Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 14 x + 61 x^{2} )( 1 - 12 x + 61 x^{2} )$ |
| $1 - 26 x + 290 x^{2} - 1586 x^{3} + 3721 x^{4}$ | |
| Frobenius angles: | $\pm0.146275019398$, $\pm0.221142061624$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $10$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 5$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2400$ | $13497600$ | $51585660000$ | $191830914662400$ | $713421947728860000$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $36$ | $3626$ | $227268$ | $13854766$ | $844689876$ | $51521030138$ | $3142745838996$ | $191707316101726$ | $11694145994559108$ | $713342910530017226$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 10 curves (of which all are hyperelliptic):
- $y^2=30 x^6+10 x^5+51 x^4+13 x^3+51 x^2+10 x+30$
- $y^2=46 x^6+47 x^4+14 x^3+12 x^2+5$
- $y^2=11 x^6+49 x^5+52 x^4+37 x^3+52 x^2+49 x+11$
- $y^2=26 x^6+4 x^5+41 x^4+22 x^3+41 x^2+4 x+26$
- $y^2=14 x^6+23 x^5+11 x^4+47 x^3+8 x^2+53 x+36$
- $y^2=51 x^6+24 x^5+39 x^4+24 x^3+39 x^2+24 x+51$
- $y^2=33 x^6+6 x^5+7 x^4+21 x^3+6 x^2+43 x+11$
- $y^2=5 x^6+25 x^5+58 x^4+25 x^3+22 x^2+16 x+5$
- $y^2=4 x^6+21 x^5+33 x^4+20 x^3+43 x^2+37 x+12$
- $y^2=44 x^6+52 x^5+60 x^4+31 x^3+60 x^2+52 x+44$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$| The isogeny class factors as 1.61.ao $\times$ 1.61.am and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.