# Stored data for abelian variety isogeny class 2.113.ay_nk, downloaded from the LMFDB on 29 October 2025. {"abvar_count": 10382, "abvar_counts": [10382, 164596228, 2086423955966, 26587463752253584, 339456725250323649182, 4334523926894503167727300, 55347530292669349008348559598, 706732555750783499452088281042944, 9024267955314039781987702306251011054, 115230877624027663123937677071661408041028], "abvar_counts_str": "10382 164596228 2086423955966 26587463752253584 339456725250323649182 4334523926894503167727300 55347530292669349008348559598 706732555750783499452088281042944 9024267955314039781987702306251011054 115230877624027663123937677071661408041028 ", "all_polarized_product": false, "all_unpolarized_product": false, "angle_corank": 0, "angle_rank": 2, "angles": [0.212636630458233, 0.388281055843928], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 90, "curve_counts": [90, 12890, 1445994, 163065894, 18424351050, 2081952149690, 235260568559610, 26584442044582654, 3004041934703941722, 339456738923859899450], "curve_counts_str": "90 12890 1445994 163065894 18424351050 2081952149690 235260568559610 26584442044582654 3004041934703941722 339456738923859899450 ", "curves": ["y^2=78*x^6+79*x^5+49*x^4+65*x^3+108*x^2+26*x+94", "y^2=5*x^6+52*x^5+54*x^4+39*x^3+108*x^2+16*x+13", "y^2=3*x^6+4*x^5+12*x^4+24*x^3+6*x^2+71*x+104", "y^2=75*x^6+40*x^5+68*x^4+98*x^3+47*x^2+104*x+47", "y^2=47*x^6+54*x^4+39*x^3+75*x^2+x+42", "y^2=76*x^6+99*x^5+50*x^4+76*x^3+6*x^2+12*x+75", "y^2=45*x^6+30*x^5+110*x^4+x^3+58*x^2+71*x+101", "y^2=92*x^6+94*x^5+16*x^4+11*x^3+4*x^2+111*x+67", "y^2=8*x^6+48*x^5+13*x^4+48*x^3+82*x^2+40*x+65", "y^2=25*x^6+67*x^5+68*x^4+40*x^3+5*x^2+45*x+39", "y^2=79*x^6+98*x^5+53*x^4+112*x^3+80*x^2+45*x+8", "y^2=100*x^6+99*x^5+74*x^4+27*x^3+36*x^2+45*x+76", "y^2=22*x^6+77*x^5+12*x^4+42*x^3+105*x^2+39*x+2", "y^2=99*x^6+65*x^5+74*x^4+109*x^3+11*x^2+68*x+111", "y^2=18*x^6+100*x^5+93*x^4+50*x^3+72*x^2+76*x+26", "y^2=59*x^6+99*x^5+4*x^4+43*x^3+28*x^2+88*x+56", "y^2=6*x^6+7*x^5+90*x^4+84*x^3+84*x^2+27*x+37", "y^2=58*x^6+22*x^5+103*x^4+40*x^3+16*x^2+17*x+48", "y^2=33*x^6+78*x^5+96*x^4+76*x^3+65*x^2+17*x+57", "y^2=107*x^6+45*x^5+67*x^4+50*x^3+7*x^2+83*x+60", "y^2=46*x^6+92*x^5+68*x^4+51*x^3+82*x^2+59*x+109", "y^2=16*x^6+30*x^5+8*x^4+14*x^3+108*x^2+44*x+95", "y^2=109*x^6+43*x^5+89*x^4+103*x^3+95*x^2+23*x+68", "y^2=10*x^6+83*x^5+107*x^4+112*x^3+102*x^2+69*x+112", "y^2=79*x^6+5*x^5+70*x^4+112*x^3+56*x^2+59*x+5", "y^2=86*x^6+58*x^5+86*x^4+101*x^3+85*x^2+50*x+81", "y^2=x^6+41*x^5+67*x^4+29*x^3+99*x^2+108*x+84", "y^2=28*x^6+74*x^5+71*x^4+2*x^3+76*x^2+63*x+27", "y^2=96*x^6+101*x^5+71*x^4+47*x^3+42*x^2+14*x+60", "y^2=74*x^6+31*x^5+93*x^4+52*x^3+7*x^2+73*x+73", "y^2=70*x^6+56*x^5+86*x^4+76*x^3+17*x^2+91*x+101", "y^2=53*x^6+94*x^5+39*x^4+10*x^3+33*x^2+39*x+55", "y^2=10*x^6+46*x^5+13*x^4+57*x^3+105*x^2+85*x+40", "y^2=101*x^6+67*x^5+68*x^4+48*x^3+76*x^2+85*x+75", "y^2=74*x^6+101*x^5+57*x^4+61*x^3+50*x^2+95*x+93", "y^2=48*x^6+12*x^5+106*x^4+81*x^3+70*x^2+109*x+49", "y^2=79*x^6+44*x^5+76*x^4+36*x^3+8*x^2+28", "y^2=60*x^6+21*x^5+63*x^3+100*x^2+30*x+112", "y^2=76*x^6+103*x^5+51*x^4+95*x^3+29*x^2+78*x+66", "y^2=78*x^6+13*x^5+4*x^4+52*x^3+17*x^2+55*x+110", "y^2=41*x^6+21*x^5+65*x^4+40*x^3+74*x^2+111*x+62", "y^2=94*x^6+67*x^5+71*x^4+97*x^3+102*x^2+8*x+38", "y^2=36*x^6+99*x^5+7*x^4+70*x^3+76*x^2+66*x+58", "y^2=8*x^6+18*x^5+99*x^4+102*x^3+42*x^2+18*x+31", "y^2=51*x^6+105*x^5+6*x^4+77*x^3+97*x^2+106*x+48", "y^2=78*x^6+33*x^5+12*x^4+58*x^3+2*x^2+17*x+27", "y^2=98*x^6+74*x^5+112*x^4+104*x^3+99*x^2+60*x+20", "y^2=41*x^6+57*x^5+33*x^4+82*x^3+19*x^2+58*x+70", "y^2=4*x^6+107*x^5+101*x^4+57*x^3+111*x^2+26*x+108", "y^2=53*x^6+60*x^5+41*x^4+44*x^3+72*x^2+58*x+66", "y^2=86*x^6+13*x^5+4*x^4+7*x^3+13*x^2+90*x+70", "y^2=101*x^6+27*x^5+65*x^4+106*x^3+57*x^2+37*x+38", "y^2=12*x^6+20*x^5+33*x^4+89*x^3+44*x^2+30*x+46", "y^2=38*x^6+10*x^5+28*x^4+108*x^3+28*x^2+20*x+43", "y^2=96*x^6+107*x^5+27*x^4+42*x^3+76*x^2+62*x+50", "y^2=63*x^6+17*x^5+59*x^4+26*x^3+37*x^2+60*x+38", "y^2=74*x^6+11*x^5+65*x^4+90*x^3+79*x^2+26*x+92", "y^2=40*x^6+14*x^5+37*x^4+30*x^3+9*x^2+106*x", "y^2=10*x^6+65*x^5+101*x^4+90*x^3+45*x^2+69*x+96", "y^2=14*x^6+91*x^5+54*x^4+3*x^3+77*x^2+29*x+26"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 1, "g": 2, "galois_groups": ["4T3"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T3"], "geometric_number_fields": ["4.0.535296256.1"], "geometric_splitting_field": "4.0.535296256.1", "geometric_splitting_polynomials": [[5137, -264, 132, 0, 1]], "group_structure_count": 1, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 60, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 60, "label": "2.113.ay_nk", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.535296256.1"], "p": 113, "p_rank": 2, "p_rank_deficit": 0, "pic_prime_gens": [[1, 2, 1, 2], [1, 7, 1, 10], [1, 11, 1, 2], [1, 5, 1, 3]], "poly": [1, -24, 348, -2712, 12769], "poly_str": "1 -24 348 -2712 12769 ", "primitive_models": [], "principal_polarization_count": 60, "q": 113, "real_poly": [1, -24, 122], "simple_distinct": ["2.113.ay_nk"], "simple_factors": ["2.113.ay_nkA"], "simple_multiplicities": [1], "singular_primes": [], "size": 60, "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.535296256.1", "splitting_polynomials": [[5137, -264, 132, 0, 1]], "twist_count": 2, "twists": [["2.113.y_nk", "2.12769.eq_yji", 2]], "weak_equivalence_count": 1, "zfv_index": 1, "zfv_index_factorization": [], "zfv_is_bass": true, "zfv_is_maximal": true, "zfv_pic_size": 60, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 69124, "zfv_singular_count": 0, "zfv_singular_primes": []}