Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
2.61.abe_nj |
$2$ |
$\F_{61}$ |
$61$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 15 x + 61 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$32$ |
$[32, 3516, 225722, 13839508, 844578152, 51520488486, 3142745655032, 191707348320868, 11694146450728322, 713342914876556556]$ |
$2209$ |
$[2209, 13097161, 51235227904, 191619651155625, 713327584011549529, 2654354854115086667776, 9876841392793072459507729, 36751700628427917473879855625, 136753057025814888000782067437824, 508858111912130669426735905295937241]$ |
$1$ |
$1$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
1.61.ap 2 |
2.61.abd_mt |
$2$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 29 x + 331 x^{2} - 1769 x^{3} + 3721 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$33$ |
$[33, 3543, 226083, 13842603, 844591198, 51520374183, 3142742135643, 191707295768883, 11694145843711353, 713342908902617398]$ |
$2255$ |
$[2255, 13194005, 51316721555, 191662462946405, 713338599476250000, 2654348964974812242005, 9876830332246605354975755, 36751690553827489342421332805, 136753049927269747265285817799655, 508858107650663515605158797620000000]$ |
$1$ |
$1$ |
$10$ |
$10$ |
$1$ |
\(\Q(\zeta_{5})\) |
$C_4$ |
simple |
2.61.abd_mu |
$2$ |
$\F_{61}$ |
$61$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 15 x + 61 x^{2} )( 1 - 14 x + 61 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$33$ |
$[33, 3545, 226170, 13844641, 844625853, 51520852262, 3142747781073, 191707354485601, 11694146389684290, 713342913466944305]$ |
$2256$ |
$[2256, 13202112, 51336633600, 191690705606400, 713367871666864656, 2654373596011548364800, 9876848074396190963976336, 36751701810252425129791257600, 136753056311957048773487844230400, 508858110906593759717708719402974912]$ |
$0$ |
$0$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-19}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.61.ap $\times$ 1.61.ao |
2.61.abc_me |
$2$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 28 x + 316 x^{2} - 1708 x^{3} + 3721 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$34$ |
$[34, 3570, 226450, 13846038, 844614474, 51520478178, 3142742314858, 191707295907294, 11694145888702018, 713342910071171890]$ |
$2302$ |
$[2302, 13291748, 51399813358, 191710018256528, 713358259036137982, 2654354322948740827748, 9876830895481746848748718, 36751690580362241035969236992, 136753050453397153152186677028958, 508858108484243577380233065934486308]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.35072.1 |
$D_{4}$ |
simple |
2.61.abc_mf |
$2$ |
$\F_{61}$ |
$61$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 15 x + 61 x^{2} )( 1 - 13 x + 61 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$34$ |
$[34, 3572, 226534, 13847908, 844644154, 51520852262, 3142746243874, 191707330966468, 11694146153878174, 713342911718228852]$ |
$2303$ |
$[2303, 13299825, 51419025728, 191735929625625, 713383328457705983, 2654373596011548364800, 9876843243372879484117463, 36751697301462218284028675625, 136753053554405836488875124615488, 508858109659159983994911334629020625]$ |
$7$ |
$7$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-19}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.61.ap $\times$ 1.61.an |
2.61.abc_mg |
$2$ |
$\F_{61}$ |
$61$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 14 x + 61 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$34$ |
$[34, 3574, 226618, 13849774, 844673554, 51521216038, 3142749907114, 191707360650334, 11694146328640258, 713342912057332054]$ |
$2304$ |
$[2304, 13307904, 51438240000, 191761786404864, 713408161597565184, 2654392338040343040000, 9876854756003829518778624, 36751702992076970789635620864, 136753055598099213272567463840000, 508858109901056851995688231679299584]$ |
$8$ |
$8$ |
$24$ |
$12$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
1.61.ao 2 |
2.61.abb_lo |
$2$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 27 x + 300 x^{2} - 1647 x^{3} + 3721 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$35$ |
$[35, 3593, 226658, 13846209, 844591415, 51520078694, 3142738129139, 191707265197345, 11694145745520074, 713342909973328193]$ |
$2348$ |
$[2348, 13374208, 51446736848, 191712370588672, 713338783287918908, 2654333741436015788032, 9876817740850004802230012, 36751684693040928601380384768, 136753048779006607742829752009552, 508858108414447470487634272540795648]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
4.0.3757.1 |
$D_{4}$ |
simple |
2.61.abb_lp |
$2$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 27 x + 301 x^{2} - 1647 x^{3} + 3721 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$35$ |
$[35, 3595, 226739, 13847923, 844616930, 51520377283, 3142741037471, 191707289788099, 11694145935604151, 713342911430554390]$ |
$2349$ |
$[2349, 13382253, 51465248721, 191736116755173, 713360334091993344, 2654349124865794486533, 9876826880985021723038529, 36751689407267707434417008037, 136753051001877533214507350737269, 508858109453949447444325201111339008]$ |
$9$ |
$9$ |
$2$ |
$2$ |
$1$ |
4.0.2197.1 |
$C_4$ |
simple |
2.61.abb_lq |
$2$ |
$\F_{61}$ |
$61$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 15 x + 61 x^{2} )( 1 - 12 x + 61 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$35$ |
$[35, 3597, 226820, 13849633, 844642175, 51520666362, 3142743712955, 191707309936993, 11694146055603140, 713342911939629477]$ |
$2350$ |
$[2350, 13390300, 51483762400, 191759808240000, 713381657019583750, 2654364018363346643200, 9876835289341756339168150, 36751693269957700872277440000, 136753052405163214028601309253600, 508858109817094550832148042994357500]$ |
$5$ |
$5$ |
$8$ |
$4$ |
$1$ |
\(\Q(\sqrt{-19}) \), \(\Q(\sqrt{-1}) \) |
$C_2$, $C_2$ |
1.61.ap $\times$ 1.61.am |
2.61.abb_lr |
$2$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 27 x + 303 x^{2} - 1647 x^{3} + 3721 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$35$ |
$[35, 3599, 226901, 13851339, 844667150, 51520945943, 3142746156725, 191707325699539, 11694146107390571, 713342911549467254]$ |
$2351$ |
$[2351, 13398349, 51502277891, 191783445050389, 713402752074698576, 2654378422548308711725, 9876842969484423503105891, 36751696291753030273499928549, 136753053010772993424220348275311, 508858109538775094332170971988093184]$ |
$5$ |
$5$ |
$2$ |
$2$ |
$1$ |
4.0.68725.1 |
$D_{4}$ |
simple |
2.61.abb_ls |
$2$ |
$\F_{61}$ |
$61$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 14 x + 61 x^{2} )( 1 - 13 x + 61 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$35$ |
$[35, 3601, 226982, 13853041, 844691855, 51521216038, 3142748369915, 191707337131201, 11694146092834142, 713342910308616601]$ |
$2352$ |
$[2352, 13406400, 51520795200, 191807027193600, 713423619261382512, 2654392338040343040000, 9876849924977249890820592, 36751698483286618954697702400, 136753052840548015382510835124800, 508858108653623078737901572967160000]$ |
$0$ |
$0$ |
$24$ |
$12$ |
$6$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.61.ao $\times$ 1.61.an |
2.61.aba_kz |
$2$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 26 x + 285 x^{2} - 1586 x^{3} + 3721 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$36$ |
$[36, 3616, 226878, 13846996, 844584576, 51519970078, 3142737883776, 191707276568356, 11694145959510198, 713342912228782576]$ |
$2395$ |
$[2395, 13457505, 51496571500, 191723273550345, 713333008278344875, 2654328145571392554000, 9876816969737645331500755, 36751686872946600285796668105, 136753051281438354671922321071500, 508858110023359866417821883195332625]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
4.0.406080.2 |
$D_{4}$ |
simple |
2.61.aba_la |
$2$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 26 x + 286 x^{2} - 1586 x^{3} + 3721 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$36$ |
$[36, 3618, 226956, 13848558, 844606156, 51520199538, 3142739876676, 191707291576158, 11694146068320276, 713342913108960898]$ |
$2396$ |
$[2396, 13465520, 51514385756, 191744911281920, 713351235086432316, 2654339967409974447920, 9876823232904313082563196, 36751689750051569664708177920, 136753052553879288638308823299676, 508858110651228833955749991673950000]$ |
$12$ |
$12$ |
$2$ |
$2$ |
$1$ |
4.0.38000.1 |
$D_{4}$ |
simple |
2.61.aba_lb |
$2$ |
$\F_{61}$ |
$61$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 15 x + 61 x^{2} )( 1 - 11 x + 61 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$36$ |
$[36, 3620, 227034, 13850116, 844627476, 51520420262, 3142741667556, 191707302982276, 11694146124592674, 713342913338930180]$ |
$2397$ |
$[2397, 13473537, 51532201728, 191766494252025, 713369242431934077, 2654351339185173196800, 9876828861175819282487877, 36751691936687469312987333225, 136753053211936915846625854879488, 508858110815275790850534678501921537]$ |
$12$ |
$12$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \), \(\Q(\sqrt{-123}) \) |
$C_2$, $C_2$ |
1.61.ap $\times$ 1.61.al |
2.61.aba_lc |
$2$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 26 x + 288 x^{2} - 1586 x^{3} + 3721 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$36$ |
$[36, 3622, 227112, 13851670, 844648536, 51520632262, 3142743257508, 191707310837854, 11694146129967732, 713342912959102102]$ |
$2398$ |
$[2398, 13481556, 51550019422, 191788022467536, 713387030318426398, 2654362261516381669044, 9876833857984296715159582, 36751693442659020899183514624, 136753053274793617306973472258862, 508858110544328123088082490732138676]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
4.0.454464.1 |
$D_{4}$ |
simple |
2.61.aba_ld |
$2$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 26 x + 289 x^{2} - 1586 x^{3} + 3721 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$36$ |
$[36, 3624, 227190, 13853220, 844669336, 51520835550, 3142744647624, 191707315193988, 11694146086080174, 713342912009551624]$ |
$2399$ |
$[2399, 13489577, 51567838844, 191809495935353, 713404598749519959, 2654372735023015912208, 9876838226761888029162191, 36751694277761747142295787753, 136753052761566100401998119463516, 508858109866973019957392778594903657]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
4.0.254528.3 |
$D_{4}$ |
simple |
2.61.aba_le |
$2$ |
$\F_{61}$ |
$61$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 14 x + 61 x^{2} )( 1 - 12 x + 61 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$36$ |
$[36, 3626, 227268, 13854766, 844689876, 51521030138, 3142745838996, 191707316101726, 11694145994559108, 713342910530017226]$ |
$2400$ |
$[2400, 13497600, 51585660000, 191830914662400, 713421947728860000, 2654382760324515360000, 9876841970940745908309600, 36751694451781971901847961600, 136753051691305398921341340060000, 508858108811557645263049247953440000]$ |
$10$ |
$10$ |
$24$ |
$12$ |
$1$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-1}) \) |
$C_2$, $C_2$ |
1.61.ao $\times$ 1.61.am |
2.61.aba_lf |
$2$ |
$\F_{61}$ |
$61$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 13 x + 61 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$36$ |
$[36, 3628, 227346, 13856308, 844710156, 51521216038, 3142746832716, 191707313612068, 11694145857028026, 713342908559901148]$ |
$2401$ |
$[2401, 13505625, 51603482896, 191852278655625, 713439077260126441, 2654392338040343040000, 9876845093953033243628161, 36751693974496820269376855625, 136753050082996873096978549415056, 508858107406189308538120649816015625]$ |
$8$ |
$8$ |
$24$ |
$12$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
1.61.an 2 |
2.61.az_kj |
$2$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 25 x + 269 x^{2} - 1525 x^{3} + 3721 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$37$ |
$[37, 3635, 226957, 13845379, 844551802, 51519672011, 3142736634697, 191707280756899, 11694146049480217, 713342912408124950]$ |
$2441$ |
$[2441, 13525581, 51514348949, 191700886359429, 713305328490189776, 2654312789136994500501, 9876813044207340138848981, 36751687675920903593444751909, 136753052333560884626944452319889, 508858110151292476292138887438258176]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
4.0.521589.1 |
$D_{4}$ |
simple |
2.61.az_kk |
$2$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 25 x + 270 x^{2} - 1525 x^{3} + 3721 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$37$ |
$[37, 3637, 227032, 13846801, 844570177, 51519854842, 3142738178197, 191707293412993, 11694146165782792, 713342913604307677]$ |
$2442$ |
$[2442, 13533564, 51531464952, 191720581827456, 713320847896463202, 2654322208601430875904, 9876817895025414432970002, 36751690102186488518696640000, 136753053693620200163296678891512, 508858111004580947707478273118051804]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
4.0.1267596.1 |
$D_{4}$ |
simple |
2.61.az_kl |
$2$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 25 x + 271 x^{2} - 1525 x^{3} + 3721 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$37$ |
$[37, 3639, 227107, 13848219, 844588302, 51520029663, 3142739546347, 191707303124019, 11694146241606517, 713342914323716854]$ |
$2443$ |
$[2443, 13541549, 51548582575, 191740222452149, 713336156254883728, 2654331215399083968125, 9876822194764167581661583, 36751691963860975798195584869, 136753054580313921280528613143675, 508858111517766385885362591180873984]$ |
$5$ |
$5$ |
$2$ |
$2$ |
$1$ |
4.0.1639109.1 |
$D_{4}$ |
simple |
2.61.az_km |
$2$ |
$\F_{61}$ |
$61$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 15 x + 61 x^{2} )( 1 - 10 x + 61 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$37$ |
$[37, 3641, 227182, 13849633, 844606177, 51520196486, 3142740740197, 191707309936993, 11694146278385542, 713342914599809681]$ |
$2444$ |
$[2444, 13549536, 51565701824, 191759808240000, 713351253568586204, 2654339810149110859776, 9876825946723658494814684, 36751693269957700872277440000, 136753055010413209795368992732864, 508858111714715247375944979681371616]$ |
$15$ |
$15$ |
$8$ |
$4$ |
$1$ |
\(\Q(\sqrt{-19}) \), \(\Q(\sqrt{-1}) \) |
$C_2$, $C_2$ |
1.61.ap $\times$ 1.61.ak |
2.61.az_kn |
$2$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 25 x + 273 x^{2} - 1525 x^{3} + 3721 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$37$ |
$[37, 3643, 227257, 13851043, 844623802, 51520355323, 3142741760797, 191707313898883, 11694146277548617, 713342914465733398]$ |
$2445$ |
$[2445, 13557525, 51582822705, 191779339197525, 713366139840738000, 2654347993470689046525, 9876829154203954056243705, 36751694029480799409703323525, 136753055000626079576544697587645, 508858111619072881027898086464000000]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
4.0.1554525.1 |
$D_{4}$ |
simple |
2.61.az_ko |
$2$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 25 x + 274 x^{2} - 1525 x^{3} + 3721 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$37$ |
$[37, 3645, 227332, 13852449, 844641177, 51520506186, 3142742609197, 191707315056609, 11694146240519092, 713342913954325525]$ |
$2446$ |
$[2446, 13565516, 51599945224, 191798815331264, 713380815074539126, 2654355765983016632576, 9876831820505129274291766, 36751694251425207381173176064, 136753054567597396570376637505864, 508858111254263699197475852698176876]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
4.0.1247324.2 |
$D_{4}$ |
simple |
2.61.az_kp |
$2$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 25 x + 275 x^{2} - 1525 x^{3} + 3721 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$37$ |
$[37, 3647, 227407, 13853851, 844658302, 51520649087, 3142743286447, 191707313457043, 11694146168714917, 713342913098114102]$ |
$2447$ |
$[2447, 13573509, 51617069387, 191818236647781, 713395279273222352, 2654363128305312526869, 9876833948927267433806867, 36751693944776661134089813125, 136753053727908878827106590158407, 508858110643491348957883624786715904]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
4.0.863421.1 |
$D_{4}$ |
simple |
2.61.az_kq |
$2$ |
$\F_{61}$ |
$61$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 14 x + 61 x^{2} )( 1 - 11 x + 61 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$37$ |
$[37, 3649, 227482, 13855249, 844675177, 51520784038, 3142743793597, 191707309147009, 11694146063548642, 713342911929317929]$ |
$2448$ |
$[2448, 13581504, 51634195200, 191837603153664, 713409532440053328, 2654370081056816640000, 9876835542770460249493968, 36751693118511697468584459264, 136753052498079096527966564524800, 508858109809738883308964469679291584]$ |
$10$ |
$10$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-123}) \) |
$C_2$, $C_2$ |
1.61.ao $\times$ 1.61.al |
2.61.az_kr |
$2$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 25 x + 277 x^{2} - 1525 x^{3} + 3721 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$37$ |
$[37, 3651, 227557, 13856643, 844691802, 51520911051, 3142744131697, 191707302173283, 11694145926427417, 713342910479846806]$ |
$2449$ |
$[2449, 13589501, 51651322669, 191856914855525, 713423574578330704, 2654376624856790081861, 9876836605334808020648029, 36751691781597653714814791525, 136753050894563472013002363852169, 508858108775768932387209686977007616]$ |
$9$ |
$9$ |
$2$ |
$2$ |
$1$ |
4.0.167525.1 |
$D_{4}$ |
simple |
2.61.az_ks |
$2$ |
$\F_{61}$ |
$61$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 13 x + 61 x^{2} )( 1 - 12 x + 61 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$37$ |
$[37, 3653, 227632, 13858033, 844708177, 51521030138, 3142744301797, 191707292582593, 11694145758752992, 713342908781301773]$ |
$2450$ |
$[2450, 13597500, 51668451800, 191876171760000, 713437405691386250, 2654382760324515360000, 9876837139920419787273050, 36751689942992667811546560000, 136753048933754279809663121658200, 508858107564123874676101630560937500]$ |
$0$ |
$0$ |
$24$ |
$12$ |
$1$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-1}) \) |
$C_2$, $C_2$ |
1.61.an $\times$ 1.61.am |
2.61.ay_jt |
$2$ |
$\F_{61}$ |
$61$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 253 x^{2} - 1464 x^{3} + 3721 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$38$ |
$[38, 3652, 226982, 13843300, 844522118, 51519497542, 3142736839406, 191707291767364, 11694146092834142, 713342911517653252]$ |
$2487$ |
$[2487, 13586481, 51519935952, 191672109482841, 713280258809833287, 2654303800498182146304, 9876813687554472930864063, 36751689786707188701387599529, 136753052840547989392630633704912, 508858109516080801856437157732296401]$ |
$8$ |
$8$ |
$4$ |
$12$ |
$6$ |
\(\Q(\sqrt{-3}, \sqrt{13})\) |
$C_2^2$ |
simple |
2.61.ay_ju |
$2$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 254 x^{2} - 1464 x^{3} + 3721 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$38$ |
$[38, 3654, 227054, 13844590, 844537718, 51519644790, 3142738105790, 191707303674718, 11694146220469190, 713342912883732774]$ |
$2488$ |
$[2488, 13594432, 51536354872, 191689974125568, 713293434159593848, 2654311386706894028608, 9876817667470287006999928, 36751692069434124989762715648, 136753054333130915121160458463288, 508858110490563947376892091662695232]$ |
$14$ |
$14$ |
$2$ |
$2$ |
$1$ |
4.0.29952.1 |
$D_{4}$ |
simple |
2.61.ay_jv |
$2$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 255 x^{2} - 1464 x^{3} + 3721 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$38$ |
$[38, 3656, 227126, 13845876, 844553078, 51519784718, 3142739220638, 191707313180836, 11694146316760046, 713342913891441176]$ |
$2489$ |
$[2489, 13602385, 51552775316, 191707783848265, 713306406880761329, 2654318595792507322000, 9876821171147393177461289, 36751693891826492152960349385, 136753055459170272616958495253236, 508858111209405594391872906389034625]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
4.0.3068560.1 |
$D_{4}$ |
simple |
2.61.ay_jw |
$2$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 256 x^{2} - 1464 x^{3} + 3721 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$38$ |
$[38, 3658, 227198, 13847158, 844568198, 51519917338, 3142740184958, 191707320328798, 11694146382954758, 713342914568337898]$ |
$2490$ |
$[2490, 13610340, 51569197290, 191725538657040, 713319176976056250, 2654325428373974911140, 9876824201753793812533290, 36751695262143053181292707840, 136753056233260917958628964928890, 508858111692265073997873735613462500]$ |
$16$ |
$16$ |
$2$ |
$2$ |
$1$ |
4.0.3744000.2 |
$D_{4}$ |
simple |
2.61.ay_jx |
$2$ |
$\F_{61}$ |
$61$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 15 x + 61 x^{2} )( 1 - 9 x + 61 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$38$ |
$[38, 3660, 227270, 13848436, 844583078, 51520042662, 3142740999758, 191707325161636, 11694146420296190, 713342914941697980]$ |
$2491$ |
$[2491, 13618297, 51585620800, 191743238558025, 713331744448229731, 2654331885070267494400, 9876826762457497608048331, 36751696188633370639649025225, 136753056669937085030627740091200, 508858111958598842597433934752677737]$ |
$11$ |
$11$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \), \(\Q(\sqrt{-163}) \) |
$C_2$, $C_2$ |
1.61.ap $\times$ 1.61.aj |
2.61.ay_jy |
$2$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 258 x^{2} - 1464 x^{3} + 3721 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$38$ |
$[38, 3662, 227342, 13849710, 844597718, 51520160702, 3142741666046, 191707327722334, 11694146430022022, 713342915038512302]$ |
$2492$ |
$[2492, 13626256, 51602045852, 191760883557376, 713344109300063612, 2654337966500373767824, 9876828856426519717253468, 36751696679537806726511345664, 136753056783672385541733944655932, 508858112027660653105702297431768976]$ |
$40$ |
$40$ |
$2$ |
$2$ |
$1$ |
4.0.15424.2 |
$D_{4}$ |
simple |
2.61.ay_jz |
$2$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 259 x^{2} - 1464 x^{3} + 3721 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$38$ |
$[38, 3664, 227414, 13850980, 844612118, 51520271470, 3142742184830, 191707328053828, 11694146413364750, 713342914885487824]$ |
$2493$ |
$[2493, 13634217, 51618472452, 191778473661273, 713356271534370573, 2654343673283300609808, 9876830486828881883968053, 36751696743087523334067705513, 136753056588879809044112826084708, 508858111918501726157227847873821257]$ |
$18$ |
$18$ |
$2$ |
$2$ |
$1$ |
4.0.44688.2 |
$D_{4}$ |
simple |
2.61.ay_ka |
$2$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 260 x^{2} - 1464 x^{3} + 3721 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$38$ |
$[38, 3666, 227486, 13852246, 844626278, 51520374978, 3142742557118, 191707326199006, 11694146371551686, 713342914509047826]$ |
$2494$ |
$[2494, 13642180, 51634900606, 191796008875920, 713368231153994254, 2654349006038073266500, 9876831656832612577036654, 36751696387504482109433057280, 136753056099911722952980075177246, 508858111649970921312983613309674500]$ |
$12$ |
$12$ |
$2$ |
$2$ |
$1$ |
4.0.3098880.4 |
$D_{4}$ |
simple |
2.61.ay_kb |
$2$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 261 x^{2} - 1464 x^{3} + 3721 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$38$ |
$[38, 3668, 227558, 13853508, 844640198, 51520471238, 3142742783918, 191707322200708, 11694146305804958, 713342913935332148]$ |
$2495$ |
$[2495, 13650145, 51651330320, 191813489207545, 713379988161809375, 2654353965383735537920, 9876832369605747126082295, 36751695621001444516988317545, 136753055331059872566877861583120, 508858111240714908267629884705590625]$ |
$28$ |
$28$ |
$2$ |
$2$ |
$1$ |
4.0.153625.1 |
$D_{4}$ |
simple |
2.61.ay_kc |
$2$ |
$\F_{61}$ |
$61$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 14 x + 61 x^{2} )( 1 - 10 x + 61 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$38$ |
$[38, 3670, 227630, 13854766, 844653878, 51520560262, 3142742866238, 191707316101726, 11694146217341510, 713342913190197430]$ |
$2496$ |
$[2496, 13658112, 51667761600, 191830914662400, 713391542560721856, 2654358551939349964800, 9876832628316327858565056, 36751694451781971901847961600, 136753054296555381088572946814400, 508858110709178338057023579214374912]$ |
$60$ |
$60$ |
$24$ |
$12$ |
$1$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-1}) \) |
$C_2$, $C_2$ |
1.61.ao $\times$ 1.61.ak |
2.61.ay_kd |
$2$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 263 x^{2} - 1464 x^{3} + 3721 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$38$ |
$[38, 3672, 227702, 13856020, 844667318, 51520642062, 3142742805086, 191707307944804, 11694146107373102, 713342912299217352]$ |
$2497$ |
$[2497, 13666081, 51684194452, 191848285246761, 713402894353668937, 2654362766323998016144, 9876832436132404238151073, 36751692888040425554466627849, 136753053010568749646587330526452, 508858110073604014265980423801330801]$ |
$10$ |
$10$ |
$2$ |
$2$ |
$1$ |
4.0.1106064.1 |
$D_{4}$ |
simple |
2.61.ay_ke |
$2$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 264 x^{2} - 1464 x^{3} + 3721 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$38$ |
$[38, 3674, 227774, 13857270, 844680518, 51520716650, 3142742601470, 191707297772638, 11694145977106310, 713342911287682874]$ |
$2498$ |
$[2498, 13674052, 51700628882, 191865600966928, 713414043543619298, 2654366609156780277508, 9876831796222033004396978, 36751690937961966776395235328, 136753051487209857317371980182978, 508858109352033064236296786483934532]$ |
$16$ |
$16$ |
$2$ |
$2$ |
$1$ |
4.0.540928.1 |
$D_{4}$ |
simple |
2.61.ay_kf |
$2$ |
$\F_{61}$ |
$61$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 13 x + 61 x^{2} )( 1 - 11 x + 61 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$38$ |
$[38, 3676, 227846, 13858516, 844693478, 51520784038, 3142742256398, 191707285627876, 11694145827742526, 713342910180602476]$ |
$2499$ |
$[2499, 13682025, 51717064896, 191882861829225, 713424990133573179, 2654370081056816640000, 9876830711753278313754819, 36751688609722556947197158025, 136753049740527961148134288933056, 508858108562305110275038089556925625]$ |
$14$ |
$14$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-123}) \) |
$C_2$, $C_2$ |
1.61.an $\times$ 1.61.al |
2.61.ay_kg |
$2$ |
$\F_{61}$ |
$61$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 12 x + 61 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$38$ |
$[38, 3678, 227918, 13859758, 844706198, 51520844238, 3142741770878, 191707271553118, 11694145660477958, 713342909002702398]$ |
$2500$ |
$[2500, 13690000, 51733502500, 191900067840000, 713435734126562500, 2654373182643246490000, 9876829185894211881902500, 36751685911488957592535040000, 136753047784511696180330001602500, 508858107722058440863100848056250000]$ |
$9$ |
$9$ |
$16$ |
$12$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
1.61.am 2 |
2.61.ax_je |
$2$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 238 x^{2} - 1403 x^{3} + 3721 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$39$ |
$[39, 3669, 227028, 13842129, 844511179, 51519561978, 3142739029959, 191707313193729, 11694146180163348, 713342911307674429]$ |
$2534$ |
$[2534, 13648124, 51530410400, 191655910377344, 713271020537225934, 2654307120235994182400, 9876820571893517799834494, 36751693894297841674955984384, 136753053861788496390289098250400, 508858109366293898619741186438165084]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
4.0.2213900.2 |
$D_{4}$ |
simple |
2.61.ax_jf |
$2$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 239 x^{2} - 1403 x^{3} + 3721 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$39$ |
$[39, 3671, 227097, 13843291, 844524174, 51519676223, 3142740010449, 191707323161011, 11694146290811127, 713342912420718326]$ |
$2535$ |
$[2535, 13656045, 51546134835, 191672000590005, 713281995600954000, 2654313006129263344125, 9876823653320296055856915, 36751695805098913945984889445, 136753055155719811444590130269015, 508858110160275873376900208127648000]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
4.0.4632645.1 |
$D_{4}$ |
simple |
2.61.ax_jg |
$2$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 240 x^{2} - 1403 x^{3} + 3721 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$39$ |
$[39, 3673, 227166, 13844449, 844536939, 51519783814, 3142740861495, 191707331211745, 11694146378004150, 713342913277489393]$ |
$2536$ |
$[2536, 13663968, 51561860704, 191688035816832, 713292776461893256, 2654318549208695334912, 9876826327937573587297864, 36751697348483655285774263808, 136753056175367779080861619284064, 508858110771447441494460621759438048]$ |
$12$ |
$12$ |
$2$ |
$2$ |
$1$ |
4.0.1598508.2 |
$D_{4}$ |
simple |
2.61.ax_jh |
$2$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 241 x^{2} - 1403 x^{3} + 3721 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$39$ |
$[39, 3675, 227235, 13845603, 844549474, 51519884763, 3142741584063, 191707337385219, 11694146442818403, 713342913900327190]$ |
$2537$ |
$[2537, 13671893, 51577588013, 191704016063573, 713303363122405632, 2654323750093083704573, 9876828598781315959761893, 36751698531983867671972563077, 136753056933315136537647564804713, 508858111215744369654298575871070208]$ |
$11$ |
$11$ |
$2$ |
$2$ |
$1$ |
4.0.7564637.1 |
$D_{4}$ |
simple |
2.61.ax_ji |
$2$ |
$\F_{61}$ |
$61$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 15 x + 61 x^{2} )( 1 - 8 x + 61 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$39$ |
$[39, 3677, 227304, 13846753, 844561779, 51519979082, 3142742179119, 191707341720673, 11694146486324904, 713342914311311477]$ |
$2538$ |
$[2538, 13679820, 51593316768, 191719941336000, 713313755584881858, 2654328609401237556480, 9876830468887493757016578, 36751699363122152194506336000, 136753057442086524684236978386848, 508858111508917098061503113556235500]$ |
$18$ |
$18$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \), \(\Q(\sqrt{-5}) \) |
$C_2$, $C_2$ |
1.61.ap $\times$ 1.61.ai |
2.61.ax_jj |
$2$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 243 x^{2} - 1403 x^{3} + 3721 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$39$ |
$[39, 3679, 227373, 13847899, 844573854, 51520066783, 3142742647629, 191707344257299, 11694146509589703, 713342914532262454]$ |
$2539$ |
$[2539, 13687749, 51609046975, 191735811639909, 713323953851741584, 2654333127751981720725, 9876831941292082696519399, 36751699849411909102984461189, 136753057714148488033980283701475, 508858111666530911649343397895062784]$ |
$24$ |
$24$ |
$2$ |
$2$ |
$1$ |
4.0.103725.1 |
$D_{4}$ |
simple |
2.61.ax_jk |
$2$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
|
✓ |
|
✓ |
✓ |
$1 - 23 x + 244 x^{2} - 1403 x^{3} + 3721 x^{4}$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$2$ |
$0$ |
$39$ |
$[39, 3681, 227442, 13849041, 844585699, 51520147878, 3142742990559, 191707345034241, 11694146513673882, 713342914584741001]$ |
$2540$ |
$[2540, 13695680, 51624778640, 191751626981120, 713333957925433500, 2654337305764156928000, 9876833019031063746159260, 36751699998357337855066004480, 136753057761909474758084385074960, 508858111703966111284402472644152000]$ |
$20$ |
$20$ |
$2$ |
$2$ |
$1$ |
4.0.512705.1 |
$D_{4}$ |
simple |
2.61.ax_jl |
$2$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 245 x^{2} - 1403 x^{3} + 3721 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$39$ |
$[39, 3683, 227511, 13850179, 844597314, 51520222379, 3142743208875, 191707344090595, 11694146499633555, 713342914490048918]$ |
$2541$ |
$[2541, 13703613, 51640511769, 191767387365477, 713343767808435456, 2654341144056619984197, 9876833705140423242217689, 36751699817453437165801434213, 136753057597719836699895354089589, 508858111636418184971882770911694848]$ |
$18$ |
$18$ |
$2$ |
$2$ |
$1$ |
4.0.7684197.1 |
$D_{4}$ |
simple |