Properties

Label 961.2.c.i.439.6
Level $961$
Weight $2$
Character 961.439
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(439,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.439"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,4,-3,16,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 439.6
Root \(-2.52368i\) of defining polynomial
Character \(\chi\) \(=\) 961.439
Dual form 961.2.c.i.521.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.26660 q^{2} +(0.742157 - 1.28545i) q^{3} -0.395721 q^{4} +(1.90016 + 3.29117i) q^{5} +(0.940018 - 1.62816i) q^{6} +(-1.09449 + 1.89572i) q^{7} -3.03442 q^{8} +(0.398405 + 0.690057i) q^{9} +(2.40675 + 4.16861i) q^{10} +(-0.475298 - 0.823240i) q^{11} +(-0.293687 + 0.508681i) q^{12} +(0.0840712 + 0.145616i) q^{13} +(-1.38629 + 2.40112i) q^{14} +5.64087 q^{15} -3.05196 q^{16} +(-3.28833 + 5.69555i) q^{17} +(0.504620 + 0.874027i) q^{18} +(0.576421 - 0.998390i) q^{19} +(-0.751933 - 1.30239i) q^{20} +(1.62457 + 2.81385i) q^{21} +(-0.602013 - 1.04272i) q^{22} +4.62850 q^{23} +(-2.25202 + 3.90061i) q^{24} +(-4.72122 + 8.17739i) q^{25} +(0.106485 + 0.184437i) q^{26} +5.63566 q^{27} +(0.433114 - 0.750176i) q^{28} -1.33672 q^{29} +7.14474 q^{30} +2.20322 q^{32} -1.41098 q^{33} +(-4.16500 + 7.21399i) q^{34} -8.31886 q^{35} +(-0.157657 - 0.273070i) q^{36} +(-1.93582 + 3.35295i) q^{37} +(0.730096 - 1.26456i) q^{38} +0.249576 q^{39} +(-5.76589 - 9.98682i) q^{40} +(-0.164101 - 0.284232i) q^{41} +(2.05769 + 3.56402i) q^{42} +(4.81529 - 8.34032i) q^{43} +(0.188085 + 0.325773i) q^{44} +(-1.51407 + 2.62244i) q^{45} +5.86247 q^{46} +5.63858 q^{47} +(-2.26504 + 3.92316i) q^{48} +(1.10416 + 1.91247i) q^{49} +(-5.97990 + 10.3575i) q^{50} +(4.88091 + 8.45399i) q^{51} +(-0.0332687 - 0.0576231i) q^{52} +(-3.66647 - 6.35052i) q^{53} +7.13814 q^{54} +(1.80628 - 3.12858i) q^{55} +(3.32116 - 5.75242i) q^{56} +(-0.855590 - 1.48193i) q^{57} -1.69309 q^{58} +(1.32656 - 2.29767i) q^{59} -2.23221 q^{60} +1.74967 q^{61} -1.74421 q^{63} +8.89454 q^{64} +(-0.319498 + 0.553386i) q^{65} -1.78715 q^{66} +(-0.276003 - 0.478052i) q^{67} +(1.30126 - 2.25385i) q^{68} +(3.43508 - 5.94973i) q^{69} -10.5367 q^{70} +(-0.568494 - 0.984661i) q^{71} +(-1.20893 - 2.09393i) q^{72} +(-3.96130 - 6.86117i) q^{73} +(-2.45192 + 4.24685i) q^{74} +(7.00778 + 12.1378i) q^{75} +(-0.228102 + 0.395084i) q^{76} +2.08084 q^{77} +0.316114 q^{78} +(2.27114 - 3.93373i) q^{79} +(-5.79922 - 10.0445i) q^{80} +(2.98733 - 5.17421i) q^{81} +(-0.207851 - 0.360008i) q^{82} +(0.163198 + 0.282667i) q^{83} +(-0.642878 - 1.11350i) q^{84} -24.9934 q^{85} +(6.09905 - 10.5639i) q^{86} +(-0.992053 + 1.71829i) q^{87} +(1.44225 + 2.49806i) q^{88} +14.7102 q^{89} +(-1.91772 + 3.32158i) q^{90} -0.368062 q^{91} -1.83159 q^{92} +7.14183 q^{94} +4.38117 q^{95} +(1.63514 - 2.83214i) q^{96} +15.5192 q^{97} +(1.39853 + 2.42233i) q^{98} +(0.378722 - 0.655965i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} - 3 q^{3} + 16 q^{4} - 3 q^{5} - 11 q^{6} + 2 q^{7} - 18 q^{8} - 5 q^{9} + 13 q^{10} - 18 q^{11} - 8 q^{13} + 9 q^{14} + 36 q^{15} + 8 q^{16} - 14 q^{17} - 23 q^{18} + 6 q^{19} + 7 q^{20}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.26660 0.895623 0.447811 0.894128i \(-0.352204\pi\)
0.447811 + 0.894128i \(0.352204\pi\)
\(3\) 0.742157 1.28545i 0.428485 0.742157i −0.568254 0.822853i \(-0.692381\pi\)
0.996739 + 0.0806958i \(0.0257142\pi\)
\(4\) −0.395721 −0.197860
\(5\) 1.90016 + 3.29117i 0.849778 + 1.47186i 0.881407 + 0.472358i \(0.156597\pi\)
−0.0316291 + 0.999500i \(0.510070\pi\)
\(6\) 0.940018 1.62816i 0.383761 0.664693i
\(7\) −1.09449 + 1.89572i −0.413680 + 0.716515i −0.995289 0.0969536i \(-0.969090\pi\)
0.581609 + 0.813469i \(0.302423\pi\)
\(8\) −3.03442 −1.07283
\(9\) 0.398405 + 0.690057i 0.132802 + 0.230019i
\(10\) 2.40675 + 4.16861i 0.761080 + 1.31823i
\(11\) −0.475298 0.823240i −0.143308 0.248216i 0.785433 0.618947i \(-0.212441\pi\)
−0.928740 + 0.370731i \(0.879107\pi\)
\(12\) −0.293687 + 0.508681i −0.0847801 + 0.146843i
\(13\) 0.0840712 + 0.145616i 0.0233172 + 0.0403865i 0.877449 0.479671i \(-0.159244\pi\)
−0.854131 + 0.520057i \(0.825911\pi\)
\(14\) −1.38629 + 2.40112i −0.370501 + 0.641727i
\(15\) 5.64087 1.45647
\(16\) −3.05196 −0.762991
\(17\) −3.28833 + 5.69555i −0.797537 + 1.38137i 0.123679 + 0.992322i \(0.460531\pi\)
−0.921216 + 0.389052i \(0.872803\pi\)
\(18\) 0.504620 + 0.874027i 0.118940 + 0.206010i
\(19\) 0.576421 0.998390i 0.132240 0.229046i −0.792300 0.610132i \(-0.791116\pi\)
0.924540 + 0.381086i \(0.124450\pi\)
\(20\) −0.751933 1.30239i −0.168137 0.291222i
\(21\) 1.62457 + 2.81385i 0.354511 + 0.614032i
\(22\) −0.602013 1.04272i −0.128350 0.222308i
\(23\) 4.62850 0.965109 0.482554 0.875866i \(-0.339709\pi\)
0.482554 + 0.875866i \(0.339709\pi\)
\(24\) −2.25202 + 3.90061i −0.459692 + 0.796209i
\(25\) −4.72122 + 8.17739i −0.944244 + 1.63548i
\(26\) 0.106485 + 0.184437i 0.0208834 + 0.0361711i
\(27\) 5.63566 1.08458
\(28\) 0.433114 0.750176i 0.0818509 0.141770i
\(29\) −1.33672 −0.248222 −0.124111 0.992268i \(-0.539608\pi\)
−0.124111 + 0.992268i \(0.539608\pi\)
\(30\) 7.14474 1.30444
\(31\) 0 0
\(32\) 2.20322 0.389479
\(33\) −1.41098 −0.245621
\(34\) −4.16500 + 7.21399i −0.714292 + 1.23719i
\(35\) −8.31886 −1.40614
\(36\) −0.157657 0.273070i −0.0262762 0.0455116i
\(37\) −1.93582 + 3.35295i −0.318248 + 0.551221i −0.980122 0.198393i \(-0.936428\pi\)
0.661875 + 0.749614i \(0.269761\pi\)
\(38\) 0.730096 1.26456i 0.118437 0.205139i
\(39\) 0.249576 0.0399642
\(40\) −5.76589 9.98682i −0.911667 1.57905i
\(41\) −0.164101 0.284232i −0.0256283 0.0443895i 0.852927 0.522031i \(-0.174825\pi\)
−0.878555 + 0.477641i \(0.841492\pi\)
\(42\) 2.05769 + 3.56402i 0.317508 + 0.549941i
\(43\) 4.81529 8.34032i 0.734324 1.27189i −0.220695 0.975343i \(-0.570833\pi\)
0.955019 0.296544i \(-0.0958342\pi\)
\(44\) 0.188085 + 0.325773i 0.0283549 + 0.0491121i
\(45\) −1.51407 + 2.62244i −0.225704 + 0.390930i
\(46\) 5.86247 0.864373
\(47\) 5.63858 0.822471 0.411235 0.911529i \(-0.365097\pi\)
0.411235 + 0.911529i \(0.365097\pi\)
\(48\) −2.26504 + 3.92316i −0.326930 + 0.566259i
\(49\) 1.10416 + 1.91247i 0.157737 + 0.273209i
\(50\) −5.97990 + 10.3575i −0.845686 + 1.46477i
\(51\) 4.88091 + 8.45399i 0.683465 + 1.18380i
\(52\) −0.0332687 0.0576231i −0.00461354 0.00799089i
\(53\) −3.66647 6.35052i −0.503629 0.872311i −0.999991 0.00419517i \(-0.998665\pi\)
0.496362 0.868115i \(-0.334669\pi\)
\(54\) 7.13814 0.971377
\(55\) 1.80628 3.12858i 0.243559 0.421857i
\(56\) 3.32116 5.75242i 0.443809 0.768699i
\(57\) −0.855590 1.48193i −0.113326 0.196286i
\(58\) −1.69309 −0.222313
\(59\) 1.32656 2.29767i 0.172703 0.299131i −0.766661 0.642052i \(-0.778083\pi\)
0.939364 + 0.342921i \(0.111416\pi\)
\(60\) −2.23221 −0.288177
\(61\) 1.74967 0.224023 0.112011 0.993707i \(-0.464271\pi\)
0.112011 + 0.993707i \(0.464271\pi\)
\(62\) 0 0
\(63\) −1.74421 −0.219749
\(64\) 8.89454 1.11182
\(65\) −0.319498 + 0.553386i −0.0396288 + 0.0686391i
\(66\) −1.78715 −0.219983
\(67\) −0.276003 0.478052i −0.0337192 0.0584033i 0.848673 0.528917i \(-0.177402\pi\)
−0.882393 + 0.470514i \(0.844069\pi\)
\(68\) 1.30126 2.25385i 0.157801 0.273319i
\(69\) 3.43508 5.94973i 0.413535 0.716263i
\(70\) −10.5367 −1.25937
\(71\) −0.568494 0.984661i −0.0674679 0.116858i 0.830318 0.557290i \(-0.188159\pi\)
−0.897786 + 0.440432i \(0.854825\pi\)
\(72\) −1.20893 2.09393i −0.142474 0.246771i
\(73\) −3.96130 6.86117i −0.463635 0.803039i 0.535504 0.844533i \(-0.320122\pi\)
−0.999139 + 0.0414935i \(0.986788\pi\)
\(74\) −2.45192 + 4.24685i −0.285030 + 0.493686i
\(75\) 7.00778 + 12.1378i 0.809188 + 1.40156i
\(76\) −0.228102 + 0.395084i −0.0261650 + 0.0453192i
\(77\) 2.08084 0.237134
\(78\) 0.316114 0.0357928
\(79\) 2.27114 3.93373i 0.255523 0.442579i −0.709514 0.704691i \(-0.751086\pi\)
0.965037 + 0.262112i \(0.0844189\pi\)
\(80\) −5.79922 10.0445i −0.648373 1.12301i
\(81\) 2.98733 5.17421i 0.331926 0.574913i
\(82\) −0.207851 0.360008i −0.0229533 0.0397563i
\(83\) 0.163198 + 0.282667i 0.0179133 + 0.0310268i 0.874843 0.484406i \(-0.160964\pi\)
−0.856930 + 0.515433i \(0.827631\pi\)
\(84\) −0.642878 1.11350i −0.0701437 0.121492i
\(85\) −24.9934 −2.71091
\(86\) 6.09905 10.5639i 0.657677 1.13913i
\(87\) −0.992053 + 1.71829i −0.106359 + 0.184220i
\(88\) 1.44225 + 2.49806i 0.153745 + 0.266294i
\(89\) 14.7102 1.55927 0.779637 0.626232i \(-0.215404\pi\)
0.779637 + 0.626232i \(0.215404\pi\)
\(90\) −1.91772 + 3.32158i −0.202145 + 0.350126i
\(91\) −0.368062 −0.0385834
\(92\) −1.83159 −0.190957
\(93\) 0 0
\(94\) 7.14183 0.736623
\(95\) 4.38117 0.449498
\(96\) 1.63514 2.83214i 0.166886 0.289055i
\(97\) 15.5192 1.57573 0.787867 0.615845i \(-0.211185\pi\)
0.787867 + 0.615845i \(0.211185\pi\)
\(98\) 1.39853 + 2.42233i 0.141273 + 0.244692i
\(99\) 0.378722 0.655965i 0.0380630 0.0659270i
\(100\) 1.86828 3.23596i 0.186828 0.323596i
\(101\) 4.87360 0.484941 0.242471 0.970159i \(-0.422042\pi\)
0.242471 + 0.970159i \(0.422042\pi\)
\(102\) 6.18217 + 10.7078i 0.612126 + 1.06023i
\(103\) −0.965310 1.67197i −0.0951148 0.164744i 0.814542 0.580105i \(-0.196988\pi\)
−0.909657 + 0.415361i \(0.863655\pi\)
\(104\) −0.255108 0.441859i −0.0250154 0.0433279i
\(105\) −6.17391 + 10.6935i −0.602512 + 1.04358i
\(106\) −4.64396 8.04357i −0.451061 0.781261i
\(107\) −6.26376 + 10.8491i −0.605540 + 1.04883i 0.386426 + 0.922321i \(0.373710\pi\)
−0.991966 + 0.126506i \(0.959624\pi\)
\(108\) −2.23015 −0.214596
\(109\) −10.2625 −0.982968 −0.491484 0.870887i \(-0.663545\pi\)
−0.491484 + 0.870887i \(0.663545\pi\)
\(110\) 2.28784 3.96266i 0.218137 0.377825i
\(111\) 2.87337 + 4.97683i 0.272728 + 0.472380i
\(112\) 3.34036 5.78567i 0.315634 0.546695i
\(113\) 1.92147 + 3.32809i 0.180757 + 0.313080i 0.942138 0.335224i \(-0.108812\pi\)
−0.761382 + 0.648304i \(0.775479\pi\)
\(114\) −1.08369 1.87701i −0.101497 0.175798i
\(115\) 8.79489 + 15.2332i 0.820128 + 1.42050i
\(116\) 0.528966 0.0491132
\(117\) −0.0669887 + 0.116028i −0.00619311 + 0.0107268i
\(118\) 1.68022 2.91023i 0.154677 0.267908i
\(119\) −7.19811 12.4675i −0.659850 1.14289i
\(120\) −17.1168 −1.56254
\(121\) 5.04818 8.74371i 0.458926 0.794883i
\(122\) 2.21614 0.200640
\(123\) −0.487156 −0.0439254
\(124\) 0 0
\(125\) −16.8827 −1.51003
\(126\) −2.20922 −0.196813
\(127\) 3.67194 6.35999i 0.325832 0.564358i −0.655848 0.754893i \(-0.727689\pi\)
0.981680 + 0.190535i \(0.0610222\pi\)
\(128\) 6.85938 0.606290
\(129\) −7.14740 12.3797i −0.629294 1.08997i
\(130\) −0.404676 + 0.700920i −0.0354924 + 0.0614747i
\(131\) −6.51684 + 11.2875i −0.569379 + 0.986193i 0.427249 + 0.904134i \(0.359483\pi\)
−0.996628 + 0.0820586i \(0.973851\pi\)
\(132\) 0.558355 0.0485986
\(133\) 1.26178 + 2.18547i 0.109410 + 0.189504i
\(134\) −0.349586 0.605501i −0.0301997 0.0523073i
\(135\) 10.7087 + 18.5479i 0.921655 + 1.59635i
\(136\) 9.97818 17.2827i 0.855622 1.48198i
\(137\) −0.0671497 0.116307i −0.00573698 0.00993674i 0.863143 0.504960i \(-0.168493\pi\)
−0.868880 + 0.495023i \(0.835159\pi\)
\(138\) 4.35087 7.53593i 0.370371 0.641501i
\(139\) −11.5275 −0.977749 −0.488874 0.872354i \(-0.662592\pi\)
−0.488874 + 0.872354i \(0.662592\pi\)
\(140\) 3.29195 0.278220
\(141\) 4.18471 7.24813i 0.352416 0.610403i
\(142\) −0.720056 1.24717i −0.0604257 0.104660i
\(143\) 0.0799177 0.138422i 0.00668306 0.0115754i
\(144\) −1.21592 2.10603i −0.101326 0.175502i
\(145\) −2.53997 4.39936i −0.210933 0.365347i
\(146\) −5.01739 8.69037i −0.415242 0.719220i
\(147\) 3.27785 0.270352
\(148\) 0.766046 1.32683i 0.0629686 0.109065i
\(149\) 2.72054 4.71211i 0.222875 0.386031i −0.732805 0.680439i \(-0.761789\pi\)
0.955680 + 0.294408i \(0.0951224\pi\)
\(150\) 8.87606 + 15.3738i 0.724727 + 1.25526i
\(151\) −13.6892 −1.11401 −0.557005 0.830509i \(-0.688050\pi\)
−0.557005 + 0.830509i \(0.688050\pi\)
\(152\) −1.74910 + 3.02954i −0.141871 + 0.245728i
\(153\) −5.24034 −0.423656
\(154\) 2.63560 0.212383
\(155\) 0 0
\(156\) −0.0987625 −0.00790733
\(157\) −15.0553 −1.20155 −0.600774 0.799419i \(-0.705141\pi\)
−0.600774 + 0.799419i \(0.705141\pi\)
\(158\) 2.87663 4.98247i 0.228852 0.396384i
\(159\) −10.8844 −0.863189
\(160\) 4.18648 + 7.25120i 0.330970 + 0.573257i
\(161\) −5.06587 + 8.77434i −0.399246 + 0.691515i
\(162\) 3.78376 6.55367i 0.297280 0.514905i
\(163\) 17.0381 1.33453 0.667263 0.744822i \(-0.267466\pi\)
0.667263 + 0.744822i \(0.267466\pi\)
\(164\) 0.0649383 + 0.112476i 0.00507083 + 0.00878293i
\(165\) −2.68109 4.64379i −0.208723 0.361519i
\(166\) 0.206707 + 0.358027i 0.0160436 + 0.0277883i
\(167\) −8.09912 + 14.0281i −0.626729 + 1.08553i 0.361475 + 0.932382i \(0.382273\pi\)
−0.988204 + 0.153144i \(0.951060\pi\)
\(168\) −4.92965 8.53840i −0.380331 0.658752i
\(169\) 6.48586 11.2338i 0.498913 0.864142i
\(170\) −31.6567 −2.42796
\(171\) 0.918595 0.0702467
\(172\) −1.90551 + 3.30044i −0.145294 + 0.251656i
\(173\) 1.16561 + 2.01889i 0.0886196 + 0.153494i 0.906928 0.421286i \(-0.138421\pi\)
−0.818308 + 0.574780i \(0.805088\pi\)
\(174\) −1.25654 + 2.17638i −0.0952577 + 0.164991i
\(175\) −10.3347 17.9002i −0.781230 1.35313i
\(176\) 1.45059 + 2.51250i 0.109342 + 0.189387i
\(177\) −1.96903 3.41046i −0.148002 0.256346i
\(178\) 18.6319 1.39652
\(179\) −8.48531 + 14.6970i −0.634222 + 1.09850i 0.352457 + 0.935828i \(0.385346\pi\)
−0.986679 + 0.162677i \(0.947987\pi\)
\(180\) 0.599147 1.03775i 0.0446578 0.0773495i
\(181\) −3.66788 6.35296i −0.272631 0.472211i 0.696903 0.717165i \(-0.254561\pi\)
−0.969535 + 0.244954i \(0.921227\pi\)
\(182\) −0.466188 −0.0345561
\(183\) 1.29853 2.24913i 0.0959903 0.166260i
\(184\) −14.0448 −1.03540
\(185\) −14.7135 −1.08176
\(186\) 0 0
\(187\) 6.25174 0.457173
\(188\) −2.23130 −0.162734
\(189\) −6.16820 + 10.6836i −0.448671 + 0.777120i
\(190\) 5.54919 0.402581
\(191\) −3.91138 6.77471i −0.283018 0.490201i 0.689109 0.724658i \(-0.258002\pi\)
−0.972127 + 0.234457i \(0.924669\pi\)
\(192\) 6.60115 11.4335i 0.476397 0.825143i
\(193\) 2.31575 4.01100i 0.166692 0.288718i −0.770563 0.637364i \(-0.780025\pi\)
0.937255 + 0.348645i \(0.113358\pi\)
\(194\) 19.6566 1.41126
\(195\) 0.474235 + 0.821399i 0.0339607 + 0.0588216i
\(196\) −0.436940 0.756802i −0.0312100 0.0540573i
\(197\) −11.1922 19.3854i −0.797411 1.38116i −0.921297 0.388859i \(-0.872869\pi\)
0.123887 0.992296i \(-0.460464\pi\)
\(198\) 0.479690 0.830847i 0.0340900 0.0590457i
\(199\) −13.3019 23.0395i −0.942945 1.63323i −0.759814 0.650140i \(-0.774710\pi\)
−0.183131 0.983089i \(-0.558623\pi\)
\(200\) 14.3262 24.8137i 1.01301 1.75459i
\(201\) −0.819352 −0.0577926
\(202\) 6.17291 0.434324
\(203\) 1.46303 2.53404i 0.102684 0.177855i
\(204\) −1.93148 3.34542i −0.135231 0.234226i
\(205\) 0.623638 1.08017i 0.0435567 0.0754425i
\(206\) −1.22266 2.11771i −0.0851869 0.147548i
\(207\) 1.84402 + 3.19393i 0.128168 + 0.221993i
\(208\) −0.256582 0.444414i −0.0177908 0.0308145i
\(209\) −1.09589 −0.0758040
\(210\) −7.81988 + 13.5444i −0.539623 + 0.934654i
\(211\) −0.663069 + 1.14847i −0.0456476 + 0.0790639i −0.887946 0.459947i \(-0.847868\pi\)
0.842299 + 0.539011i \(0.181202\pi\)
\(212\) 1.45090 + 2.51303i 0.0996481 + 0.172596i
\(213\) −1.68765 −0.115636
\(214\) −7.93368 + 13.7415i −0.542335 + 0.939353i
\(215\) 36.5993 2.49605
\(216\) −17.1010 −1.16357
\(217\) 0 0
\(218\) −12.9985 −0.880368
\(219\) −11.7596 −0.794642
\(220\) −0.714784 + 1.23804i −0.0481907 + 0.0834688i
\(221\) −1.10581 −0.0743851
\(222\) 3.63942 + 6.30366i 0.244262 + 0.423074i
\(223\) −6.05997 + 10.4962i −0.405806 + 0.702876i −0.994415 0.105542i \(-0.966342\pi\)
0.588609 + 0.808418i \(0.299676\pi\)
\(224\) −2.41142 + 4.17670i −0.161120 + 0.279067i
\(225\) −7.52382 −0.501588
\(226\) 2.43374 + 4.21536i 0.161890 + 0.280401i
\(227\) 7.95108 + 13.7717i 0.527732 + 0.914058i 0.999477 + 0.0323233i \(0.0102906\pi\)
−0.471746 + 0.881735i \(0.656376\pi\)
\(228\) 0.338575 + 0.586428i 0.0224227 + 0.0388372i
\(229\) −8.14930 + 14.1150i −0.538521 + 0.932746i 0.460463 + 0.887679i \(0.347683\pi\)
−0.998984 + 0.0450670i \(0.985650\pi\)
\(230\) 11.1396 + 19.2944i 0.734525 + 1.27223i
\(231\) 1.54431 2.67483i 0.101608 0.175991i
\(232\) 4.05616 0.266300
\(233\) −5.12296 −0.335616 −0.167808 0.985820i \(-0.553669\pi\)
−0.167808 + 0.985820i \(0.553669\pi\)
\(234\) −0.0848480 + 0.146961i −0.00554669 + 0.00960715i
\(235\) 10.7142 + 18.5575i 0.698917 + 1.21056i
\(236\) −0.524947 + 0.909235i −0.0341711 + 0.0591861i
\(237\) −3.37109 5.83889i −0.218976 0.379277i
\(238\) −9.11714 15.7914i −0.590977 1.02360i
\(239\) 4.28400 + 7.42010i 0.277109 + 0.479967i 0.970665 0.240436i \(-0.0772904\pi\)
−0.693556 + 0.720403i \(0.743957\pi\)
\(240\) −17.2157 −1.11127
\(241\) −3.42338 + 5.92947i −0.220519 + 0.381951i −0.954966 0.296716i \(-0.904109\pi\)
0.734446 + 0.678667i \(0.237442\pi\)
\(242\) 6.39404 11.0748i 0.411024 0.711915i
\(243\) 4.01935 + 6.96171i 0.257841 + 0.446594i
\(244\) −0.692382 −0.0443252
\(245\) −4.19617 + 7.26798i −0.268084 + 0.464334i
\(246\) −0.617033 −0.0393406
\(247\) 0.193842 0.0123338
\(248\) 0 0
\(249\) 0.484474 0.0307023
\(250\) −21.3836 −1.35242
\(251\) 11.3330 19.6294i 0.715336 1.23900i −0.247494 0.968889i \(-0.579607\pi\)
0.962830 0.270108i \(-0.0870595\pi\)
\(252\) 0.690219 0.0434797
\(253\) −2.19992 3.81037i −0.138308 0.239556i
\(254\) 4.65089 8.05558i 0.291823 0.505452i
\(255\) −18.5490 + 32.1279i −1.16159 + 2.01193i
\(256\) −9.10097 −0.568810
\(257\) 8.32918 + 14.4266i 0.519560 + 0.899904i 0.999742 + 0.0227352i \(0.00723746\pi\)
−0.480181 + 0.877169i \(0.659429\pi\)
\(258\) −9.05291 15.6801i −0.563610 0.976200i
\(259\) −4.23750 7.33956i −0.263305 0.456058i
\(260\) 0.126432 0.218986i 0.00784097 0.0135810i
\(261\) −0.532553 0.922410i −0.0329642 0.0570957i
\(262\) −8.25423 + 14.2968i −0.509948 + 0.883256i
\(263\) 24.5864 1.51606 0.758030 0.652220i \(-0.226162\pi\)
0.758030 + 0.652220i \(0.226162\pi\)
\(264\) 4.28152 0.263509
\(265\) 13.9338 24.1340i 0.855945 1.48254i
\(266\) 1.59817 + 2.76811i 0.0979902 + 0.169724i
\(267\) 10.9173 18.9092i 0.668125 1.15723i
\(268\) 0.109220 + 0.189175i 0.00667169 + 0.0115557i
\(269\) 6.25707 + 10.8376i 0.381501 + 0.660778i 0.991277 0.131795i \(-0.0420741\pi\)
−0.609776 + 0.792573i \(0.708741\pi\)
\(270\) 13.5636 + 23.4929i 0.825455 + 1.42973i
\(271\) 27.1673 1.65030 0.825148 0.564917i \(-0.191092\pi\)
0.825148 + 0.564917i \(0.191092\pi\)
\(272\) 10.0359 17.3826i 0.608513 1.05398i
\(273\) −0.273160 + 0.473127i −0.0165324 + 0.0286349i
\(274\) −0.0850519 0.147314i −0.00513817 0.00889957i
\(275\) 8.97594 0.541270
\(276\) −1.35933 + 2.35443i −0.0818221 + 0.141720i
\(277\) 15.1573 0.910716 0.455358 0.890308i \(-0.349511\pi\)
0.455358 + 0.890308i \(0.349511\pi\)
\(278\) −14.6007 −0.875694
\(279\) 0 0
\(280\) 25.2430 1.50855
\(281\) 30.2477 1.80443 0.902214 0.431289i \(-0.141941\pi\)
0.902214 + 0.431289i \(0.141941\pi\)
\(282\) 5.30036 9.18049i 0.315632 0.546690i
\(283\) 3.14532 0.186970 0.0934850 0.995621i \(-0.470199\pi\)
0.0934850 + 0.995621i \(0.470199\pi\)
\(284\) 0.224965 + 0.389651i 0.0133492 + 0.0231215i
\(285\) 3.25152 5.63179i 0.192603 0.333599i
\(286\) 0.101224 0.175325i 0.00598550 0.0103672i
\(287\) 0.718432 0.0424077
\(288\) 0.877775 + 1.52035i 0.0517234 + 0.0895875i
\(289\) −13.1262 22.7352i −0.772129 1.33737i
\(290\) −3.21713 5.57224i −0.188917 0.327213i
\(291\) 11.5177 19.9492i 0.675178 1.16944i
\(292\) 1.56757 + 2.71511i 0.0917350 + 0.158890i
\(293\) −0.950041 + 1.64552i −0.0555020 + 0.0961322i −0.892441 0.451163i \(-0.851009\pi\)
0.836940 + 0.547295i \(0.184343\pi\)
\(294\) 4.15173 0.242134
\(295\) 10.0827 0.587038
\(296\) 5.87411 10.1743i 0.341426 0.591367i
\(297\) −2.67862 4.63950i −0.155429 0.269211i
\(298\) 3.44584 5.96837i 0.199612 0.345738i
\(299\) 0.389124 + 0.673982i 0.0225036 + 0.0389774i
\(300\) −2.77312 4.80319i −0.160106 0.277312i
\(301\) 10.5406 + 18.2569i 0.607551 + 1.05231i
\(302\) −17.3387 −0.997733
\(303\) 3.61698 6.26479i 0.207790 0.359903i
\(304\) −1.75922 + 3.04705i −0.100898 + 0.174760i
\(305\) 3.32466 + 5.75848i 0.190370 + 0.329730i
\(306\) −6.63742 −0.379436
\(307\) −11.3640 + 19.6831i −0.648580 + 1.12337i 0.334882 + 0.942260i \(0.391304\pi\)
−0.983462 + 0.181114i \(0.942030\pi\)
\(308\) −0.823433 −0.0469194
\(309\) −2.86565 −0.163021
\(310\) 0 0
\(311\) 15.8754 0.900213 0.450106 0.892975i \(-0.351386\pi\)
0.450106 + 0.892975i \(0.351386\pi\)
\(312\) −0.757320 −0.0428748
\(313\) 3.17467 5.49870i 0.179443 0.310805i −0.762247 0.647287i \(-0.775904\pi\)
0.941690 + 0.336482i \(0.109237\pi\)
\(314\) −19.0691 −1.07613
\(315\) −3.31427 5.74049i −0.186738 0.323440i
\(316\) −0.898737 + 1.55666i −0.0505579 + 0.0875689i
\(317\) 7.65050 13.2511i 0.429695 0.744254i −0.567151 0.823614i \(-0.691954\pi\)
0.996846 + 0.0793603i \(0.0252878\pi\)
\(318\) −13.7862 −0.773092
\(319\) 0.635338 + 1.10044i 0.0355721 + 0.0616127i
\(320\) 16.9010 + 29.2735i 0.944797 + 1.63644i
\(321\) 9.29739 + 16.1035i 0.518930 + 0.898812i
\(322\) −6.41644 + 11.1136i −0.357574 + 0.619336i
\(323\) 3.79092 + 6.56607i 0.210932 + 0.365346i
\(324\) −1.18215 + 2.04754i −0.0656750 + 0.113752i
\(325\) −1.58767 −0.0880683
\(326\) 21.5805 1.19523
\(327\) −7.61638 + 13.1920i −0.421187 + 0.729517i
\(328\) 0.497953 + 0.862480i 0.0274948 + 0.0476225i
\(329\) −6.17139 + 10.6892i −0.340240 + 0.589313i
\(330\) −3.39588 5.88183i −0.186937 0.323784i
\(331\) −4.48398 7.76648i −0.246462 0.426884i 0.716080 0.698018i \(-0.245935\pi\)
−0.962542 + 0.271134i \(0.912601\pi\)
\(332\) −0.0645808 0.111857i −0.00354433 0.00613896i
\(333\) −3.08497 −0.169055
\(334\) −10.2584 + 17.7680i −0.561312 + 0.972221i
\(335\) 1.04890 1.81675i 0.0573076 0.0992597i
\(336\) −4.95814 8.58776i −0.270489 0.468501i
\(337\) 4.36877 0.237982 0.118991 0.992895i \(-0.462034\pi\)
0.118991 + 0.992895i \(0.462034\pi\)
\(338\) 8.21501 14.2288i 0.446837 0.773945i
\(339\) 5.70414 0.309806
\(340\) 9.89040 0.536382
\(341\) 0 0
\(342\) 1.16349 0.0629145
\(343\) −20.1569 −1.08837
\(344\) −14.6116 + 25.3081i −0.787806 + 1.36452i
\(345\) 26.1088 1.40565
\(346\) 1.47636 + 2.55713i 0.0793697 + 0.137472i
\(347\) 12.2026 21.1356i 0.655073 1.13462i −0.326803 0.945092i \(-0.605971\pi\)
0.981876 0.189526i \(-0.0606953\pi\)
\(348\) 0.392576 0.679961i 0.0210443 0.0364498i
\(349\) 13.0439 0.698224 0.349112 0.937081i \(-0.386483\pi\)
0.349112 + 0.937081i \(0.386483\pi\)
\(350\) −13.0899 22.6724i −0.699687 1.21189i
\(351\) 0.473797 + 0.820640i 0.0252894 + 0.0438025i
\(352\) −1.04719 1.81378i −0.0558153 0.0966749i
\(353\) 5.41240 9.37456i 0.288073 0.498957i −0.685277 0.728283i \(-0.740319\pi\)
0.973350 + 0.229325i \(0.0736520\pi\)
\(354\) −2.49398 4.31970i −0.132554 0.229589i
\(355\) 2.16046 3.74203i 0.114665 0.198606i
\(356\) −5.82111 −0.308518
\(357\) −21.3685 −1.13094
\(358\) −10.7475 + 18.6152i −0.568024 + 0.983846i
\(359\) −16.8917 29.2573i −0.891510 1.54414i −0.838065 0.545570i \(-0.816313\pi\)
−0.0534446 0.998571i \(-0.517020\pi\)
\(360\) 4.59432 7.95759i 0.242142 0.419402i
\(361\) 8.83548 + 15.3035i 0.465025 + 0.805447i
\(362\) −4.64574 8.04666i −0.244175 0.422923i
\(363\) −7.49309 12.9784i −0.393285 0.681190i
\(364\) 0.145650 0.00763412
\(365\) 15.0542 26.0746i 0.787973 1.36481i
\(366\) 1.64472 2.84875i 0.0859711 0.148906i
\(367\) 11.3157 + 19.5993i 0.590673 + 1.02308i 0.994142 + 0.108082i \(0.0344709\pi\)
−0.403469 + 0.914993i \(0.632196\pi\)
\(368\) −14.1260 −0.736369
\(369\) 0.130757 0.226479i 0.00680696 0.0117900i
\(370\) −18.6362 −0.968847
\(371\) 16.0517 0.833365
\(372\) 0 0
\(373\) −32.9720 −1.70723 −0.853613 0.520908i \(-0.825593\pi\)
−0.853613 + 0.520908i \(0.825593\pi\)
\(374\) 7.91846 0.409454
\(375\) −12.5296 + 21.7019i −0.647026 + 1.12068i
\(376\) −17.1098 −0.882372
\(377\) −0.112379 0.194647i −0.00578783 0.0100248i
\(378\) −7.81265 + 13.5319i −0.401840 + 0.696006i
\(379\) 16.2459 28.1388i 0.834498 1.44539i −0.0599413 0.998202i \(-0.519091\pi\)
0.894439 0.447190i \(-0.147575\pi\)
\(380\) −1.73372 −0.0889379
\(381\) −5.45032 9.44023i −0.279228 0.483638i
\(382\) −4.95416 8.58086i −0.253477 0.439035i
\(383\) −13.3902 23.1925i −0.684208 1.18508i −0.973685 0.227898i \(-0.926815\pi\)
0.289477 0.957185i \(-0.406519\pi\)
\(384\) 5.09074 8.81742i 0.259786 0.449962i
\(385\) 3.95394 + 6.84842i 0.201511 + 0.349028i
\(386\) 2.93314 5.08034i 0.149293 0.258583i
\(387\) 7.67373 0.390078
\(388\) −6.14126 −0.311775
\(389\) −8.86875 + 15.3611i −0.449663 + 0.778840i −0.998364 0.0571790i \(-0.981789\pi\)
0.548700 + 0.836019i \(0.315123\pi\)
\(390\) 0.600667 + 1.04039i 0.0304159 + 0.0526820i
\(391\) −15.2200 + 26.3619i −0.769710 + 1.33318i
\(392\) −3.35050 5.80323i −0.169226 0.293107i
\(393\) 9.67304 + 16.7542i 0.487940 + 0.845137i
\(394\) −14.1760 24.5536i −0.714179 1.23699i
\(395\) 17.2621 0.868552
\(396\) −0.149868 + 0.259579i −0.00753115 + 0.0130443i
\(397\) −4.97476 + 8.61654i −0.249676 + 0.432452i −0.963436 0.267939i \(-0.913658\pi\)
0.713760 + 0.700391i \(0.246991\pi\)
\(398\) −16.8482 29.1819i −0.844523 1.46276i
\(399\) 3.74576 0.187522
\(400\) 14.4090 24.9571i 0.720449 1.24786i
\(401\) −19.8956 −0.993538 −0.496769 0.867883i \(-0.665480\pi\)
−0.496769 + 0.867883i \(0.665480\pi\)
\(402\) −1.03779 −0.0517604
\(403\) 0 0
\(404\) −1.92858 −0.0959506
\(405\) 22.7057 1.12825
\(406\) 1.85307 3.20962i 0.0919665 0.159291i
\(407\) 3.68037 0.182429
\(408\) −14.8108 25.6530i −0.733242 1.27001i
\(409\) −12.1628 + 21.0665i −0.601410 + 1.04167i 0.391198 + 0.920306i \(0.372061\pi\)
−0.992608 + 0.121365i \(0.961273\pi\)
\(410\) 0.789900 1.36815i 0.0390104 0.0675680i
\(411\) −0.199342 −0.00983284
\(412\) 0.381993 + 0.661631i 0.0188194 + 0.0325962i
\(413\) 2.90383 + 5.02957i 0.142888 + 0.247489i
\(414\) 2.33563 + 4.04544i 0.114790 + 0.198822i
\(415\) −0.620205 + 1.07423i −0.0304446 + 0.0527317i
\(416\) 0.185228 + 0.320824i 0.00908154 + 0.0157297i
\(417\) −8.55521 + 14.8181i −0.418951 + 0.725644i
\(418\) −1.38805 −0.0678918
\(419\) −4.40675 −0.215284 −0.107642 0.994190i \(-0.534330\pi\)
−0.107642 + 0.994190i \(0.534330\pi\)
\(420\) 2.44314 4.23165i 0.119213 0.206483i
\(421\) 6.21184 + 10.7592i 0.302746 + 0.524372i 0.976757 0.214349i \(-0.0687631\pi\)
−0.674011 + 0.738722i \(0.735430\pi\)
\(422\) −0.839844 + 1.45465i −0.0408830 + 0.0708114i
\(423\) 2.24643 + 3.89094i 0.109225 + 0.189184i
\(424\) 11.1256 + 19.2702i 0.540308 + 0.935841i
\(425\) −31.0498 53.7799i −1.50614 2.60871i
\(426\) −2.13758 −0.103566
\(427\) −1.91501 + 3.31689i −0.0926738 + 0.160516i
\(428\) 2.47870 4.29323i 0.119812 0.207521i
\(429\) −0.118623 0.205461i −0.00572718 0.00991976i
\(430\) 46.3567 2.23552
\(431\) 9.28265 16.0780i 0.447130 0.774451i −0.551068 0.834460i \(-0.685780\pi\)
0.998198 + 0.0600091i \(0.0191130\pi\)
\(432\) −17.1998 −0.827527
\(433\) 36.1204 1.73584 0.867918 0.496708i \(-0.165458\pi\)
0.867918 + 0.496708i \(0.165458\pi\)
\(434\) 0 0
\(435\) −7.54024 −0.361527
\(436\) 4.06108 0.194490
\(437\) 2.66796 4.62105i 0.127626 0.221055i
\(438\) −14.8948 −0.711699
\(439\) 9.50469 + 16.4626i 0.453634 + 0.785718i 0.998609 0.0527352i \(-0.0167939\pi\)
−0.544974 + 0.838453i \(0.683461\pi\)
\(440\) −5.48103 + 9.49342i −0.261298 + 0.452581i
\(441\) −0.879807 + 1.52387i −0.0418956 + 0.0725652i
\(442\) −1.40063 −0.0666210
\(443\) −6.22702 10.7855i −0.295854 0.512435i 0.679329 0.733834i \(-0.262271\pi\)
−0.975183 + 0.221399i \(0.928938\pi\)
\(444\) −1.13705 1.96943i −0.0539621 0.0934652i
\(445\) 27.9517 + 48.4137i 1.32504 + 2.29503i
\(446\) −7.67557 + 13.2945i −0.363449 + 0.629512i
\(447\) −4.03814 6.99426i −0.190997 0.330817i
\(448\) −9.73502 + 16.8616i −0.459937 + 0.796634i
\(449\) −25.4366 −1.20043 −0.600214 0.799840i \(-0.704918\pi\)
−0.600214 + 0.799840i \(0.704918\pi\)
\(450\) −9.52968 −0.449234
\(451\) −0.155994 + 0.270190i −0.00734547 + 0.0127227i
\(452\) −0.760366 1.31699i −0.0357646 0.0619461i
\(453\) −10.1595 + 17.5968i −0.477336 + 0.826771i
\(454\) 10.0708 + 17.4432i 0.472648 + 0.818651i
\(455\) −0.699377 1.21136i −0.0327873 0.0567893i
\(456\) 2.59622 + 4.49679i 0.121579 + 0.210581i
\(457\) −31.9740 −1.49568 −0.747839 0.663880i \(-0.768909\pi\)
−0.747839 + 0.663880i \(0.768909\pi\)
\(458\) −10.3219 + 17.8781i −0.482312 + 0.835388i
\(459\) −18.5319 + 32.0982i −0.864995 + 1.49822i
\(460\) −3.48032 6.02809i −0.162271 0.281061i
\(461\) −19.3501 −0.901223 −0.450612 0.892720i \(-0.648794\pi\)
−0.450612 + 0.892720i \(0.648794\pi\)
\(462\) 1.95603 3.38794i 0.0910028 0.157621i
\(463\) −0.0414625 −0.00192693 −0.000963463 1.00000i \(-0.500307\pi\)
−0.000963463 1.00000i \(0.500307\pi\)
\(464\) 4.07961 0.189391
\(465\) 0 0
\(466\) −6.48875 −0.300586
\(467\) 25.3083 1.17113 0.585564 0.810626i \(-0.300873\pi\)
0.585564 + 0.810626i \(0.300873\pi\)
\(468\) 0.0265088 0.0459146i 0.00122537 0.00212240i
\(469\) 1.20834 0.0557958
\(470\) 13.5706 + 23.5050i 0.625966 + 1.08420i
\(471\) −11.1734 + 19.3530i −0.514845 + 0.891737i
\(472\) −4.02534 + 6.97210i −0.185281 + 0.320917i
\(473\) −9.15478 −0.420937
\(474\) −4.26982 7.39555i −0.196120 0.339689i
\(475\) 5.44282 + 9.42724i 0.249734 + 0.432551i
\(476\) 2.84844 + 4.93365i 0.130558 + 0.226133i
\(477\) 2.92148 5.06015i 0.133765 0.231688i
\(478\) 5.42612 + 9.39831i 0.248185 + 0.429869i
\(479\) 10.6206 18.3954i 0.485266 0.840506i −0.514590 0.857436i \(-0.672056\pi\)
0.999857 + 0.0169301i \(0.00538928\pi\)
\(480\) 12.4281 0.567263
\(481\) −0.650988 −0.0296825
\(482\) −4.33606 + 7.51028i −0.197502 + 0.342084i
\(483\) 7.51935 + 13.0239i 0.342142 + 0.592607i
\(484\) −1.99767 + 3.46007i −0.0908032 + 0.157276i
\(485\) 29.4889 + 51.0763i 1.33902 + 2.31926i
\(486\) 5.09091 + 8.81772i 0.230928 + 0.399980i
\(487\) 13.3810 + 23.1765i 0.606350 + 1.05023i 0.991837 + 0.127516i \(0.0407004\pi\)
−0.385486 + 0.922714i \(0.625966\pi\)
\(488\) −5.30925 −0.240338
\(489\) 12.6450 21.9017i 0.571824 0.990429i
\(490\) −5.31488 + 9.20564i −0.240102 + 0.415868i
\(491\) −6.28320 10.8828i −0.283557 0.491135i 0.688701 0.725045i \(-0.258181\pi\)
−0.972258 + 0.233910i \(0.924848\pi\)
\(492\) 0.192778 0.00869109
\(493\) 4.39556 7.61333i 0.197966 0.342887i
\(494\) 0.245520 0.0110465
\(495\) 2.87853 0.129380
\(496\) 0 0
\(497\) 2.48886 0.111640
\(498\) 0.613636 0.0274977
\(499\) −11.5152 + 19.9449i −0.515490 + 0.892856i 0.484348 + 0.874875i \(0.339057\pi\)
−0.999838 + 0.0179802i \(0.994276\pi\)
\(500\) 6.68083 0.298776
\(501\) 12.0216 + 20.8221i 0.537087 + 0.930263i
\(502\) 14.3545 24.8626i 0.640671 1.10967i
\(503\) −0.330789 + 0.572944i −0.0147492 + 0.0255463i −0.873306 0.487172i \(-0.838028\pi\)
0.858557 + 0.512719i \(0.171362\pi\)
\(504\) 5.29266 0.235754
\(505\) 9.26062 + 16.0399i 0.412092 + 0.713764i
\(506\) −2.78642 4.82622i −0.123871 0.214551i
\(507\) −9.62706 16.6746i −0.427553 0.740543i
\(508\) −1.45306 + 2.51678i −0.0644693 + 0.111664i
\(509\) −5.83370 10.1043i −0.258574 0.447864i 0.707286 0.706928i \(-0.249919\pi\)
−0.965860 + 0.259064i \(0.916586\pi\)
\(510\) −23.4942 + 40.6932i −1.04034 + 1.80193i
\(511\) 17.3425 0.767186
\(512\) −25.2461 −1.11573
\(513\) 3.24851 5.62659i 0.143425 0.248420i
\(514\) 10.5498 + 18.2727i 0.465330 + 0.805975i
\(515\) 3.66849 6.35400i 0.161653 0.279991i
\(516\) 2.82837 + 4.89889i 0.124512 + 0.215661i
\(517\) −2.68000 4.64190i −0.117866 0.204151i
\(518\) −5.36722 9.29630i −0.235822 0.408456i
\(519\) 3.46026 0.151889
\(520\) 0.969491 1.67921i 0.0425150 0.0736381i
\(521\) 15.9592 27.6422i 0.699186 1.21103i −0.269563 0.962983i \(-0.586879\pi\)
0.968749 0.248043i \(-0.0797874\pi\)
\(522\) −0.674533 1.16833i −0.0295235 0.0511362i
\(523\) 0.00415040 0.000181484 9.07421e−5 1.00000i \(-0.499971\pi\)
9.07421e−5 1.00000i \(0.499971\pi\)
\(524\) 2.57885 4.46669i 0.112657 0.195128i
\(525\) −30.6799 −1.33898
\(526\) 31.1411 1.35782
\(527\) 0 0
\(528\) 4.30627 0.187406
\(529\) −1.57699 −0.0685646
\(530\) 17.6485 30.5682i 0.766603 1.32780i
\(531\) 2.11403 0.0917411
\(532\) −0.499312 0.864834i −0.0216479 0.0374953i
\(533\) 0.0275924 0.0477914i 0.00119516 0.00207008i
\(534\) 13.8278 23.9505i 0.598388 1.03644i
\(535\) −47.6086 −2.05830
\(536\) 0.837511 + 1.45061i 0.0361750 + 0.0626569i
\(537\) 12.5949 + 21.8150i 0.543509 + 0.941385i
\(538\) 7.92522 + 13.7269i 0.341680 + 0.591808i
\(539\) 1.04961 1.81798i 0.0452100 0.0783060i
\(540\) −4.23764 7.33980i −0.182359 0.315855i
\(541\) −14.6375 + 25.3529i −0.629316 + 1.09001i 0.358373 + 0.933578i \(0.383332\pi\)
−0.987689 + 0.156429i \(0.950002\pi\)
\(542\) 34.4101 1.47804
\(543\) −10.8886 −0.467274
\(544\) −7.24492 + 12.5486i −0.310624 + 0.538016i
\(545\) −19.5004 33.7756i −0.835304 1.44679i
\(546\) −0.345985 + 0.599263i −0.0148068 + 0.0256461i
\(547\) −20.5826 35.6502i −0.880050 1.52429i −0.851284 0.524706i \(-0.824175\pi\)
−0.0287668 0.999586i \(-0.509158\pi\)
\(548\) 0.0265725 + 0.0460249i 0.00113512 + 0.00196609i
\(549\) 0.697078 + 1.20737i 0.0297506 + 0.0515295i
\(550\) 11.3689 0.484773
\(551\) −0.770510 + 1.33456i −0.0328248 + 0.0568543i
\(552\) −10.4235 + 18.0540i −0.443653 + 0.768429i
\(553\) 4.97150 + 8.61089i 0.211410 + 0.366172i
\(554\) 19.1983 0.815658
\(555\) −10.9197 + 18.9135i −0.463517 + 0.802835i
\(556\) 4.56167 0.193458
\(557\) 5.73810 0.243131 0.121566 0.992583i \(-0.461209\pi\)
0.121566 + 0.992583i \(0.461209\pi\)
\(558\) 0 0
\(559\) 1.61931 0.0684894
\(560\) 25.3889 1.07288
\(561\) 4.63978 8.03633i 0.195891 0.339294i
\(562\) 38.3118 1.61609
\(563\) 7.14710 + 12.3791i 0.301214 + 0.521718i 0.976411 0.215919i \(-0.0692748\pi\)
−0.675197 + 0.737637i \(0.735941\pi\)
\(564\) −1.65598 + 2.86823i −0.0697292 + 0.120774i
\(565\) −7.30221 + 12.6478i −0.307206 + 0.532097i
\(566\) 3.98387 0.167455
\(567\) 6.53924 + 11.3263i 0.274622 + 0.475660i
\(568\) 1.72505 + 2.98788i 0.0723816 + 0.125369i
\(569\) 7.18090 + 12.4377i 0.301039 + 0.521414i 0.976372 0.216099i \(-0.0693333\pi\)
−0.675333 + 0.737513i \(0.736000\pi\)
\(570\) 4.11838 7.13324i 0.172500 0.298778i
\(571\) 16.6895 + 28.9071i 0.698434 + 1.20972i 0.969009 + 0.247024i \(0.0794528\pi\)
−0.270575 + 0.962699i \(0.587214\pi\)
\(572\) −0.0316251 + 0.0547763i −0.00132231 + 0.00229031i
\(573\) −11.6114 −0.485075
\(574\) 0.909967 0.0379813
\(575\) −21.8522 + 37.8491i −0.911298 + 1.57841i
\(576\) 3.54362 + 6.13774i 0.147651 + 0.255739i
\(577\) 11.2398 19.4679i 0.467919 0.810460i −0.531409 0.847116i \(-0.678337\pi\)
0.999328 + 0.0366557i \(0.0116705\pi\)
\(578\) −16.6257 28.7965i −0.691536 1.19778i
\(579\) −3.43731 5.95359i −0.142850 0.247423i
\(580\) 1.00512 + 1.74092i 0.0417353 + 0.0722877i
\(581\) −0.714477 −0.0296415
\(582\) 14.5883 25.2677i 0.604705 1.04738i
\(583\) −3.48533 + 6.03677i −0.144348 + 0.250018i
\(584\) 12.0203 + 20.8197i 0.497402 + 0.861525i
\(585\) −0.509157 −0.0210511
\(586\) −1.20332 + 2.08422i −0.0497088 + 0.0860982i
\(587\) 6.41617 0.264824 0.132412 0.991195i \(-0.457728\pi\)
0.132412 + 0.991195i \(0.457728\pi\)
\(588\) −1.29711 −0.0534920
\(589\) 0 0
\(590\) 12.7708 0.525764
\(591\) −33.2255 −1.36671
\(592\) 5.90807 10.2331i 0.242820 0.420577i
\(593\) −20.8601 −0.856623 −0.428312 0.903631i \(-0.640891\pi\)
−0.428312 + 0.903631i \(0.640891\pi\)
\(594\) −3.39274 5.87640i −0.139206 0.241112i
\(595\) 27.3551 47.3805i 1.12145 1.94241i
\(596\) −1.07657 + 1.86468i −0.0440982 + 0.0763803i
\(597\) −39.4884 −1.61615
\(598\) 0.492865 + 0.853666i 0.0201547 + 0.0349090i
\(599\) 5.77919 + 10.0099i 0.236131 + 0.408992i 0.959601 0.281365i \(-0.0907871\pi\)
−0.723469 + 0.690356i \(0.757454\pi\)
\(600\) −21.2646 36.8313i −0.868122 1.50363i
\(601\) 2.15871 3.73899i 0.0880555 0.152517i −0.818634 0.574316i \(-0.805268\pi\)
0.906689 + 0.421799i \(0.138601\pi\)
\(602\) 13.3508 + 23.1242i 0.544136 + 0.942471i
\(603\) 0.219922 0.380916i 0.00895592 0.0155121i
\(604\) 5.41709 0.220418
\(605\) 38.3694 1.55994
\(606\) 4.58127 7.93499i 0.186101 0.322337i
\(607\) −22.4546 38.8925i −0.911405 1.57860i −0.812081 0.583545i \(-0.801665\pi\)
−0.0993241 0.995055i \(-0.531668\pi\)
\(608\) 1.26998 2.19968i 0.0515047 0.0892087i
\(609\) −2.17159 3.76131i −0.0879974 0.152416i
\(610\) 4.21102 + 7.29370i 0.170499 + 0.295313i
\(611\) 0.474042 + 0.821065i 0.0191777 + 0.0332167i
\(612\) 2.07371 0.0838248
\(613\) −1.30258 + 2.25614i −0.0526108 + 0.0911245i −0.891131 0.453745i \(-0.850088\pi\)
0.838521 + 0.544870i \(0.183421\pi\)
\(614\) −14.3937 + 24.9306i −0.580883 + 1.00612i
\(615\) −0.925674 1.60332i −0.0373268 0.0646519i
\(616\) −6.31416 −0.254405
\(617\) 12.4934 21.6392i 0.502965 0.871161i −0.497029 0.867734i \(-0.665576\pi\)
0.999994 0.00342740i \(-0.00109098\pi\)
\(618\) −3.62963 −0.146005
\(619\) −31.9083 −1.28250 −0.641252 0.767330i \(-0.721585\pi\)
−0.641252 + 0.767330i \(0.721585\pi\)
\(620\) 0 0
\(621\) 26.0847 1.04674
\(622\) 20.1078 0.806251
\(623\) −16.1002 + 27.8863i −0.645040 + 1.11724i
\(624\) −0.761698 −0.0304923
\(625\) −8.47372 14.6769i −0.338949 0.587077i
\(626\) 4.02105 6.96466i 0.160713 0.278364i
\(627\) −0.813320 + 1.40871i −0.0324809 + 0.0562585i
\(628\) 5.95771 0.237739
\(629\) −12.7312 22.0512i −0.507628 0.879238i
\(630\) −4.19786 7.27091i −0.167247 0.289680i
\(631\) −0.179876 0.311554i −0.00716073 0.0124028i 0.862423 0.506189i \(-0.168946\pi\)
−0.869584 + 0.493786i \(0.835613\pi\)
\(632\) −6.89160 + 11.9366i −0.274133 + 0.474813i
\(633\) 0.984204 + 1.70469i 0.0391186 + 0.0677554i
\(634\) 9.69014 16.7838i 0.384844 0.666570i
\(635\) 27.9091 1.10754
\(636\) 4.30718 0.170791
\(637\) −0.185657 + 0.321567i −0.00735598 + 0.0127409i
\(638\) 0.804720 + 1.39382i 0.0318592 + 0.0551817i
\(639\) 0.452982 0.784587i 0.0179197 0.0310378i
\(640\) 13.0339 + 22.5754i 0.515211 + 0.892372i
\(641\) −15.4035 26.6796i −0.608400 1.05378i −0.991504 0.130075i \(-0.958478\pi\)
0.383104 0.923705i \(-0.374855\pi\)
\(642\) 11.7761 + 20.3968i 0.464765 + 0.804997i
\(643\) 1.75184 0.0690856 0.0345428 0.999403i \(-0.489002\pi\)
0.0345428 + 0.999403i \(0.489002\pi\)
\(644\) 2.00467 3.47219i 0.0789950 0.136823i
\(645\) 27.1624 47.0467i 1.06952 1.85246i
\(646\) 4.80159 + 8.31659i 0.188916 + 0.327212i
\(647\) 24.6504 0.969106 0.484553 0.874762i \(-0.338982\pi\)
0.484553 + 0.874762i \(0.338982\pi\)
\(648\) −9.06483 + 15.7008i −0.356100 + 0.616784i
\(649\) −2.52204 −0.0989989
\(650\) −2.01095 −0.0788760
\(651\) 0 0
\(652\) −6.74233 −0.264050
\(653\) −0.285664 −0.0111789 −0.00558946 0.999984i \(-0.501779\pi\)
−0.00558946 + 0.999984i \(0.501779\pi\)
\(654\) −9.64692 + 16.7090i −0.377224 + 0.653372i
\(655\) −49.5321 −1.93538
\(656\) 0.500831 + 0.867465i 0.0195542 + 0.0338688i
\(657\) 3.15640 5.46704i 0.123143 0.213290i
\(658\) −7.81669 + 13.5389i −0.304726 + 0.527802i
\(659\) 37.4247 1.45786 0.728929 0.684589i \(-0.240018\pi\)
0.728929 + 0.684589i \(0.240018\pi\)
\(660\) 1.06096 + 1.83764i 0.0412980 + 0.0715302i
\(661\) −2.09579 3.63001i −0.0815167 0.141191i 0.822385 0.568931i \(-0.192643\pi\)
−0.903902 + 0.427740i \(0.859310\pi\)
\(662\) −5.67941 9.83703i −0.220737 0.382327i
\(663\) −0.820689 + 1.42147i −0.0318729 + 0.0552055i
\(664\) −0.495212 0.857732i −0.0192179 0.0332864i
\(665\) −4.79517 + 8.30547i −0.185949 + 0.322072i
\(666\) −3.90742 −0.151410
\(667\) −6.18699 −0.239561
\(668\) 3.20499 5.55120i 0.124005 0.214782i
\(669\) 8.99491 + 15.5796i 0.347763 + 0.602344i
\(670\) 1.32854 2.30110i 0.0513260 0.0888992i
\(671\) −0.831616 1.44040i −0.0321042 0.0556061i
\(672\) 3.57930 + 6.19954i 0.138075 + 0.239152i
\(673\) 4.98633 + 8.63658i 0.192209 + 0.332916i 0.945982 0.324219i \(-0.105101\pi\)
−0.753773 + 0.657135i \(0.771768\pi\)
\(674\) 5.53349 0.213142
\(675\) −26.6072 + 46.0850i −1.02411 + 1.77381i
\(676\) −2.56659 + 4.44546i −0.0987150 + 0.170979i
\(677\) −23.8788 41.3594i −0.917738 1.58957i −0.802842 0.596192i \(-0.796680\pi\)
−0.114896 0.993377i \(-0.536654\pi\)
\(678\) 7.22487 0.277469
\(679\) −16.9857 + 29.4200i −0.651850 + 1.12904i
\(680\) 75.8406 2.90835
\(681\) 23.6038 0.904500
\(682\) 0 0
\(683\) 27.7600 1.06221 0.531104 0.847307i \(-0.321777\pi\)
0.531104 + 0.847307i \(0.321777\pi\)
\(684\) −0.363507 −0.0138990
\(685\) 0.255190 0.442002i 0.00975032 0.0168880i
\(686\) −25.5308 −0.974770
\(687\) 12.0961 + 20.9511i 0.461496 + 0.799335i
\(688\) −14.6961 + 25.4544i −0.560283 + 0.970438i
\(689\) 0.616490 1.06779i 0.0234864 0.0406796i
\(690\) 33.0694 1.25893
\(691\) −19.0155 32.9358i −0.723383 1.25294i −0.959636 0.281244i \(-0.909253\pi\)
0.236253 0.971692i \(-0.424081\pi\)
\(692\) −0.461255 0.798918i −0.0175343 0.0303703i
\(693\) 0.829018 + 1.43590i 0.0314918 + 0.0545454i
\(694\) 15.4559 26.7704i 0.586698 1.01619i
\(695\) −21.9041 37.9390i −0.830869 1.43911i
\(696\) 3.01031 5.21401i 0.114105 0.197636i
\(697\) 2.15848 0.0817581
\(698\) 16.5214 0.625346
\(699\) −3.80205 + 6.58534i −0.143807 + 0.249080i
\(700\) 4.08965 + 7.08349i 0.154574 + 0.267731i
\(701\) −20.5281 + 35.5558i −0.775336 + 1.34292i 0.159269 + 0.987235i \(0.449086\pi\)
−0.934605 + 0.355687i \(0.884247\pi\)
\(702\) 0.600112 + 1.03942i 0.0226498 + 0.0392305i
\(703\) 2.23170 + 3.86542i 0.0841701 + 0.145787i
\(704\) −4.22755 7.32234i −0.159332 0.275971i
\(705\) 31.8065 1.19790
\(706\) 6.85536 11.8738i 0.258005 0.446878i
\(707\) −5.33413 + 9.23898i −0.200611 + 0.347468i
\(708\) 0.779187 + 1.34959i 0.0292836 + 0.0507207i
\(709\) −42.0657 −1.57981 −0.789906 0.613229i \(-0.789870\pi\)
−0.789906 + 0.613229i \(0.789870\pi\)
\(710\) 2.73644 4.73966i 0.102697 0.177876i
\(711\) 3.61933 0.135736
\(712\) −44.6368 −1.67284
\(713\) 0 0
\(714\) −27.0654 −1.01290
\(715\) 0.607426 0.0227164
\(716\) 3.35781 5.81590i 0.125487 0.217350i
\(717\) 12.7176 0.474948
\(718\) −21.3951 37.0573i −0.798456 1.38297i
\(719\) −16.6345 + 28.8118i −0.620362 + 1.07450i 0.369056 + 0.929407i \(0.379681\pi\)
−0.989418 + 0.145092i \(0.953652\pi\)
\(720\) 4.62087 8.00359i 0.172210 0.298276i
\(721\) 4.22611 0.157388
\(722\) 11.1910 + 19.3834i 0.416487 + 0.721377i
\(723\) 5.08138 + 8.80120i 0.188978 + 0.327320i
\(724\) 1.45146 + 2.51400i 0.0539429 + 0.0934319i
\(725\) 6.31092 10.9308i 0.234382 0.405961i
\(726\) −9.49077 16.4385i −0.352235 0.610089i
\(727\) 16.3614 28.3389i 0.606813 1.05103i −0.384950 0.922938i \(-0.625781\pi\)
0.991762 0.128093i \(-0.0408855\pi\)
\(728\) 1.11686 0.0413934
\(729\) 29.8560 1.10578
\(730\) 19.0677 33.0262i 0.705726 1.22235i
\(731\) 31.6685 + 54.8514i 1.17130 + 2.02875i
\(732\) −0.513856 + 0.890025i −0.0189927 + 0.0328963i
\(733\) 4.98195 + 8.62900i 0.184013 + 0.318719i 0.943243 0.332102i \(-0.107758\pi\)
−0.759231 + 0.650822i \(0.774425\pi\)
\(734\) 14.3324 + 24.8245i 0.529020 + 0.916289i
\(735\) 6.22844 + 10.7880i 0.229739 + 0.397920i
\(736\) 10.1976 0.375889
\(737\) −0.262368 + 0.454434i −0.00966443 + 0.0167393i
\(738\) 0.165618 0.286858i 0.00609647 0.0105594i
\(739\) 15.4792 + 26.8108i 0.569412 + 0.986251i 0.996624 + 0.0820995i \(0.0261625\pi\)
−0.427212 + 0.904152i \(0.640504\pi\)
\(740\) 5.82244 0.214037
\(741\) 0.143861 0.249175i 0.00528487 0.00915366i
\(742\) 20.3312 0.746380
\(743\) −1.11003 −0.0407231 −0.0203615 0.999793i \(-0.506482\pi\)
−0.0203615 + 0.999793i \(0.506482\pi\)
\(744\) 0 0
\(745\) 20.6778 0.757578
\(746\) −41.7624 −1.52903
\(747\) −0.130038 + 0.225232i −0.00475783 + 0.00824080i
\(748\) −2.47394 −0.0904563
\(749\) −13.7113 23.7487i −0.501000 0.867757i
\(750\) −15.8700 + 27.4877i −0.579491 + 1.00371i
\(751\) −14.0777 + 24.3832i −0.513701 + 0.889756i 0.486173 + 0.873863i \(0.338393\pi\)
−0.999874 + 0.0158933i \(0.994941\pi\)
\(752\) −17.2087 −0.627538
\(753\) −16.8218 29.1362i −0.613021 1.06178i
\(754\) −0.142340 0.246540i −0.00518371 0.00897844i
\(755\) −26.0116 45.0535i −0.946661 1.63966i
\(756\) 2.44088 4.22774i 0.0887741 0.153761i
\(757\) 19.3612 + 33.5345i 0.703693 + 1.21883i 0.967161 + 0.254164i \(0.0818004\pi\)
−0.263468 + 0.964668i \(0.584866\pi\)
\(758\) 20.5771 35.6406i 0.747395 1.29453i
\(759\) −6.53074 −0.237051
\(760\) −13.2943 −0.482236
\(761\) 21.7184 37.6174i 0.787293 1.36363i −0.140327 0.990105i \(-0.544815\pi\)
0.927620 0.373526i \(-0.121851\pi\)
\(762\) −6.90338 11.9570i −0.250083 0.433157i
\(763\) 11.2322 19.4548i 0.406634 0.704311i
\(764\) 1.54781 + 2.68089i 0.0559979 + 0.0969913i
\(765\) −9.95749 17.2469i −0.360014 0.623562i
\(766\) −16.9601 29.3757i −0.612792 1.06139i
\(767\) 0.446102 0.0161078
\(768\) −6.75435 + 11.6989i −0.243727 + 0.422147i
\(769\) 1.55509 2.69350i 0.0560781 0.0971302i −0.836624 0.547778i \(-0.815474\pi\)
0.892702 + 0.450648i \(0.148807\pi\)
\(770\) 5.00806 + 8.67422i 0.180478 + 0.312597i
\(771\) 24.7263 0.890494
\(772\) −0.916391 + 1.58724i −0.0329816 + 0.0571259i
\(773\) −21.6402 −0.778343 −0.389172 0.921165i \(-0.627239\pi\)
−0.389172 + 0.921165i \(0.627239\pi\)
\(774\) 9.71956 0.349362
\(775\) 0 0
\(776\) −47.0918 −1.69050
\(777\) −12.5796 −0.451289
\(778\) −11.2332 + 19.4564i −0.402729 + 0.697547i
\(779\) −0.378366 −0.0135564
\(780\) −0.187665 0.325045i −0.00671947 0.0116385i
\(781\) −0.540408 + 0.936015i −0.0193373 + 0.0334932i
\(782\) −19.2777 + 33.3900i −0.689369 + 1.19402i
\(783\) −7.53327 −0.269217
\(784\) −3.36986 5.83678i −0.120352 0.208456i
\(785\) −28.6076 49.5498i −1.02105 1.76851i
\(786\) 12.2519 + 21.2209i 0.437010 + 0.756924i
\(787\) −3.93827 + 6.82128i −0.140384 + 0.243152i −0.927641 0.373472i \(-0.878167\pi\)
0.787257 + 0.616625i \(0.211500\pi\)
\(788\) 4.42898 + 7.67122i 0.157776 + 0.273276i
\(789\) 18.2470 31.6046i 0.649609 1.12516i
\(790\) 21.8642 0.777894
\(791\) −8.41216 −0.299102
\(792\) −1.14920 + 1.99048i −0.0408351 + 0.0707285i
\(793\) 0.147097 + 0.254780i 0.00522357 + 0.00904750i
\(794\) −6.30104 + 10.9137i −0.223616 + 0.387314i
\(795\) −20.6821 35.8225i −0.733519 1.27049i
\(796\) 5.26383 + 9.11722i 0.186571 + 0.323151i
\(797\) 14.7591 + 25.5635i 0.522793 + 0.905505i 0.999648 + 0.0265226i \(0.00844339\pi\)
−0.476855 + 0.878982i \(0.658223\pi\)
\(798\) 4.74438 0.167949
\(799\) −18.5415 + 32.1148i −0.655950 + 1.13614i
\(800\) −10.4019 + 18.0166i −0.367763 + 0.636984i
\(801\) 5.86059 + 10.1508i 0.207074 + 0.358663i
\(802\) −25.1998 −0.889835
\(803\) −3.76559 + 6.52220i −0.132885 + 0.230163i
\(804\) 0.324234 0.0114349
\(805\) −38.5039 −1.35708
\(806\) 0 0
\(807\) 18.5749 0.653869
\(808\) −14.7886 −0.520260
\(809\) −1.06376 + 1.84249i −0.0373999 + 0.0647786i −0.884119 0.467261i \(-0.845241\pi\)
0.846720 + 0.532039i \(0.178574\pi\)
\(810\) 28.7590 1.01049
\(811\) −3.60252 6.23975i −0.126502 0.219107i 0.795817 0.605537i \(-0.207042\pi\)
−0.922319 + 0.386430i \(0.873708\pi\)
\(812\) −0.578950 + 1.00277i −0.0203172 + 0.0351904i
\(813\) 20.1624 34.9223i 0.707127 1.22478i
\(814\) 4.66157 0.163388
\(815\) 32.3751 + 56.0753i 1.13405 + 1.96423i
\(816\) −14.8964 25.8013i −0.521477 0.903225i
\(817\) −5.55126 9.61507i −0.194214 0.336389i
\(818\) −15.4054 + 26.6829i −0.538636 + 0.932945i
\(819\) −0.146638 0.253984i −0.00512393 0.00887491i
\(820\) −0.246786 + 0.427446i −0.00861815 + 0.0149271i
\(821\) −42.0597 −1.46789 −0.733947 0.679206i \(-0.762324\pi\)
−0.733947 + 0.679206i \(0.762324\pi\)
\(822\) −0.252487 −0.00880651
\(823\) −15.0865 + 26.1306i −0.525882 + 0.910854i 0.473664 + 0.880706i \(0.342931\pi\)
−0.999545 + 0.0301481i \(0.990402\pi\)
\(824\) 2.92916 + 5.07345i 0.102042 + 0.176742i
\(825\) 6.66156 11.5382i 0.231926 0.401707i
\(826\) 3.67799 + 6.37046i 0.127974 + 0.221657i
\(827\) −1.93523 3.35191i −0.0672945 0.116557i 0.830415 0.557145i \(-0.188103\pi\)
−0.897710 + 0.440588i \(0.854770\pi\)
\(828\) −0.729715 1.26390i −0.0253594 0.0439237i
\(829\) −13.1716 −0.457469 −0.228735 0.973489i \(-0.573459\pi\)
−0.228735 + 0.973489i \(0.573459\pi\)
\(830\) −0.785552 + 1.36062i −0.0272669 + 0.0472277i
\(831\) 11.2491 19.4841i 0.390228 0.675895i
\(832\) 0.747774 + 1.29518i 0.0259244 + 0.0449024i
\(833\) −14.5234 −0.503206
\(834\) −10.8360 + 18.7686i −0.375222 + 0.649903i
\(835\) −61.5585 −2.13032
\(836\) 0.433665 0.0149986
\(837\) 0 0
\(838\) −5.58159 −0.192813
\(839\) −34.2490 −1.18241 −0.591204 0.806522i \(-0.701347\pi\)
−0.591204 + 0.806522i \(0.701347\pi\)
\(840\) 18.7342 32.4487i 0.646393 1.11959i
\(841\) −27.2132 −0.938386
\(842\) 7.86792 + 13.6276i 0.271147 + 0.469640i
\(843\) 22.4486 38.8821i 0.773170 1.33917i
\(844\) 0.262390 0.454473i 0.00903184 0.0156436i
\(845\) 49.2967 1.69586
\(846\) 2.84534 + 4.92827i 0.0978247 + 0.169437i
\(847\) 11.0504 + 19.1399i 0.379697 + 0.657654i
\(848\) 11.1899 + 19.3815i 0.384264 + 0.665565i
\(849\) 2.33432 4.04317i 0.0801138 0.138761i
\(850\) −39.3278 68.1177i −1.34893 2.33642i
\(851\) −8.95996 + 15.5191i −0.307144 + 0.531988i
\(852\) 0.667838 0.0228797
\(853\) −14.4479 −0.494686 −0.247343 0.968928i \(-0.579557\pi\)
−0.247343 + 0.968928i \(0.579557\pi\)
\(854\) −2.42555 + 4.20118i −0.0830007 + 0.143761i
\(855\) 1.74548 + 3.02326i 0.0596941 + 0.103393i
\(856\) 19.0069 32.9209i 0.649642 1.12521i
\(857\) −13.9165 24.1041i −0.475379 0.823381i 0.524223 0.851581i \(-0.324356\pi\)
−0.999602 + 0.0281998i \(0.991023\pi\)
\(858\) −0.150248 0.260237i −0.00512939 0.00888436i
\(859\) −23.6601 40.9805i −0.807272 1.39824i −0.914747 0.404028i \(-0.867610\pi\)
0.107475 0.994208i \(-0.465723\pi\)
\(860\) −14.4831 −0.493869
\(861\) 0.533190 0.923512i 0.0181711 0.0314732i
\(862\) 11.7574 20.3644i 0.400459 0.693616i
\(863\) 13.0267 + 22.5629i 0.443434 + 0.768049i 0.997942 0.0641289i \(-0.0204269\pi\)
−0.554508 + 0.832178i \(0.687094\pi\)
\(864\) 12.4166 0.422422
\(865\) −4.42969 + 7.67244i −0.150614 + 0.260871i
\(866\) 45.7502 1.55465
\(867\) −38.9668 −1.32338
\(868\) 0 0
\(869\) −4.31787 −0.146474
\(870\) −9.55048 −0.323792
\(871\) 0.0464079 0.0803808i 0.00157247 0.00272360i
\(872\) 31.1407 1.05456
\(873\) 6.18291 + 10.7091i 0.209260 + 0.362449i
\(874\) 3.37925 5.85303i 0.114305 0.197982i
\(875\) 18.4780 32.0049i 0.624671 1.08196i
\(876\) 4.65353 0.157228
\(877\) 17.1607 + 29.7233i 0.579477 + 1.00368i 0.995539 + 0.0943474i \(0.0300764\pi\)
−0.416062 + 0.909336i \(0.636590\pi\)
\(878\) 12.0387 + 20.8516i 0.406285 + 0.703706i
\(879\) 1.41016 + 2.44247i 0.0475635 + 0.0823824i
\(880\) −5.51271 + 9.54830i −0.185834 + 0.321873i
\(881\) −1.81734 3.14772i −0.0612276 0.106049i 0.833787 0.552087i \(-0.186168\pi\)
−0.895014 + 0.446037i \(0.852835\pi\)
\(882\) −1.11436 + 1.93014i −0.0375226 + 0.0649911i
\(883\) −39.4574 −1.32785 −0.663923 0.747801i \(-0.731110\pi\)
−0.663923 + 0.747801i \(0.731110\pi\)
\(884\) 0.437594 0.0147179
\(885\) 7.48295 12.9609i 0.251537 0.435674i
\(886\) −7.88715 13.6609i −0.264974 0.458948i
\(887\) 21.1514 36.6352i 0.710194 1.23009i −0.254591 0.967049i \(-0.581941\pi\)
0.964784 0.263042i \(-0.0847259\pi\)
\(888\) −8.71903 15.1018i −0.292591 0.506783i
\(889\) 8.03785 + 13.9220i 0.269581 + 0.466927i
\(890\) 35.4036 + 61.3209i 1.18673 + 2.05548i
\(891\) −5.67949 −0.190270
\(892\) 2.39806 4.15355i 0.0802929 0.139071i
\(893\) 3.25019 5.62950i 0.108764 0.188384i
\(894\) −5.11471 8.85894i −0.171062 0.296287i
\(895\) −64.4938 −2.15579
\(896\) −7.50756 + 13.0035i −0.250810 + 0.434416i
\(897\) 1.15516 0.0385698
\(898\) −32.2180 −1.07513
\(899\) 0 0
\(900\) 2.97733 0.0992444
\(901\) 48.2262 1.60665
\(902\) −0.197582 + 0.342222i −0.00657877 + 0.0113948i
\(903\) 31.2912 1.04131
\(904\) −5.83056 10.0988i −0.193921 0.335882i
\(905\) 13.9391 24.1433i 0.463352 0.802549i
\(906\) −12.8681 + 22.2882i −0.427513 + 0.740475i
\(907\) −32.3680 −1.07476 −0.537381 0.843339i \(-0.680586\pi\)
−0.537381 + 0.843339i \(0.680586\pi\)
\(908\) −3.14641 5.44973i −0.104417 0.180856i
\(909\) 1.94166 + 3.36306i 0.0644009 + 0.111546i
\(910\) −0.885832 1.53431i −0.0293650 0.0508617i
\(911\) −13.5304 + 23.4353i −0.448281 + 0.776446i −0.998274 0.0587233i \(-0.981297\pi\)
0.549993 + 0.835169i \(0.314630\pi\)
\(912\) 2.61123 + 4.52278i 0.0864665 + 0.149764i
\(913\) 0.155135 0.268702i 0.00513423 0.00889274i
\(914\) −40.4983 −1.33956
\(915\) 9.86969 0.326282
\(916\) 3.22485 5.58560i 0.106552 0.184553i
\(917\) −14.2653 24.7082i −0.471081 0.815937i
\(918\) −23.4725 + 40.6556i −0.774709 + 1.34184i
\(919\) −10.3825 17.9830i −0.342486 0.593203i 0.642408 0.766363i \(-0.277936\pi\)
−0.984894 + 0.173160i \(0.944602\pi\)
\(920\) −26.6874 46.2240i −0.879858 1.52396i
\(921\) 16.8678 + 29.2159i 0.555814 + 0.962697i
\(922\) −24.5088 −0.807156
\(923\) 0.0955880 0.165563i 0.00314632 0.00544958i
\(924\) −0.611117 + 1.05849i −0.0201043 + 0.0348216i
\(925\) −18.2789 31.6600i −0.601007 1.04097i
\(926\) −0.0525165 −0.00172580
\(927\) 0.769168 1.33224i 0.0252628 0.0437564i
\(928\) −2.94508 −0.0966771
\(929\) 20.6589 0.677798 0.338899 0.940823i \(-0.389945\pi\)
0.338899 + 0.940823i \(0.389945\pi\)
\(930\) 0 0
\(931\) 2.54585 0.0834368
\(932\) 2.02726 0.0664052
\(933\) 11.7821 20.4071i 0.385728 0.668100i
\(934\) 32.0555 1.04889
\(935\) 11.8793 + 20.5756i 0.388495 + 0.672893i
\(936\) 0.203272 0.352078i 0.00664416 0.0115080i
\(937\) −1.46030 + 2.52931i −0.0477059 + 0.0826291i −0.888892 0.458116i \(-0.848524\pi\)
0.841186 + 0.540745i \(0.181858\pi\)
\(938\) 1.53048 0.0499720
\(939\) −4.71222 8.16180i −0.153777 0.266350i
\(940\) −4.23983 7.34360i −0.138288 0.239522i
\(941\) 16.4250 + 28.4490i 0.535441 + 0.927411i 0.999142 + 0.0414194i \(0.0131880\pi\)
−0.463701 + 0.885992i \(0.653479\pi\)
\(942\) −14.1523 + 24.5125i −0.461107 + 0.798660i
\(943\) −0.759543 1.31557i −0.0247341 0.0428407i
\(944\) −4.04861 + 7.01240i −0.131771 + 0.228234i
\(945\) −46.8823 −1.52508
\(946\) −11.5955 −0.377001
\(947\) 19.5624 33.8830i 0.635692 1.10105i −0.350677 0.936497i \(-0.614048\pi\)
0.986368 0.164553i \(-0.0526183\pi\)
\(948\) 1.33401 + 2.31057i 0.0433266 + 0.0750438i
\(949\) 0.666062 1.15365i 0.0216213 0.0374492i
\(950\) 6.89388 + 11.9406i 0.223667 + 0.387403i
\(951\) −11.3558 19.6687i −0.368236 0.637803i
\(952\) 21.8421 + 37.8317i 0.707907 + 1.22613i
\(953\) −6.01975 −0.194999 −0.0974994 0.995236i \(-0.531084\pi\)
−0.0974994 + 0.995236i \(0.531084\pi\)
\(954\) 3.70035 6.40919i 0.119803 0.207505i
\(955\) 14.8645 25.7461i 0.481004 0.833123i
\(956\) −1.69527 2.93629i −0.0548288 0.0949663i
\(957\) 1.88608 0.0609684
\(958\) 13.4520 23.2996i 0.434616 0.752776i
\(959\) 0.293980 0.00949310
\(960\) 50.1729 1.61932
\(961\) 0 0
\(962\) −0.824543 −0.0265843
\(963\) −9.98204 −0.321667
\(964\) 1.35470 2.34641i 0.0436320 0.0755729i
\(965\) 17.6012 0.566603
\(966\) 9.52401 + 16.4961i 0.306430 + 0.530753i
\(967\) 13.1552 22.7854i 0.423042 0.732730i −0.573194 0.819420i \(-0.694296\pi\)
0.996235 + 0.0866903i \(0.0276291\pi\)
\(968\) −15.3183 + 26.5321i −0.492350 + 0.852775i
\(969\) 11.2538 0.361525
\(970\) 37.3507 + 64.6934i 1.19926 + 2.07718i
\(971\) 2.36793 + 4.10138i 0.0759906 + 0.131620i 0.901517 0.432744i \(-0.142455\pi\)
−0.825526 + 0.564364i \(0.809121\pi\)
\(972\) −1.59054 2.75489i −0.0510165 0.0883632i
\(973\) 12.6168 21.8529i 0.404475 0.700572i
\(974\) 16.9484 + 29.3554i 0.543061 + 0.940609i
\(975\) −1.17830 + 2.04088i −0.0377359 + 0.0653606i
\(976\) −5.33994 −0.170927
\(977\) −17.2800 −0.552837 −0.276419 0.961037i \(-0.589148\pi\)
−0.276419 + 0.961037i \(0.589148\pi\)
\(978\) 16.0161 27.7407i 0.512139 0.887050i
\(979\) −6.99171 12.1100i −0.223456 0.387037i
\(980\) 1.66051 2.87609i 0.0530431 0.0918733i
\(981\) −4.08862 7.08170i −0.130540 0.226101i
\(982\) −7.95831 13.7842i −0.253960 0.439871i
\(983\) −20.4833 35.4781i −0.653315 1.13157i −0.982313 0.187244i \(-0.940045\pi\)
0.328999 0.944330i \(-0.393289\pi\)
\(984\) 1.47824 0.0471245
\(985\) 42.5339 73.6709i 1.35524 2.34735i
\(986\) 5.56742 9.64305i 0.177303 0.307097i
\(987\) 9.16029 + 15.8661i 0.291575 + 0.505023i
\(988\) −0.0767071 −0.00244038
\(989\) 22.2876 38.6032i 0.708703 1.22751i
\(990\) 3.64595 0.115876
\(991\) −14.1338 −0.448975 −0.224487 0.974477i \(-0.572071\pi\)
−0.224487 + 0.974477i \(0.572071\pi\)
\(992\) 0 0
\(993\) −13.3113 −0.422420
\(994\) 3.15239 0.0999877
\(995\) 50.5514 87.5576i 1.60259 2.77576i
\(996\) −0.191716 −0.00607477
\(997\) −7.72692 13.3834i −0.244714 0.423857i 0.717337 0.696726i \(-0.245361\pi\)
−0.962051 + 0.272869i \(0.912027\pi\)
\(998\) −14.5852 + 25.2622i −0.461685 + 0.799662i
\(999\) −10.9096 + 18.8961i −0.345166 + 0.597845i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.c.i.439.6 16
31.2 even 5 961.2.g.m.547.2 16
31.3 odd 30 961.2.g.s.448.2 16
31.4 even 5 961.2.g.j.235.1 16
31.5 even 3 961.2.a.j.1.6 8
31.6 odd 6 961.2.c.j.521.6 16
31.7 even 15 961.2.g.l.338.1 16
31.8 even 5 961.2.g.l.816.1 16
31.9 even 15 961.2.d.n.374.2 16
31.10 even 15 961.2.d.q.531.3 16
31.11 odd 30 961.2.d.o.388.2 16
31.12 odd 30 961.2.g.t.844.2 16
31.13 odd 30 961.2.d.p.628.3 16
31.14 even 15 961.2.g.j.732.1 16
31.15 odd 10 961.2.g.t.846.2 16
31.16 even 5 961.2.g.n.846.2 16
31.17 odd 30 961.2.g.k.732.1 16
31.18 even 15 961.2.d.q.628.3 16
31.19 even 15 961.2.g.n.844.2 16
31.20 even 15 961.2.d.n.388.2 16
31.21 odd 30 961.2.d.p.531.3 16
31.22 odd 30 961.2.d.o.374.2 16
31.23 odd 10 31.2.g.a.10.1 16
31.24 odd 30 31.2.g.a.28.1 yes 16
31.25 even 3 inner 961.2.c.i.521.6 16
31.26 odd 6 961.2.a.i.1.6 8
31.27 odd 10 961.2.g.k.235.1 16
31.28 even 15 961.2.g.m.448.2 16
31.29 odd 10 961.2.g.s.547.2 16
31.30 odd 2 961.2.c.j.439.6 16
93.5 odd 6 8649.2.a.be.1.3 8
93.23 even 10 279.2.y.c.10.2 16
93.26 even 6 8649.2.a.bf.1.3 8
93.86 even 30 279.2.y.c.28.2 16
124.23 even 10 496.2.bg.c.289.2 16
124.55 even 30 496.2.bg.c.369.2 16
155.23 even 20 775.2.ck.a.599.1 32
155.24 odd 30 775.2.bl.a.276.2 16
155.54 odd 10 775.2.bl.a.351.2 16
155.117 even 60 775.2.ck.a.524.1 32
155.147 even 20 775.2.ck.a.599.4 32
155.148 even 60 775.2.ck.a.524.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.10.1 16 31.23 odd 10
31.2.g.a.28.1 yes 16 31.24 odd 30
279.2.y.c.10.2 16 93.23 even 10
279.2.y.c.28.2 16 93.86 even 30
496.2.bg.c.289.2 16 124.23 even 10
496.2.bg.c.369.2 16 124.55 even 30
775.2.bl.a.276.2 16 155.24 odd 30
775.2.bl.a.351.2 16 155.54 odd 10
775.2.ck.a.524.1 32 155.117 even 60
775.2.ck.a.524.4 32 155.148 even 60
775.2.ck.a.599.1 32 155.23 even 20
775.2.ck.a.599.4 32 155.147 even 20
961.2.a.i.1.6 8 31.26 odd 6
961.2.a.j.1.6 8 31.5 even 3
961.2.c.i.439.6 16 1.1 even 1 trivial
961.2.c.i.521.6 16 31.25 even 3 inner
961.2.c.j.439.6 16 31.30 odd 2
961.2.c.j.521.6 16 31.6 odd 6
961.2.d.n.374.2 16 31.9 even 15
961.2.d.n.388.2 16 31.20 even 15
961.2.d.o.374.2 16 31.22 odd 30
961.2.d.o.388.2 16 31.11 odd 30
961.2.d.p.531.3 16 31.21 odd 30
961.2.d.p.628.3 16 31.13 odd 30
961.2.d.q.531.3 16 31.10 even 15
961.2.d.q.628.3 16 31.18 even 15
961.2.g.j.235.1 16 31.4 even 5
961.2.g.j.732.1 16 31.14 even 15
961.2.g.k.235.1 16 31.27 odd 10
961.2.g.k.732.1 16 31.17 odd 30
961.2.g.l.338.1 16 31.7 even 15
961.2.g.l.816.1 16 31.8 even 5
961.2.g.m.448.2 16 31.28 even 15
961.2.g.m.547.2 16 31.2 even 5
961.2.g.n.844.2 16 31.19 even 15
961.2.g.n.846.2 16 31.16 even 5
961.2.g.s.448.2 16 31.3 odd 30
961.2.g.s.547.2 16 31.29 odd 10
961.2.g.t.844.2 16 31.12 odd 30
961.2.g.t.846.2 16 31.15 odd 10
8649.2.a.be.1.3 8 93.5 odd 6
8649.2.a.bf.1.3 8 93.26 even 6