Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 13 x + 61 x^{2} )^{2}$ |
$1 - 26 x + 291 x^{2} - 1586 x^{3} + 3721 x^{4}$ | |
Frobenius angles: | $\pm0.187058313935$, $\pm0.187058313935$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $8$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2401$ | $13505625$ | $51603482896$ | $191852278655625$ | $713439077260126441$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $36$ | $3628$ | $227346$ | $13856308$ | $844710156$ | $51521216038$ | $3142746832716$ | $191707313612068$ | $11694145857028026$ | $713342908559901148$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which all are hyperelliptic):
- $y^2=2 x^6+2 x^3+2$
- $y^2=29 x^6+53 x^5+28 x^4+29 x^3+7 x^2+30 x+30$
- $y^2=55 x^6+58 x^5+44 x^4+5 x^3+38 x^2+42 x+6$
- $y^2=7 x^6+52 x^5+53 x^4+60 x^3+28 x^2+27 x+43$
- $y^2=53 x^6+4 x^5+51 x^4+35 x^3+51 x^2+4 x+53$
- $y^2=32 x^6+38 x^5+52 x^4+25 x^3+27 x^2+37 x+51$
- $y^2=15 x^6+25 x^5+35 x^4+6 x^3+49 x^2+32 x+15$
- $y^2=60 x^6+56 x^5+28 x^4+40 x^3+37 x^2+15 x+41$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$The isogeny class factors as 1.61.an 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.