Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 24 x + 256 x^{2} - 1464 x^{3} + 3721 x^{4}$ |
| Frobenius angles: | $\pm0.0772899280240$, $\pm0.308576229556$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.3744000.2 |
| Galois group: | $D_{4}$ |
| Jacobians: | $16$ |
| Isomorphism classes: | 32 |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2490$ | $13610340$ | $51569197290$ | $191725538657040$ | $713319176976056250$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $38$ | $3658$ | $227198$ | $13847158$ | $844568198$ | $51519917338$ | $3142740184958$ | $191707320328798$ | $11694146382954758$ | $713342914568337898$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 16 curves (of which all are hyperelliptic):
- $y^2=38 x^6+10 x^5+11 x^4+39 x^3+39 x^2+3 x+53$
- $y^2=33 x^6+53 x^5+49 x^4+5 x^3+5 x^2+41 x+54$
- $y^2=53 x^6+59 x^5+58 x^4+50 x^3+11 x^2+52 x+32$
- $y^2=52 x^6+15 x^4+54 x^3+34 x^2+58 x+23$
- $y^2=6 x^6+15 x^5+12 x^4+17 x^3+7 x^2+32 x+22$
- $y^2=4 x^6+24 x^5+25 x^4+28 x^3+47 x^2+59 x+28$
- $y^2=23 x^6+12 x^5+34 x^4+40 x^3+52 x^2+56 x+9$
- $y^2=9 x^6+37 x^5+31 x^4+31 x^3+46 x^2+2 x+24$
- $y^2=29 x^6+42 x^5+59 x^4+27 x^3+17 x^2+33 x+2$
- $y^2=51 x^6+56 x^5+17 x^4+55 x^3+20 x^2+18 x+12$
- $y^2=8 x^6+4 x^5+9 x^4+13 x^3+21 x^2+53 x+57$
- $y^2=55 x^6+49 x^5+30 x^4+28 x^3+7 x^2+45 x+37$
- $y^2=29 x^6+14 x^5+57 x^4+42 x^3+24 x^2+5 x+42$
- $y^2=7 x^6+32 x^5+43 x^4+29 x^3+59 x^2+60 x+45$
- $y^2=45 x^6+5 x^5+29 x^4+20 x^3+50 x^2+19 x+55$
- $y^2=55 x^6+17 x^5+51 x^4+7 x^3+32 x^2+2 x+49$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$| The endomorphism algebra of this simple isogeny class is 4.0.3744000.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.61.y_jw | $2$ | (not in LMFDB) |