# Stored data for abelian variety isogeny class 2.61.aba_ld, downloaded from the LMFDB on 12 February 2026. {"abvar_count": 2399, "abvar_counts": [2399, 13489577, 51567838844, 191809495935353, 713404598749519959, 2654372735023015912208, 9876838226761888029162191, 36751694277761747142295787753, 136753052761566100401998119463516, 508858109866973019957392778594903657], "abvar_counts_str": "2399 13489577 51567838844 191809495935353 713404598749519959 2654372735023015912208 9876838226761888029162191 36751694277761747142295787753 136753052761566100401998119463516 508858109866973019957392778594903657 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.125915170110808, 0.234017939091098], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 36, "curve_counts": [36, 3624, 227190, 13853220, 844669336, 51520835550, 3142744647624, 191707315193988, 11694146086080174, 713342912009551624], "curve_counts_str": "36 3624 227190 13853220 844669336 51520835550 3142744647624 191707315193988 11694146086080174 713342912009551624 ", "curves": ["y^2=10*x^6+26*x^5+20*x^4+5*x^3+11*x^2+11*x+32", "y^2=45*x^6+52*x^5+7*x^4+60*x^3+49*x^2+9*x+28", "y^2=23*x^6+21*x^5+35*x^4+27*x^3+32*x^2+17*x+54", "y^2=27*x^6+41*x^4+2*x^3+55*x^2+26*x+9"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 1, "g": 2, "galois_groups": ["4T3"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T3"], "geometric_number_fields": ["4.0.254528.3"], "geometric_splitting_field": "4.0.254528.3", "geometric_splitting_polynomials": [[263, -10, 37, -2, 1]], "group_structure_count": 1, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 4, "is_cyclic": true, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 4, "label": "2.61.aba_ld", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "noncyclic_primes": [], "number_fields": ["4.0.254528.3"], "p": 61, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -26, 289, -1586, 3721], "poly_str": "1 -26 289 -1586 3721 ", "primitive_models": [], "q": 61, "real_poly": [1, -26, 167], "simple_distinct": ["2.61.aba_ld"], "simple_factors": ["2.61.aba_ldA"], "simple_multiplicities": [1], "singular_primes": [], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.254528.3", "splitting_polynomials": [[263, -10, 37, -2, 1]], "twist_count": 2, "twists": [["2.61.ba_ld", "2.3721.adu_mop", 2]], "weak_equivalence_count": 1, "zfv_index": 1, "zfv_index_factorization": [], "zfv_is_bass": true, "zfv_is_maximal": true, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 3977, "zfv_singular_count": 0, "zfv_singular_primes": []}