Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 24 x + 253 x^{2} - 1464 x^{3} + 3721 x^{4}$ |
| Frobenius angles: | $\pm0.0139265954990$, $\pm0.319406737834$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-3}, \sqrt{13})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $8$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2487$ | $13586481$ | $51519935952$ | $191672109482841$ | $713280258809833287$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $38$ | $3652$ | $226982$ | $13843300$ | $844522118$ | $51519497542$ | $3142736839406$ | $191707291767364$ | $11694146092834142$ | $713342911517653252$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which all are hyperelliptic):
- $y^2=x^6+2 x^3+29$
- $y^2=57 x^6+14 x^5+11 x^4+18 x^3+57 x^2+19 x+30$
- $y^2=4 x^6+7 x^5+30 x^4+35 x^3+47 x^2+40 x+3$
- $y^2=x^6+x^3+26$
- $y^2=x^6+x^3+40$
- $y^2=6 x^6+44 x^5+42 x^4+51 x^3+41 x^2+42 x+6$
- $y^2=2 x^6+37 x^5+12 x^4+3 x^3+8 x^2+15 x+2$
- $y^2=2 x^6+4 x^3+52$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61^{6}}$.
Endomorphism algebra over $\F_{61}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{13})\). |
| The base change of $A$ to $\F_{61^{6}}$ is 1.51520374361.ayyny 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-39}) \)$)$ |
- Endomorphism algebra over $\F_{61^{2}}$
The base change of $A$ to $\F_{61^{2}}$ is the simple isogeny class 2.3721.acs_btj and its endomorphism algebra is \(\Q(\sqrt{-3}, \sqrt{13})\). - Endomorphism algebra over $\F_{61^{3}}$
The base change of $A$ to $\F_{61^{3}}$ is the simple isogeny class 2.226981.a_ayyny and its endomorphism algebra is \(\Q(\sqrt{-3}, \sqrt{13})\).
Base change
This is a primitive isogeny class.