Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 25 x + 277 x^{2} - 1525 x^{3} + 3721 x^{4}$ |
| Frobenius angles: | $\pm0.162949397008$, $\pm0.240145470170$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.167525.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $9$ |
| Isomorphism classes: | 9 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2449$ | $13589501$ | $51651322669$ | $191856914855525$ | $713423574578330704$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $37$ | $3651$ | $227557$ | $13856643$ | $844691802$ | $51520911051$ | $3142744131697$ | $191707302173283$ | $11694145926427417$ | $713342910479846806$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 9 curves (of which all are hyperelliptic):
- $y^2=57 x^6+29 x^5+12 x^4+55 x^3+13 x^2+4 x+30$
- $y^2=15 x^6+7 x^5+22 x^4+10 x^3+30 x^2+47 x+34$
- $y^2=35 x^6+10 x^5+33 x^4+19 x^3+51 x^2+41 x+50$
- $y^2=7 x^6+60 x^5+x^4+3 x^3+45 x^2+59 x+45$
- $y^2=33 x^6+44 x^5+45 x^4+3 x^3+15 x^2+22 x+51$
- $y^2=12 x^6+22 x^5+x^4+32 x^3+47 x^2+49 x+50$
- $y^2=7 x^6+60 x^5+7 x^4+8 x^3+44 x^2+18 x+18$
- $y^2=17 x^6+8 x^5+20 x^4+60 x^3+22 x^2+33 x+28$
- $y^2=50 x^6+29 x^5+25 x^4+18 x^3+45 x^2+8 x+43$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$| The endomorphism algebra of this simple isogeny class is 4.0.167525.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.61.z_kr | $2$ | (not in LMFDB) |