitive isogeny class.