Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 26 x + 289 x^{2} - 1586 x^{3} + 3721 x^{4}$ |
| Frobenius angles: | $\pm0.125915170111$, $\pm0.234017939091$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.254528.3 |
| Galois group: | $D_{4}$ |
| Jacobians: | $4$ |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2399$ | $13489577$ | $51567838844$ | $191809495935353$ | $713404598749519959$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $36$ | $3624$ | $227190$ | $13853220$ | $844669336$ | $51520835550$ | $3142744647624$ | $191707315193988$ | $11694146086080174$ | $713342912009551624$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which all are hyperelliptic):
- $y^2=10 x^6+26 x^5+20 x^4+5 x^3+11 x^2+11 x+32$
- $y^2=45 x^6+52 x^5+7 x^4+60 x^3+49 x^2+9 x+28$
- $y^2=23 x^6+21 x^5+35 x^4+27 x^3+32 x^2+17 x+54$
- $y^2=27 x^6+41 x^4+2 x^3+55 x^2+26 x+9$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$| The endomorphism algebra of this simple isogeny class is 4.0.254528.3. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.61.ba_ld | $2$ | (not in LMFDB) |