Properties

Label 2.113.ay_og
Base field $\F_{113}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{113}$
Dimension:  $2$
L-polynomial:  $( 1 - 12 x + 113 x^{2} )^{2}$
  $1 - 24 x + 370 x^{2} - 2712 x^{3} + 12769 x^{4}$
Frobenius angles:  $\pm0.309095034261$, $\pm0.309095034261$
Angle rank:  $1$ (numerical)
Jacobians:  $120$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $10404$ $165173904$ $2088712876644$ $26590577755262976$ $339455314754473912164$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $90$ $12934$ $1447578$ $163084990$ $18424274490$ $2081946572998$ $235260494624826$ $26584441873320574$ $3004041943351802394$ $339456739062931767814$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 120 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{113}$.

Endomorphism algebra over $\F_{113}$
The isogeny class factors as 1.113.am 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-77}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.113.a_de$2$(not in LMFDB)
2.113.y_og$2$(not in LMFDB)
2.113.m_bf$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.113.a_de$2$(not in LMFDB)
2.113.y_og$2$(not in LMFDB)
2.113.m_bf$3$(not in LMFDB)
2.113.a_ade$4$(not in LMFDB)
2.113.am_bf$6$(not in LMFDB)