Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 24 x + 348 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.212636630458$, $\pm0.388281055844$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.535296256.1 |
Galois group: | $D_{4}$ |
Jacobians: | $60$ |
Isomorphism classes: | 60 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10382$ | $164596228$ | $2086423955966$ | $26587463752253584$ | $339456725250323649182$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $90$ | $12890$ | $1445994$ | $163065894$ | $18424351050$ | $2081952149690$ | $235260568559610$ | $26584442044582654$ | $3004041934703941722$ | $339456738923859899450$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 60 curves (of which all are hyperelliptic):
- $y^2=78 x^6+79 x^5+49 x^4+65 x^3+108 x^2+26 x+94$
- $y^2=5 x^6+52 x^5+54 x^4+39 x^3+108 x^2+16 x+13$
- $y^2=3 x^6+4 x^5+12 x^4+24 x^3+6 x^2+71 x+104$
- $y^2=75 x^6+40 x^5+68 x^4+98 x^3+47 x^2+104 x+47$
- $y^2=47 x^6+54 x^4+39 x^3+75 x^2+x+42$
- $y^2=76 x^6+99 x^5+50 x^4+76 x^3+6 x^2+12 x+75$
- $y^2=45 x^6+30 x^5+110 x^4+x^3+58 x^2+71 x+101$
- $y^2=92 x^6+94 x^5+16 x^4+11 x^3+4 x^2+111 x+67$
- $y^2=8 x^6+48 x^5+13 x^4+48 x^3+82 x^2+40 x+65$
- $y^2=25 x^6+67 x^5+68 x^4+40 x^3+5 x^2+45 x+39$
- $y^2=79 x^6+98 x^5+53 x^4+112 x^3+80 x^2+45 x+8$
- $y^2=100 x^6+99 x^5+74 x^4+27 x^3+36 x^2+45 x+76$
- $y^2=22 x^6+77 x^5+12 x^4+42 x^3+105 x^2+39 x+2$
- $y^2=99 x^6+65 x^5+74 x^4+109 x^3+11 x^2+68 x+111$
- $y^2=18 x^6+100 x^5+93 x^4+50 x^3+72 x^2+76 x+26$
- $y^2=59 x^6+99 x^5+4 x^4+43 x^3+28 x^2+88 x+56$
- $y^2=6 x^6+7 x^5+90 x^4+84 x^3+84 x^2+27 x+37$
- $y^2=58 x^6+22 x^5+103 x^4+40 x^3+16 x^2+17 x+48$
- $y^2=33 x^6+78 x^5+96 x^4+76 x^3+65 x^2+17 x+57$
- $y^2=107 x^6+45 x^5+67 x^4+50 x^3+7 x^2+83 x+60$
- and 40 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.535296256.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.y_nk | $2$ | (not in LMFDB) |