Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 29 x + 331 x^{2} - 1769 x^{3} + 3721 x^{4}$ |
| Frobenius angles: | $\pm0.00565540645541$, $\pm0.172515385279$ |
| Angle rank: | $2$ (numerical) |
| Number field: | \(\Q(\zeta_{5})\) |
| Galois group: | $C_4$ |
| Jacobians: | $1$ |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2255$ | $13194005$ | $51316721555$ | $191662462946405$ | $713338599476250000$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $33$ | $3543$ | $226083$ | $13842603$ | $844591198$ | $51520374183$ | $3142742135643$ | $191707295768883$ | $11694145843711353$ | $713342908902617398$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobian of 1 curve (which is hyperelliptic):
- $y^2=16 x^5+60$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$| The endomorphism algebra of this simple isogeny class is \(\Q(\zeta_{5})\). |
Base change
This is a primitive isogeny class.