Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 15 x + 61 x^{2} )( 1 - 8 x + 61 x^{2} )$ |
$1 - 23 x + 242 x^{2} - 1403 x^{3} + 3721 x^{4}$ | |
Frobenius angles: | $\pm0.0900194921159$, $\pm0.328850104905$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $18$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2538$ | $13679820$ | $51593316768$ | $191719941336000$ | $713313755584881858$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $39$ | $3677$ | $227304$ | $13846753$ | $844561779$ | $51519979082$ | $3142742179119$ | $191707341720673$ | $11694146486324904$ | $713342914311311477$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 18 curves (of which all are hyperelliptic):
- $y^2=31 x^6+19 x^5+8 x^4+43 x^3+48 x^2+10 x+31$
- $y^2=13 x^6+28 x^5+13 x^4+42 x^3+32 x^2+16 x+4$
- $y^2=43 x^6+27 x^5+15 x^4+49 x^3+58 x^2+56 x+6$
- $y^2=32 x^6+2 x^5+36 x^4+59 x^3+41 x^2+45 x+31$
- $y^2=35 x^6+5 x^5+36 x^4+46 x^3+18 x^2+37 x+8$
- $y^2=46 x^6+19 x^5+28 x^4+53 x^3+27 x^2+53 x+47$
- $y^2=23 x^6+8 x^5+13 x^4+32 x^3+21 x^2+35 x$
- $y^2=21 x^6+x^5+42 x^4+19 x^3+28 x^2+15 x+23$
- $y^2=40 x^6+41 x^5+58 x^4+52 x^3+49 x^2+36 x+44$
- $y^2=21 x^6+5 x^5+57 x^4+53 x^3+46 x^2+48 x+50$
- $y^2=8 x^6+51 x^5+4 x^4+32 x^3+42 x^2+32 x+26$
- $y^2=40 x^6+22 x^5+14 x^4+x^3+58 x^2+49 x+10$
- $y^2=7 x^6+23 x^5+27 x^4+24 x^3+10 x^2+40 x+59$
- $y^2=30 x^6+30 x^5+45 x^4+56 x^3+22 x^2+8 x+20$
- $y^2=12 x^6+57 x^5+27 x^4+27 x^3+3 x^2+9 x+23$
- $y^2=43 x^6+54 x^5+34 x^4+13 x^3+18 x^2+2 x+50$
- $y^2=16 x^6+60 x^5+19 x^4+43 x^3+19 x^2+31 x+2$
- $y^2=11 x^6+44 x^5+14 x^4+23 x^3+34 x^2+30 x+56$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$The isogeny class factors as 1.61.ap $\times$ 1.61.ai and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.61.ah_c | $2$ | (not in LMFDB) |
2.61.h_c | $2$ | (not in LMFDB) |
2.61.x_ji | $2$ | (not in LMFDB) |