Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 14 x + 61 x^{2} )( 1 - 10 x + 61 x^{2} )$ |
$1 - 24 x + 262 x^{2} - 1464 x^{3} + 3721 x^{4}$ | |
Frobenius angles: | $\pm0.146275019398$, $\pm0.278857938376$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $60$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2496$ | $13658112$ | $51667761600$ | $191830914662400$ | $713391542560721856$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $38$ | $3670$ | $227630$ | $13854766$ | $844653878$ | $51520560262$ | $3142742866238$ | $191707316101726$ | $11694146217341510$ | $713342913190197430$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 60 curves (of which all are hyperelliptic):
- $y^2=50 x^6+39 x^5+8 x^4+25 x^3+37 x^2+46 x+53$
- $y^2=25 x^6+5 x^5+56 x^4+4 x^3+16 x^2+18 x+31$
- $y^2=40 x^6+52 x^5+13 x^3+49 x^2+28 x+54$
- $y^2=32 x^6+45 x^5+37 x^4+18 x^3+18 x^2+52 x+17$
- $y^2=55 x^6+20 x^5+55 x^4+43 x^3+55 x^2+20 x+55$
- $y^2=18 x^6+41 x^5+21 x^4+28 x^3+21 x^2+41 x+18$
- $y^2=54 x^6+34 x^5+17 x^4+30 x^3+44 x^2+38 x+32$
- $y^2=25 x^6+39 x^5+40 x^4+5 x^3+31 x^2+41 x+19$
- $y^2=10 x^6+x^5+23 x^4+13 x^3+53 x^2+9 x+35$
- $y^2=10 x^6+57 x^5+26 x^4+24 x^3+49 x^2+19 x+39$
- $y^2=37 x^6+4 x^5+6 x^4+5 x^3+6 x^2+4 x+37$
- $y^2=29 x^6+49 x^5+39 x^4+16 x^3+39 x^2+49 x+29$
- $y^2=37 x^6+59 x^5+15 x^4+33 x^3+15 x^2+59 x+37$
- $y^2=54 x^6+55 x^5+22 x^4+18 x^2+4 x+55$
- $y^2=21 x^6+19 x^5+44 x^4+37 x^3+49 x^2+40 x+54$
- $y^2=10 x^6+46 x^5+38 x^4+59 x^3+31 x^2+4 x+31$
- $y^2=31 x^6+37 x^5+x^4+52 x^3+46 x^2+55 x+26$
- $y^2=50 x^6+24 x^5+36 x^4+13 x^3+9 x^2+44 x+23$
- $y^2=34 x^6+24 x^5+4 x^4+27 x^3+4 x^2+24 x+34$
- $y^2=15 x^6+35 x^5+43 x^4+47 x^3+39 x^2+30 x+33$
- and 40 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$The isogeny class factors as 1.61.ao $\times$ 1.61.ak and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.