Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 25 x + 270 x^{2} - 1525 x^{3} + 3721 x^{4}$ |
| Frobenius angles: | $\pm0.0568212926978$, $\pm0.288610051981$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.1267596.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $8$ |
| Isomorphism classes: | 8 |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2442$ | $13533564$ | $51531464952$ | $191720581827456$ | $713320847896463202$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $37$ | $3637$ | $227032$ | $13846801$ | $844570177$ | $51519854842$ | $3142738178197$ | $191707293412993$ | $11694146165782792$ | $713342913604307677$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which all are hyperelliptic):
- $y^2=6 x^6+58 x^5+15 x^4+4 x^3+52 x^2+48 x+24$
- $y^2=8 x^6+46 x^5+50 x^4+39 x^3+31 x^2+29 x+51$
- $y^2=7 x^6+42 x^5+58 x^4+7 x^3+35 x^2+43 x+42$
- $y^2=43 x^6+58 x^5+18 x^4+18 x^3+47 x^2+47 x+7$
- $y^2=38 x^6+22 x^5+5 x^4+12 x^3+13 x^2+35 x+49$
- $y^2=4 x^6+20 x^5+52 x^4+3 x^3+37 x^2+31 x+41$
- $y^2=5 x^6+53 x^5+13 x^4+31 x^3+34 x^2+34 x+48$
- $y^2=8 x^6+3 x^5+31 x^4+59 x^3+13 x^2+8 x+20$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$| The endomorphism algebra of this simple isogeny class is 4.0.1267596.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.61.z_kk | $2$ | (not in LMFDB) |