Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 15 x + 61 x^{2} )( 1 - 9 x + 61 x^{2} )$ |
| $1 - 24 x + 257 x^{2} - 1464 x^{3} + 3721 x^{4}$ | |
| Frobenius angles: | $\pm0.0900194921159$, $\pm0.304548188780$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $11$ |
| Cyclic group of points: | yes |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2491$ | $13618297$ | $51585620800$ | $191743238558025$ | $713331744448229731$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $38$ | $3660$ | $227270$ | $13848436$ | $844583078$ | $51520042662$ | $3142740999758$ | $191707325161636$ | $11694146420296190$ | $713342914941697980$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 11 curves (of which all are hyperelliptic):
- $y^2=4 x^6+48 x^5+39 x^3+48 x+4$
- $y^2=8 x^6+36 x^5+60 x^4+9 x^3+48 x^2+59 x+59$
- $y^2=4 x^6+51 x^5+36 x^4+44 x^3+33 x^2+48 x+38$
- $y^2=47 x^6+3 x^5+60 x^4+44 x^3+52 x^2+15 x+31$
- $y^2=42 x^6+54 x^5+51 x^4+55 x^3+50 x^2+11 x+21$
- $y^2=53 x^6+10 x^5+x^4+15 x^3+34 x^2+7 x+31$
- $y^2=40 x^6+53 x^5+x^4+17 x^3+46 x^2+27 x+30$
- $y^2=x^6+33 x^5+12 x^4+59 x^3+6 x^2+2 x+26$
- $y^2=11 x^6+38 x^5+59 x^4+27 x^3+59 x^2+38 x+11$
- $y^2=21 x^6+26 x^5+52 x^4+5 x^3+52 x^2+26 x+21$
- $y^2=5 x^6+6 x^5+17 x^4+10 x^3+53 x^2+39 x+55$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$| The isogeny class factors as 1.61.ap $\times$ 1.61.aj and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.61.ag_an | $2$ | (not in LMFDB) |
| 2.61.g_an | $2$ | (not in LMFDB) |
| 2.61.y_jx | $2$ | (not in LMFDB) |