Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 21 x + 113 x^{2} )( 1 - 2 x + 113 x^{2} )$ |
$1 - 23 x + 268 x^{2} - 2599 x^{3} + 12769 x^{4}$ | |
Frobenius angles: | $\pm0.0498602789898$, $\pm0.470011582631$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $80$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10416$ | $163114560$ | $2079829257408$ | $26577198062956800$ | $339450924640560536496$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $91$ | $12777$ | $1441426$ | $163002929$ | $18424036211$ | $2081952487134$ | $235260552829715$ | $26584441589429281$ | $3004041934829017138$ | $339456739013730540057$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 80 curves (of which all are hyperelliptic):
- $y^2=72 x^6+98 x^5+73 x^4+48 x^3+53 x^2+72 x+35$
- $y^2=111 x^6+28 x^5+80 x^4+14 x^3+39 x^2+59 x+75$
- $y^2=87 x^6+42 x^5+99 x^4+6 x^3+92 x^2+69 x+19$
- $y^2=37 x^6+63 x^5+76 x^4+81 x^3+47 x^2+57 x+15$
- $y^2=88 x^6+7 x^4+49 x^3+48 x^2+62 x+31$
- $y^2=72 x^6+41 x^5+18 x^4+52 x^3+82 x^2+89 x+75$
- $y^2=51 x^6+7 x^5+87 x^4+45 x^3+80 x^2+86 x+99$
- $y^2=38 x^6+53 x^5+12 x^4+4 x^3+15 x^2+7 x+87$
- $y^2=89 x^6+69 x^5+85 x^4+82 x^3+93 x^2+6 x+37$
- $y^2=87 x^6+19 x^5+30 x^4+8 x^3+67 x^2+91 x+43$
- $y^2=24 x^6+10 x^5+83 x^4+38 x^3+79 x^2+73 x+102$
- $y^2=46 x^6+17 x^5+65 x^4+10 x^3+14 x^2+78 x$
- $y^2=65 x^6+13 x^5+99 x^4+5 x^3+41 x^2+14 x+74$
- $y^2=39 x^6+50 x^5+42 x^4+106 x^3+86 x^2+75 x+97$
- $y^2=31 x^6+109 x^5+75 x^4+9 x^3+9 x^2+67 x+39$
- $y^2=29 x^6+11 x^5+39 x^4+77 x^3+65 x^2+22 x+3$
- $y^2=37 x^6+80 x^5+31 x^4+70 x^3+99 x^2+84 x+86$
- $y^2=29 x^6+89 x^5+64 x^4+75 x^3+52 x^2+6 x+34$
- $y^2=39 x^6+88 x^5+34 x^4+82 x^3+59 x^2+48 x+15$
- $y^2=19 x^6+83 x^5+109 x^4+99 x^3+30 x^2+4 x+7$
- and 60 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The isogeny class factors as 1.113.av $\times$ 1.113.ac and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.at_hc | $2$ | (not in LMFDB) |
2.113.t_hc | $2$ | (not in LMFDB) |
2.113.x_ki | $2$ | (not in LMFDB) |