Properties

Label 961.2.g.k.732.1
Level $961$
Weight $2$
Character 961.732
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(235,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([26])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.235"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-6,3,-14,-3,11,-13] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 732.1
Root \(1.03739i\) of defining polynomial
Character \(\chi\) \(=\) 961.732
Dual form 961.2.g.k.235.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.02470 - 0.744490i) q^{2} +(1.35599 + 0.603725i) q^{3} +(-0.122284 - 0.376353i) q^{4} +(1.90016 - 3.29117i) q^{5} +(-0.940018 - 1.62816i) q^{6} +(1.46472 - 1.62674i) q^{7} +(-0.937688 + 2.88591i) q^{8} +(-0.533169 - 0.592145i) q^{9} +(-4.39734 + 1.95782i) q^{10} +(0.929823 + 0.197640i) q^{11} +(0.0613973 - 0.584156i) q^{12} +(-0.0175757 - 0.167221i) q^{13} +(-2.71199 + 0.576451i) q^{14} +(4.56356 - 3.31562i) q^{15} +(2.46909 - 1.79390i) q^{16} +(6.43294 - 1.36736i) q^{17} +(0.105494 + 1.00371i) q^{18} +(0.120505 - 1.14653i) q^{19} +(-1.47100 - 0.312671i) q^{20} +(2.96825 - 1.32155i) q^{21} +(-0.805651 - 0.894766i) q^{22} +(-1.43029 + 4.40197i) q^{23} +(-3.01379 + 3.34715i) q^{24} +(-4.72122 - 8.17739i) q^{25} +(-0.106485 + 0.184437i) q^{26} +(-1.74151 - 5.35983i) q^{27} +(-0.791339 - 0.352327i) q^{28} +(-1.08143 - 0.785701i) q^{29} -7.14474 q^{30} +2.20322 q^{32} +(1.14151 + 0.829355i) q^{33} +(-7.60983 - 3.38812i) q^{34} +(-2.57067 - 7.91171i) q^{35} +(-0.157657 + 0.273070i) q^{36} +(1.93582 + 3.35295i) q^{37} +(-0.977059 + 1.08513i) q^{38} +(0.0771233 - 0.237361i) q^{39} +(7.71627 + 8.56978i) q^{40} +(0.299828 - 0.133492i) q^{41} +(-4.02545 - 0.855635i) q^{42} +(-1.00667 + 9.57782i) q^{43} +(-0.0393205 - 0.374110i) q^{44} +(-2.96196 + 0.629584i) q^{45} +(4.74283 - 3.44587i) q^{46} +(-4.56170 + 3.31427i) q^{47} +(4.43108 - 0.941856i) q^{48} +(0.230833 + 2.19623i) q^{49} +(-1.25014 + 11.8943i) q^{50} +(9.54851 + 2.02960i) q^{51} +(-0.0607850 + 0.0270632i) q^{52} +(-4.90670 - 5.44944i) q^{53} +(-2.20581 + 6.78877i) q^{54} +(2.41728 - 2.68466i) q^{55} +(3.32116 + 5.75242i) q^{56} +(0.855590 - 1.48193i) q^{57} +(0.523192 + 1.61022i) q^{58} +(-2.42375 - 1.07912i) q^{59} +(-1.80590 - 1.31206i) q^{60} -1.74967 q^{61} -1.74421 q^{63} +(-7.19583 - 5.22808i) q^{64} +(-0.583751 - 0.259903i) q^{65} +(-0.552261 - 1.69968i) q^{66} +(-0.276003 + 0.478052i) q^{67} +(-1.30126 - 2.25385i) q^{68} +(-4.59703 + 5.10552i) q^{69} +(-3.25601 + 10.0210i) q^{70} +(0.760794 + 0.844947i) q^{71} +(2.20882 - 0.983431i) q^{72} +(7.74947 + 1.64720i) q^{73} +(0.512590 - 4.87697i) q^{74} +(-1.46502 - 13.9388i) q^{75} +(-0.446234 + 0.0948500i) q^{76} +(1.68344 - 1.22309i) q^{77} +(-0.255741 + 0.185807i) q^{78} +(-4.44302 + 0.944393i) q^{79} +(-1.21237 - 11.5349i) q^{80} +(0.624523 - 5.94194i) q^{81} +(-0.406618 - 0.0864293i) q^{82} +(0.298177 - 0.132757i) q^{83} +(-0.860338 - 0.955503i) q^{84} +(7.72338 - 23.7701i) q^{85} +(8.16212 - 9.06495i) q^{86} +(-0.992053 - 1.71829i) q^{87} +(-1.44225 + 2.49806i) q^{88} +(-4.54569 - 13.9902i) q^{89} +(3.50384 + 1.56001i) q^{90} +(-0.297768 - 0.216341i) q^{91} +1.83159 q^{92} +7.14183 q^{94} +(-3.54444 - 2.57519i) q^{95} +(2.98755 + 1.33014i) q^{96} +(4.79569 + 14.7596i) q^{97} +(1.39853 - 2.42233i) q^{98} +(-0.378722 - 0.655965i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} + 3 q^{3} - 14 q^{4} - 3 q^{5} + 11 q^{6} - 13 q^{7} + 17 q^{8} + 5 q^{9} - 17 q^{10} - 7 q^{11} - 10 q^{12} + 8 q^{13} - 21 q^{14} + 14 q^{15} - 2 q^{16} + 9 q^{17} + 12 q^{18} - 29 q^{19}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{2}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.02470 0.744490i −0.724574 0.526434i 0.163268 0.986582i \(-0.447796\pi\)
−0.887842 + 0.460148i \(0.847796\pi\)
\(3\) 1.35599 + 0.603725i 0.782881 + 0.348561i 0.758947 0.651153i \(-0.225714\pi\)
0.0239339 + 0.999714i \(0.492381\pi\)
\(4\) −0.122284 0.376353i −0.0611422 0.188176i
\(5\) 1.90016 3.29117i 0.849778 1.47186i −0.0316291 0.999500i \(-0.510070\pi\)
0.881407 0.472358i \(-0.156597\pi\)
\(6\) −0.940018 1.62816i −0.383761 0.664693i
\(7\) 1.46472 1.62674i 0.553612 0.614849i −0.399770 0.916616i \(-0.630910\pi\)
0.953382 + 0.301767i \(0.0975765\pi\)
\(8\) −0.937688 + 2.88591i −0.331523 + 1.02032i
\(9\) −0.533169 0.592145i −0.177723 0.197382i
\(10\) −4.39734 + 1.95782i −1.39056 + 0.619118i
\(11\) 0.929823 + 0.197640i 0.280352 + 0.0595907i 0.345942 0.938256i \(-0.387559\pi\)
−0.0655896 + 0.997847i \(0.520893\pi\)
\(12\) 0.0613973 0.584156i 0.0177239 0.168631i
\(13\) −0.0175757 0.167221i −0.00487461 0.0463788i 0.991814 0.127689i \(-0.0407561\pi\)
−0.996689 + 0.0813106i \(0.974089\pi\)
\(14\) −2.71199 + 0.576451i −0.724810 + 0.154063i
\(15\) 4.56356 3.31562i 1.17831 0.856090i
\(16\) 2.46909 1.79390i 0.617273 0.448475i
\(17\) 6.43294 1.36736i 1.56022 0.331634i 0.654681 0.755905i \(-0.272803\pi\)
0.905535 + 0.424271i \(0.139469\pi\)
\(18\) 0.105494 + 1.00371i 0.0248652 + 0.236577i
\(19\) 0.120505 1.14653i 0.0276457 0.263031i −0.971965 0.235126i \(-0.924450\pi\)
0.999611 0.0279051i \(-0.00888363\pi\)
\(20\) −1.47100 0.312671i −0.328926 0.0699154i
\(21\) 2.96825 1.32155i 0.647724 0.288385i
\(22\) −0.805651 0.894766i −0.171765 0.190765i
\(23\) −1.43029 + 4.40197i −0.298235 + 0.917873i 0.683880 + 0.729594i \(0.260291\pi\)
−0.982116 + 0.188279i \(0.939709\pi\)
\(24\) −3.01379 + 3.34715i −0.615187 + 0.683235i
\(25\) −4.72122 8.17739i −0.944244 1.63548i
\(26\) −0.106485 + 0.184437i −0.0208834 + 0.0361711i
\(27\) −1.74151 5.35983i −0.335155 1.03150i
\(28\) −0.791339 0.352327i −0.149549 0.0665835i
\(29\) −1.08143 0.785701i −0.200816 0.145901i 0.482833 0.875713i \(-0.339608\pi\)
−0.683649 + 0.729811i \(0.739608\pi\)
\(30\) −7.14474 −1.30444
\(31\) 0 0
\(32\) 2.20322 0.389479
\(33\) 1.14151 + 0.829355i 0.198711 + 0.144372i
\(34\) −7.60983 3.38812i −1.30508 0.581057i
\(35\) −2.57067 7.91171i −0.434523 1.33732i
\(36\) −0.157657 + 0.273070i −0.0262762 + 0.0455116i
\(37\) 1.93582 + 3.35295i 0.318248 + 0.551221i 0.980122 0.198393i \(-0.0635723\pi\)
−0.661875 + 0.749614i \(0.730239\pi\)
\(38\) −0.977059 + 1.08513i −0.158500 + 0.176032i
\(39\) 0.0771233 0.237361i 0.0123496 0.0380082i
\(40\) 7.71627 + 8.56978i 1.22005 + 1.35500i
\(41\) 0.299828 0.133492i 0.0468253 0.0208480i −0.383190 0.923669i \(-0.625175\pi\)
0.430016 + 0.902821i \(0.358508\pi\)
\(42\) −4.02545 0.855635i −0.621140 0.132027i
\(43\) −1.00667 + 9.57782i −0.153516 + 1.46060i 0.598323 + 0.801255i \(0.295834\pi\)
−0.751838 + 0.659348i \(0.770833\pi\)
\(44\) −0.0393205 0.374110i −0.00592779 0.0563991i
\(45\) −2.96196 + 0.629584i −0.441543 + 0.0938528i
\(46\) 4.74283 3.44587i 0.699293 0.508066i
\(47\) −4.56170 + 3.31427i −0.665393 + 0.483436i −0.868480 0.495725i \(-0.834903\pi\)
0.203087 + 0.979161i \(0.434903\pi\)
\(48\) 4.43108 0.941856i 0.639572 0.135945i
\(49\) 0.230833 + 2.19623i 0.0329761 + 0.313747i
\(50\) −1.25014 + 11.8943i −0.176797 + 1.68211i
\(51\) 9.54851 + 2.02960i 1.33706 + 0.284201i
\(52\) −0.0607850 + 0.0270632i −0.00842936 + 0.00375299i
\(53\) −4.90670 5.44944i −0.673987 0.748538i 0.305024 0.952345i \(-0.401335\pi\)
−0.979011 + 0.203806i \(0.934669\pi\)
\(54\) −2.20581 + 6.78877i −0.300172 + 0.923835i
\(55\) 2.41728 2.68466i 0.325946 0.362000i
\(56\) 3.32116 + 5.75242i 0.443809 + 0.768699i
\(57\) 0.855590 1.48193i 0.113326 0.196286i
\(58\) 0.523192 + 1.61022i 0.0686985 + 0.211432i
\(59\) −2.42375 1.07912i −0.315545 0.140490i 0.242853 0.970063i \(-0.421917\pi\)
−0.558397 + 0.829574i \(0.688584\pi\)
\(60\) −1.80590 1.31206i −0.233140 0.169386i
\(61\) −1.74967 −0.224023 −0.112011 0.993707i \(-0.535729\pi\)
−0.112011 + 0.993707i \(0.535729\pi\)
\(62\) 0 0
\(63\) −1.74421 −0.219749
\(64\) −7.19583 5.22808i −0.899479 0.653510i
\(65\) −0.583751 0.259903i −0.0724054 0.0322370i
\(66\) −0.552261 1.69968i −0.0679786 0.209217i
\(67\) −0.276003 + 0.478052i −0.0337192 + 0.0584033i −0.882393 0.470514i \(-0.844069\pi\)
0.848673 + 0.528917i \(0.177402\pi\)
\(68\) −1.30126 2.25385i −0.157801 0.273319i
\(69\) −4.59703 + 5.10552i −0.553417 + 0.614632i
\(70\) −3.25601 + 10.0210i −0.389168 + 1.19774i
\(71\) 0.760794 + 0.844947i 0.0902896 + 0.100277i 0.786596 0.617468i \(-0.211841\pi\)
−0.696307 + 0.717744i \(0.745175\pi\)
\(72\) 2.20882 0.983431i 0.260312 0.115898i
\(73\) 7.74947 + 1.64720i 0.907007 + 0.192790i 0.637719 0.770269i \(-0.279878\pi\)
0.269288 + 0.963060i \(0.413212\pi\)
\(74\) 0.512590 4.87697i 0.0595874 0.566937i
\(75\) −1.46502 13.9388i −0.169166 1.60951i
\(76\) −0.446234 + 0.0948500i −0.0511866 + 0.0108800i
\(77\) 1.68344 1.22309i 0.191846 0.139384i
\(78\) −0.255741 + 0.185807i −0.0289570 + 0.0210385i
\(79\) −4.44302 + 0.944393i −0.499879 + 0.106253i −0.450949 0.892550i \(-0.648914\pi\)
−0.0489298 + 0.998802i \(0.515581\pi\)
\(80\) −1.21237 11.5349i −0.135547 1.28964i
\(81\) 0.624523 5.94194i 0.0693914 0.660215i
\(82\) −0.406618 0.0864293i −0.0449034 0.00954452i
\(83\) 0.298177 0.132757i 0.0327292 0.0145720i −0.390307 0.920685i \(-0.627631\pi\)
0.423036 + 0.906113i \(0.360964\pi\)
\(84\) −0.860338 0.955503i −0.0938706 0.104254i
\(85\) 7.72338 23.7701i 0.837719 2.57823i
\(86\) 8.16212 9.06495i 0.880144 0.977499i
\(87\) −0.992053 1.71829i −0.106359 0.184220i
\(88\) −1.44225 + 2.49806i −0.153745 + 0.266294i
\(89\) −4.54569 13.9902i −0.481842 1.48296i −0.836503 0.547962i \(-0.815404\pi\)
0.354661 0.934995i \(-0.384596\pi\)
\(90\) 3.50384 + 1.56001i 0.369338 + 0.164440i
\(91\) −0.297768 0.216341i −0.0312146 0.0226787i
\(92\) 1.83159 0.190957
\(93\) 0 0
\(94\) 7.14183 0.736623
\(95\) −3.54444 2.57519i −0.363652 0.264209i
\(96\) 2.98755 + 1.33014i 0.304915 + 0.135757i
\(97\) 4.79569 + 14.7596i 0.486929 + 1.49861i 0.829168 + 0.559000i \(0.188815\pi\)
−0.342239 + 0.939613i \(0.611185\pi\)
\(98\) 1.39853 2.42233i 0.141273 0.244692i
\(99\) −0.378722 0.655965i −0.0380630 0.0659270i
\(100\) −2.50025 + 2.77681i −0.250025 + 0.277681i
\(101\) 1.50602 4.63507i 0.149855 0.461206i −0.847748 0.530399i \(-0.822042\pi\)
0.997603 + 0.0691923i \(0.0220422\pi\)
\(102\) −8.27336 9.18850i −0.819185 0.909797i
\(103\) 1.76371 0.785254i 0.173783 0.0773733i −0.318001 0.948090i \(-0.603012\pi\)
0.491784 + 0.870717i \(0.336345\pi\)
\(104\) 0.499066 + 0.106080i 0.0489374 + 0.0104020i
\(105\) 1.29070 12.2802i 0.125959 1.19842i
\(106\) 0.970852 + 9.23704i 0.0942975 + 0.897181i
\(107\) −12.2538 + 2.60462i −1.18462 + 0.251798i −0.757767 0.652525i \(-0.773710\pi\)
−0.426849 + 0.904323i \(0.640376\pi\)
\(108\) −1.80423 + 1.31085i −0.173612 + 0.126136i
\(109\) 8.30253 6.03214i 0.795238 0.577774i −0.114275 0.993449i \(-0.536455\pi\)
0.909513 + 0.415675i \(0.136455\pi\)
\(110\) −4.47570 + 0.951338i −0.426741 + 0.0907066i
\(111\) 0.600699 + 5.71526i 0.0570158 + 0.542469i
\(112\) 0.698325 6.64412i 0.0659855 0.627810i
\(113\) 3.75896 + 0.798993i 0.353614 + 0.0751629i 0.381294 0.924454i \(-0.375479\pi\)
−0.0276801 + 0.999617i \(0.508812\pi\)
\(114\) −1.98000 + 0.881554i −0.185444 + 0.0825651i
\(115\) 11.7699 + 13.0718i 1.09755 + 1.21895i
\(116\) −0.163459 + 0.503076i −0.0151768 + 0.0467095i
\(117\) −0.0896484 + 0.0995646i −0.00828800 + 0.00920475i
\(118\) 1.68022 + 2.91023i 0.154677 + 0.267908i
\(119\) 7.19811 12.4675i 0.659850 1.14289i
\(120\) 5.28938 + 16.2790i 0.482852 + 1.48607i
\(121\) −9.22349 4.10656i −0.838499 0.373324i
\(122\) 1.79289 + 1.30261i 0.162321 + 0.117933i
\(123\) 0.487156 0.0439254
\(124\) 0 0
\(125\) −16.8827 −1.51003
\(126\) 1.78729 + 1.29854i 0.159225 + 0.115684i
\(127\) 6.70897 + 2.98703i 0.595325 + 0.265056i 0.682203 0.731163i \(-0.261022\pi\)
−0.0868775 + 0.996219i \(0.527689\pi\)
\(128\) 2.11967 + 6.52366i 0.187354 + 0.576616i
\(129\) −7.14740 + 12.3797i −0.629294 + 1.08997i
\(130\) 0.404676 + 0.700920i 0.0354924 + 0.0614747i
\(131\) 8.72123 9.68591i 0.761977 0.846262i −0.229932 0.973207i \(-0.573851\pi\)
0.991910 + 0.126945i \(0.0405172\pi\)
\(132\) 0.172541 0.531027i 0.0150178 0.0462200i
\(133\) −1.68859 1.87537i −0.146419 0.162615i
\(134\) 0.638726 0.284379i 0.0551775 0.0245666i
\(135\) −20.9493 4.45291i −1.80303 0.383246i
\(136\) −2.08601 + 19.8470i −0.178874 + 1.70187i
\(137\) 0.0140381 + 0.133564i 0.00119936 + 0.0114111i 0.995105 0.0988212i \(-0.0315072\pi\)
−0.993906 + 0.110232i \(0.964841\pi\)
\(138\) 8.51159 1.80919i 0.724555 0.154009i
\(139\) −9.32593 + 6.77569i −0.791015 + 0.574706i −0.908265 0.418396i \(-0.862592\pi\)
0.117249 + 0.993103i \(0.462592\pi\)
\(140\) −2.66324 + 1.93496i −0.225085 + 0.163534i
\(141\) −8.18653 + 1.74010i −0.689430 + 0.146543i
\(142\) −0.150533 1.43222i −0.0126324 0.120189i
\(143\) 0.0167074 0.158960i 0.00139714 0.0132929i
\(144\) −2.37869 0.505607i −0.198224 0.0421339i
\(145\) −4.64076 + 2.06620i −0.385394 + 0.171589i
\(146\) −6.71457 7.45729i −0.555702 0.617170i
\(147\) −1.01291 + 3.11742i −0.0835435 + 0.257120i
\(148\) 1.02517 1.13857i 0.0842684 0.0935895i
\(149\) 2.72054 + 4.71211i 0.222875 + 0.386031i 0.955680 0.294408i \(-0.0951224\pi\)
−0.732805 + 0.680439i \(0.761789\pi\)
\(150\) −8.87606 + 15.3738i −0.724727 + 1.25526i
\(151\) 4.23019 + 13.0192i 0.344248 + 1.05949i 0.961985 + 0.273102i \(0.0880496\pi\)
−0.617737 + 0.786385i \(0.711950\pi\)
\(152\) 3.19577 + 1.42285i 0.259211 + 0.115408i
\(153\) −4.23952 3.08019i −0.342745 0.249019i
\(154\) −2.63560 −0.212383
\(155\) 0 0
\(156\) −0.0987625 −0.00790733
\(157\) 12.1800 + 8.84931i 0.972072 + 0.706252i 0.955923 0.293618i \(-0.0948593\pi\)
0.0161493 + 0.999870i \(0.494859\pi\)
\(158\) 5.25586 + 2.34006i 0.418134 + 0.186165i
\(159\) −3.36346 10.3517i −0.266740 0.820942i
\(160\) 4.18648 7.25120i 0.330970 0.573257i
\(161\) 5.06587 + 8.77434i 0.399246 + 0.691515i
\(162\) −5.06366 + 5.62377i −0.397839 + 0.441845i
\(163\) 5.26506 16.2042i 0.412391 1.26921i −0.502172 0.864768i \(-0.667466\pi\)
0.914563 0.404443i \(-0.132534\pi\)
\(164\) −0.0869044 0.0965171i −0.00678609 0.00753672i
\(165\) 4.89860 2.18100i 0.381356 0.169791i
\(166\) −0.404379 0.0859535i −0.0313859 0.00667129i
\(167\) 1.69318 16.1095i 0.131022 1.24659i −0.709458 0.704748i \(-0.751060\pi\)
0.840480 0.541843i \(-0.182273\pi\)
\(168\) 1.03058 + 9.80529i 0.0795107 + 0.756494i
\(169\) 12.6883 2.69697i 0.976020 0.207460i
\(170\) −25.6108 + 18.6073i −1.96426 + 1.42712i
\(171\) −0.743159 + 0.539937i −0.0568308 + 0.0412900i
\(172\) 3.72774 0.792355i 0.284237 0.0604165i
\(173\) 0.243679 + 2.31845i 0.0185265 + 0.176268i 0.999872 0.0159831i \(-0.00508779\pi\)
−0.981346 + 0.192251i \(0.938421\pi\)
\(174\) −0.262688 + 2.49930i −0.0199143 + 0.189472i
\(175\) −20.2177 4.29741i −1.52832 0.324854i
\(176\) 2.65036 1.18002i 0.199779 0.0889472i
\(177\) −2.63508 2.92655i −0.198065 0.219973i
\(178\) −5.75758 + 17.7200i −0.431549 + 1.32817i
\(179\) −11.3556 + 12.6116i −0.848755 + 0.942638i −0.998941 0.0460201i \(-0.985346\pi\)
0.150186 + 0.988658i \(0.452013\pi\)
\(180\) 0.599147 + 1.03775i 0.0446578 + 0.0773495i
\(181\) 3.66788 6.35296i 0.272631 0.472211i −0.696903 0.717165i \(-0.745439\pi\)
0.969535 + 0.244954i \(0.0787727\pi\)
\(182\) 0.144060 + 0.443371i 0.0106784 + 0.0328648i
\(183\) −2.37254 1.05632i −0.175383 0.0780856i
\(184\) −11.3625 8.25534i −0.837655 0.608592i
\(185\) 14.7135 1.08176
\(186\) 0 0
\(187\) 6.25174 0.457173
\(188\) 1.80516 + 1.31153i 0.131655 + 0.0956528i
\(189\) −11.2699 5.01767i −0.819762 0.364982i
\(190\) 1.71480 + 5.27760i 0.124404 + 0.382877i
\(191\) −3.91138 + 6.77471i −0.283018 + 0.490201i −0.972127 0.234457i \(-0.924669\pi\)
0.689109 + 0.724658i \(0.258002\pi\)
\(192\) −6.60115 11.4335i −0.476397 0.825143i
\(193\) −3.09908 + 3.44188i −0.223077 + 0.247752i −0.844286 0.535893i \(-0.819975\pi\)
0.621209 + 0.783645i \(0.286642\pi\)
\(194\) 6.07423 18.6946i 0.436104 1.34219i
\(195\) −0.634650 0.704851i −0.0454483 0.0504754i
\(196\) 0.798329 0.355439i 0.0570235 0.0253885i
\(197\) 21.8952 + 4.65397i 1.55997 + 0.331582i 0.905447 0.424460i \(-0.139536\pi\)
0.654524 + 0.756042i \(0.272869\pi\)
\(198\) −0.100282 + 0.954123i −0.00712676 + 0.0678066i
\(199\) 2.78085 + 26.4580i 0.197129 + 1.87556i 0.429689 + 0.902977i \(0.358623\pi\)
−0.232560 + 0.972582i \(0.574710\pi\)
\(200\) 28.0262 5.95716i 1.98175 0.421235i
\(201\) −0.662869 + 0.481603i −0.0467552 + 0.0339696i
\(202\) −4.99399 + 3.62834i −0.351376 + 0.255289i
\(203\) −2.86211 + 0.608361i −0.200881 + 0.0426986i
\(204\) −0.403789 3.84179i −0.0282709 0.268979i
\(205\) 0.130376 1.24044i 0.00910584 0.0866363i
\(206\) −2.39189 0.508412i −0.166651 0.0354227i
\(207\) 3.36918 1.50006i 0.234175 0.104261i
\(208\) −0.343374 0.381356i −0.0238087 0.0264423i
\(209\) 0.338648 1.04225i 0.0234247 0.0720939i
\(210\) −10.4650 + 11.6226i −0.722156 + 0.802036i
\(211\) −0.663069 1.14847i −0.0456476 0.0790639i 0.842299 0.539011i \(-0.181202\pi\)
−0.887946 + 0.459947i \(0.847868\pi\)
\(212\) −1.45090 + 2.51303i −0.0996481 + 0.172596i
\(213\) 0.521512 + 1.60505i 0.0357334 + 0.109976i
\(214\) 14.4956 + 6.45384i 0.990896 + 0.441175i
\(215\) 29.6094 + 21.5125i 2.01935 + 1.46714i
\(216\) 17.1010 1.16357
\(217\) 0 0
\(218\) −12.9985 −0.880368
\(219\) 9.51374 + 6.91214i 0.642879 + 0.467079i
\(220\) −1.30598 0.581458i −0.0880488 0.0392019i
\(221\) −0.341716 1.05169i −0.0229863 0.0707445i
\(222\) 3.63942 6.30366i 0.244262 0.423074i
\(223\) 6.05997 + 10.4962i 0.405806 + 0.702876i 0.994415 0.105542i \(-0.0336576\pi\)
−0.588609 + 0.808418i \(0.700324\pi\)
\(224\) 3.22711 3.58407i 0.215620 0.239470i
\(225\) −2.32499 + 7.15558i −0.154999 + 0.477039i
\(226\) −3.25698 3.61724i −0.216651 0.240615i
\(227\) −14.5273 + 6.46799i −0.964213 + 0.429296i −0.827593 0.561328i \(-0.810291\pi\)
−0.136620 + 0.990624i \(0.543624\pi\)
\(228\) −0.662352 0.140787i −0.0438653 0.00932386i
\(229\) 1.70367 16.2093i 0.112582 1.07114i −0.781705 0.623648i \(-0.785650\pi\)
0.894287 0.447494i \(-0.147683\pi\)
\(230\) −2.32882 22.1572i −0.153558 1.46100i
\(231\) 3.02113 0.642162i 0.198776 0.0422511i
\(232\) 3.28150 2.38415i 0.215441 0.156527i
\(233\) 4.14456 3.01120i 0.271519 0.197270i −0.443691 0.896180i \(-0.646331\pi\)
0.715210 + 0.698910i \(0.246331\pi\)
\(234\) 0.165988 0.0352818i 0.0108510 0.00230644i
\(235\) 2.23988 + 21.3110i 0.146113 + 1.39018i
\(236\) −0.109744 + 1.04414i −0.00714371 + 0.0679679i
\(237\) −6.59484 1.40178i −0.428381 0.0910552i
\(238\) −16.6578 + 7.41655i −1.07977 + 0.480744i
\(239\) 5.73311 + 6.36726i 0.370844 + 0.411864i 0.899464 0.436994i \(-0.143957\pi\)
−0.528620 + 0.848858i \(0.677290\pi\)
\(240\) 5.31996 16.3731i 0.343402 1.05688i
\(241\) −4.58138 + 5.08814i −0.295113 + 0.327756i −0.872407 0.488781i \(-0.837442\pi\)
0.577294 + 0.816536i \(0.304109\pi\)
\(242\) 6.39404 + 11.0748i 0.411024 + 0.711915i
\(243\) −4.01935 + 6.96171i −0.257841 + 0.446594i
\(244\) 0.213958 + 0.658494i 0.0136972 + 0.0421558i
\(245\) 7.66679 + 3.41347i 0.489813 + 0.218079i
\(246\) −0.499190 0.362683i −0.0318272 0.0231238i
\(247\) −0.193842 −0.0123338
\(248\) 0 0
\(249\) 0.484474 0.0307023
\(250\) 17.2997 + 12.5690i 1.09413 + 0.794933i
\(251\) 20.7065 + 9.21913i 1.30698 + 0.581906i 0.937712 0.347415i \(-0.112940\pi\)
0.369272 + 0.929321i \(0.379607\pi\)
\(252\) 0.213289 + 0.656437i 0.0134360 + 0.0413516i
\(253\) −2.19992 + 3.81037i −0.138308 + 0.239556i
\(254\) −4.65089 8.05558i −0.291823 0.505452i
\(255\) 24.8235 27.5692i 1.55451 1.72645i
\(256\) −2.81235 + 8.65553i −0.175772 + 0.540971i
\(257\) −11.1466 12.3796i −0.695307 0.772217i 0.287315 0.957836i \(-0.407237\pi\)
−0.982622 + 0.185620i \(0.940571\pi\)
\(258\) 16.5405 7.36430i 1.02977 0.458481i
\(259\) 8.28980 + 1.76205i 0.515103 + 0.109489i
\(260\) −0.0264314 + 0.251478i −0.00163921 + 0.0155960i
\(261\) 0.111334 + 1.05927i 0.00689140 + 0.0655673i
\(262\) −16.1477 + 3.43230i −0.997609 + 0.212048i
\(263\) 19.8908 14.4515i 1.22652 0.891118i 0.229894 0.973216i \(-0.426162\pi\)
0.996624 + 0.0820979i \(0.0261620\pi\)
\(264\) −3.46382 + 2.51661i −0.213184 + 0.154887i
\(265\) −27.2586 + 5.79399i −1.67448 + 0.355922i
\(266\) 0.334109 + 3.17883i 0.0204855 + 0.194907i
\(267\) 2.28233 21.7149i 0.139676 1.32893i
\(268\) 0.213667 + 0.0454163i 0.0130518 + 0.00277424i
\(269\) 11.4322 5.08996i 0.697036 0.310340i −0.0274565 0.999623i \(-0.508741\pi\)
0.724493 + 0.689283i \(0.242074\pi\)
\(270\) 18.1516 + 20.1594i 1.10467 + 1.22686i
\(271\) −8.39516 + 25.8376i −0.509969 + 1.56952i 0.282283 + 0.959331i \(0.408908\pi\)
−0.792252 + 0.610194i \(0.791092\pi\)
\(272\) 13.4306 14.9162i 0.814350 0.904427i
\(273\) −0.273160 0.473127i −0.0165324 0.0286349i
\(274\) 0.0850519 0.147314i 0.00513817 0.00889957i
\(275\) −2.77372 8.53663i −0.167261 0.514778i
\(276\) 2.48362 + 1.10578i 0.149496 + 0.0665601i
\(277\) 12.2625 + 8.90926i 0.736785 + 0.535305i 0.891703 0.452622i \(-0.149511\pi\)
−0.154918 + 0.987927i \(0.549511\pi\)
\(278\) 14.6007 0.875694
\(279\) 0 0
\(280\) 25.2430 1.50855
\(281\) −24.4709 17.7792i −1.45981 1.06062i −0.983412 0.181387i \(-0.941941\pi\)
−0.476401 0.879228i \(-0.658059\pi\)
\(282\) 9.68424 + 4.31170i 0.576688 + 0.256758i
\(283\) 0.971958 + 2.99138i 0.0577769 + 0.177819i 0.975780 0.218754i \(-0.0701993\pi\)
−0.918003 + 0.396573i \(0.870199\pi\)
\(284\) 0.224965 0.389651i 0.0133492 0.0231215i
\(285\) −3.25152 5.63179i −0.192603 0.333599i
\(286\) −0.135464 + 0.150448i −0.00801016 + 0.00889618i
\(287\) 0.222008 0.683269i 0.0131047 0.0403321i
\(288\) −1.17469 1.30463i −0.0692194 0.0768759i
\(289\) 23.9828 10.6778i 1.41075 0.628106i
\(290\) 6.29366 + 1.33776i 0.369577 + 0.0785559i
\(291\) −2.40785 + 22.9092i −0.141151 + 1.34296i
\(292\) −0.327711 3.11796i −0.0191778 0.182465i
\(293\) −1.85856 + 0.395049i −0.108578 + 0.0230790i −0.261880 0.965100i \(-0.584343\pi\)
0.153302 + 0.988179i \(0.451009\pi\)
\(294\) 3.35882 2.44033i 0.195890 0.142323i
\(295\) −8.15708 + 5.92647i −0.474924 + 0.345052i
\(296\) −11.4915 + 2.44259i −0.667930 + 0.141973i
\(297\) −0.559984 5.32789i −0.0324935 0.309155i
\(298\) 0.720377 6.85393i 0.0417303 0.397037i
\(299\) 0.761241 + 0.161807i 0.0440237 + 0.00935752i
\(300\) −5.06674 + 2.25586i −0.292529 + 0.130242i
\(301\) 14.1061 + 15.6664i 0.813062 + 0.902996i
\(302\) 5.35797 16.4901i 0.308316 0.948900i
\(303\) 4.84046 5.37588i 0.278077 0.308836i
\(304\) −1.75922 3.04705i −0.100898 0.174760i
\(305\) −3.32466 + 5.75848i −0.190370 + 0.329730i
\(306\) 2.05108 + 6.31256i 0.117252 + 0.360865i
\(307\) 20.7631 + 9.24435i 1.18502 + 0.527603i 0.902094 0.431540i \(-0.142030\pi\)
0.282922 + 0.959143i \(0.408696\pi\)
\(308\) −0.666171 0.484002i −0.0379586 0.0275786i
\(309\) 2.86565 0.163021
\(310\) 0 0
\(311\) 15.8754 0.900213 0.450106 0.892975i \(-0.351386\pi\)
0.450106 + 0.892975i \(0.351386\pi\)
\(312\) 0.612685 + 0.445142i 0.0346865 + 0.0252012i
\(313\) 5.80042 + 2.58251i 0.327859 + 0.145972i 0.564064 0.825731i \(-0.309237\pi\)
−0.236205 + 0.971703i \(0.575904\pi\)
\(314\) −5.89268 18.1358i −0.332543 1.02346i
\(315\) −3.31427 + 5.74049i −0.186738 + 0.323440i
\(316\) 0.898737 + 1.55666i 0.0505579 + 0.0875689i
\(317\) −10.2384 + 11.3709i −0.575044 + 0.638651i −0.958563 0.284882i \(-0.908046\pi\)
0.383518 + 0.923533i \(0.374712\pi\)
\(318\) −4.26017 + 13.1115i −0.238898 + 0.735254i
\(319\) −0.850248 0.944296i −0.0476047 0.0528704i
\(320\) −30.8797 + 13.7485i −1.72623 + 0.768567i
\(321\) −18.1884 3.86607i −1.01518 0.215783i
\(322\) 1.34140 12.7626i 0.0747533 0.711231i
\(323\) −0.792518 7.54031i −0.0440969 0.419554i
\(324\) −2.31263 + 0.491565i −0.128480 + 0.0273092i
\(325\) −1.28446 + 0.933212i −0.0712488 + 0.0517653i
\(326\) −17.4590 + 12.6847i −0.966963 + 0.702540i
\(327\) 14.8999 3.16707i 0.823966 0.175139i
\(328\) 0.104100 + 0.990450i 0.00574799 + 0.0546884i
\(329\) −1.29017 + 12.2752i −0.0711295 + 0.676752i
\(330\) −6.64334 1.41209i −0.365704 0.0777328i
\(331\) −8.19263 + 3.64760i −0.450308 + 0.200490i −0.619344 0.785120i \(-0.712601\pi\)
0.169036 + 0.985610i \(0.445935\pi\)
\(332\) −0.0864260 0.0959858i −0.00474324 0.00526790i
\(333\) 0.953307 2.93398i 0.0522409 0.160781i
\(334\) −13.7284 + 15.2469i −0.751182 + 0.834273i
\(335\) 1.04890 + 1.81675i 0.0573076 + 0.0992597i
\(336\) 4.95814 8.58776i 0.270489 0.468501i
\(337\) −1.35002 4.15495i −0.0735405 0.226334i 0.907529 0.419989i \(-0.137966\pi\)
−0.981070 + 0.193654i \(0.937966\pi\)
\(338\) −15.0096 6.68269i −0.816413 0.363490i
\(339\) 4.61474 + 3.35281i 0.250638 + 0.182100i
\(340\) −9.89040 −0.536382
\(341\) 0 0
\(342\) 1.16349 0.0629145
\(343\) 16.3073 + 11.8479i 0.880511 + 0.639729i
\(344\) −26.6968 11.8862i −1.43939 0.640859i
\(345\) 8.06806 + 24.8309i 0.434370 + 1.33685i
\(346\) 1.47636 2.55713i 0.0793697 0.137472i
\(347\) −12.2026 21.1356i −0.655073 1.13462i −0.981876 0.189526i \(-0.939305\pi\)
0.326803 0.945092i \(-0.394029\pi\)
\(348\) −0.525369 + 0.583481i −0.0281627 + 0.0312779i
\(349\) 4.03079 12.4055i 0.215763 0.664051i −0.783335 0.621599i \(-0.786483\pi\)
0.999099 0.0424515i \(-0.0135168\pi\)
\(350\) 17.5178 + 19.4554i 0.936364 + 1.03994i
\(351\) −0.865670 + 0.385421i −0.0462060 + 0.0205723i
\(352\) 2.04861 + 0.435445i 0.109191 + 0.0232093i
\(353\) −1.13150 + 10.7655i −0.0602237 + 0.572990i 0.922251 + 0.386592i \(0.126348\pi\)
−0.982474 + 0.186398i \(0.940319\pi\)
\(354\) 0.521384 + 4.96063i 0.0277112 + 0.263655i
\(355\) 4.22650 0.898370i 0.224319 0.0476805i
\(356\) −4.70938 + 3.42156i −0.249597 + 0.181343i
\(357\) 17.2875 12.5601i 0.914952 0.664752i
\(358\) 21.0253 4.46907i 1.11122 0.236197i
\(359\) −3.53133 33.5983i −0.186376 1.77325i −0.543708 0.839275i \(-0.682980\pi\)
0.357331 0.933978i \(-0.383687\pi\)
\(360\) 0.960473 9.13829i 0.0506214 0.481630i
\(361\) 17.2848 + 3.67400i 0.909726 + 0.193368i
\(362\) −8.48819 + 3.77919i −0.446130 + 0.198630i
\(363\) −10.0277 11.1369i −0.526319 0.584536i
\(364\) −0.0450082 + 0.138521i −0.00235907 + 0.00726048i
\(365\) 20.1465 22.3749i 1.05451 1.17116i
\(366\) 1.64472 + 2.84875i 0.0859711 + 0.148906i
\(367\) −11.3157 + 19.5993i −0.590673 + 1.02308i 0.403469 + 0.914993i \(0.367804\pi\)
−0.994142 + 0.108082i \(0.965529\pi\)
\(368\) 4.36518 + 13.4346i 0.227551 + 0.700329i
\(369\) −0.238906 0.106368i −0.0124369 0.00553728i
\(370\) −15.0770 10.9541i −0.783814 0.569474i
\(371\) −16.0517 −0.833365
\(372\) 0 0
\(373\) −32.9720 −1.70723 −0.853613 0.520908i \(-0.825593\pi\)
−0.853613 + 0.520908i \(0.825593\pi\)
\(374\) −6.40617 4.65436i −0.331255 0.240671i
\(375\) −22.8927 10.1925i −1.18218 0.526339i
\(376\) −5.28723 16.2724i −0.272668 0.839185i
\(377\) −0.112379 + 0.194647i −0.00578783 + 0.0100248i
\(378\) 7.81265 + 13.5319i 0.401840 + 0.696006i
\(379\) −21.7413 + 24.1462i −1.11678 + 1.24031i −0.148906 + 0.988851i \(0.547575\pi\)
−0.967869 + 0.251454i \(0.919091\pi\)
\(380\) −0.535748 + 1.64886i −0.0274833 + 0.0845850i
\(381\) 7.29395 + 8.10075i 0.373680 + 0.415014i
\(382\) 9.05170 4.03008i 0.463125 0.206197i
\(383\) 26.1952 + 5.56796i 1.33851 + 0.284510i 0.820884 0.571095i \(-0.193481\pi\)
0.517629 + 0.855605i \(0.326815\pi\)
\(384\) −1.06425 + 10.1257i −0.0543100 + 0.516725i
\(385\) −0.826598 7.86455i −0.0421273 0.400815i
\(386\) 5.73808 1.21967i 0.292061 0.0620794i
\(387\) 6.20818 4.51050i 0.315579 0.229282i
\(388\) 4.96838 3.60974i 0.252232 0.183257i
\(389\) 17.3499 3.68783i 0.879675 0.186981i 0.254131 0.967170i \(-0.418211\pi\)
0.625544 + 0.780189i \(0.284877\pi\)
\(390\) 0.125574 + 1.19475i 0.00635866 + 0.0604986i
\(391\) −3.18185 + 30.2733i −0.160913 + 1.53099i
\(392\) −6.55456 1.39321i −0.331055 0.0703680i
\(393\) 17.6735 7.86876i 0.891511 0.396926i
\(394\) −18.9713 21.0697i −0.955758 1.06148i
\(395\) −5.33429 + 16.4173i −0.268397 + 0.826042i
\(396\) −0.200563 + 0.222747i −0.0100786 + 0.0111935i
\(397\) −4.97476 8.61654i −0.249676 0.432452i 0.713760 0.700391i \(-0.246991\pi\)
−0.963436 + 0.267939i \(0.913658\pi\)
\(398\) 16.8482 29.1819i 0.844523 1.46276i
\(399\) −1.15750 3.56243i −0.0579476 0.178344i
\(400\) −26.3265 11.7213i −1.31633 0.586066i
\(401\) −16.0959 11.6943i −0.803789 0.583987i 0.108234 0.994125i \(-0.465480\pi\)
−0.912023 + 0.410138i \(0.865480\pi\)
\(402\) 1.03779 0.0517604
\(403\) 0 0
\(404\) −1.92858 −0.0959506
\(405\) −18.3693 13.3460i −0.912776 0.663170i
\(406\) 3.38573 + 1.50743i 0.168031 + 0.0748123i
\(407\) 1.13730 + 3.50024i 0.0563738 + 0.173501i
\(408\) −14.8108 + 25.6530i −0.733242 + 1.27001i
\(409\) 12.1628 + 21.0665i 0.601410 + 1.04167i 0.992608 + 0.121365i \(0.0387273\pi\)
−0.391198 + 0.920306i \(0.627939\pi\)
\(410\) −1.05709 + 1.17402i −0.0522061 + 0.0579807i
\(411\) −0.0616002 + 0.189586i −0.00303851 + 0.00935159i
\(412\) −0.511206 0.567752i −0.0251853 0.0279711i
\(413\) −5.30555 + 2.36218i −0.261069 + 0.116235i
\(414\) −4.56919 0.971211i −0.224563 0.0477324i
\(415\) 0.129658 1.23361i 0.00636466 0.0605557i
\(416\) −0.0387231 0.368426i −0.00189856 0.0180636i
\(417\) −16.7365 + 3.55746i −0.819591 + 0.174209i
\(418\) −1.12296 + 0.815876i −0.0549256 + 0.0399058i
\(419\) 3.56513 2.59022i 0.174168 0.126541i −0.497286 0.867587i \(-0.665670\pi\)
0.671454 + 0.741046i \(0.265670\pi\)
\(420\) −4.77951 + 1.01592i −0.233216 + 0.0495716i
\(421\) 1.29863 + 12.3556i 0.0632912 + 0.602176i 0.979496 + 0.201465i \(0.0645702\pi\)
−0.916204 + 0.400711i \(0.868763\pi\)
\(422\) −0.175575 + 1.67049i −0.00854687 + 0.0813181i
\(423\) 4.39469 + 0.934120i 0.213677 + 0.0454185i
\(424\) 20.3275 9.05040i 0.987192 0.439526i
\(425\) −41.5528 46.1490i −2.01561 2.23856i
\(426\) 0.660548 2.03296i 0.0320037 0.0984972i
\(427\) −2.56278 + 2.84626i −0.124022 + 0.137740i
\(428\) 2.47870 + 4.29323i 0.119812 + 0.207521i
\(429\) 0.118623 0.205461i 0.00572718 0.00991976i
\(430\) −14.3250 44.0878i −0.690813 2.12610i
\(431\) −16.9602 7.55119i −0.816946 0.363728i −0.0446597 0.999002i \(-0.514220\pi\)
−0.772287 + 0.635274i \(0.780887\pi\)
\(432\) −13.9150 10.1098i −0.669484 0.486408i
\(433\) −36.1204 −1.73584 −0.867918 0.496708i \(-0.834542\pi\)
−0.867918 + 0.496708i \(0.834542\pi\)
\(434\) 0 0
\(435\) −7.54024 −0.361527
\(436\) −3.28548 2.38704i −0.157346 0.114319i
\(437\) 4.87461 + 2.17032i 0.233184 + 0.103820i
\(438\) −4.60274 14.1658i −0.219927 0.676866i
\(439\) 9.50469 16.4626i 0.453634 0.785718i −0.544974 0.838453i \(-0.683461\pi\)
0.998609 + 0.0527352i \(0.0167939\pi\)
\(440\) 5.48103 + 9.49342i 0.261298 + 0.452581i
\(441\) 1.17741 1.30765i 0.0560672 0.0622689i
\(442\) −0.432817 + 1.33208i −0.0205870 + 0.0633603i
\(443\) 8.33337 + 9.25515i 0.395931 + 0.439725i 0.907842 0.419313i \(-0.137729\pi\)
−0.511911 + 0.859038i \(0.671062\pi\)
\(444\) 2.07750 0.924962i 0.0985937 0.0438968i
\(445\) −54.6817 11.6230i −2.59216 0.550981i
\(446\) 1.60463 15.2670i 0.0759815 0.722916i
\(447\) 0.844201 + 8.03203i 0.0399293 + 0.379902i
\(448\) −19.0446 + 4.04805i −0.899772 + 0.191252i
\(449\) −20.5786 + 14.9513i −0.971166 + 0.705593i −0.955717 0.294287i \(-0.904918\pi\)
−0.0154490 + 0.999881i \(0.504918\pi\)
\(450\) 7.70968 5.60141i 0.363438 0.264053i
\(451\) 0.305170 0.0648659i 0.0143699 0.00305442i
\(452\) −0.158960 1.51240i −0.00747684 0.0711373i
\(453\) −2.12392 + 20.2078i −0.0997905 + 0.949443i
\(454\) 19.7015 + 4.18769i 0.924640 + 0.196538i
\(455\) −1.27783 + 0.568924i −0.0599054 + 0.0266716i
\(456\) 3.47442 + 3.85874i 0.162705 + 0.180702i
\(457\) 9.88049 30.4090i 0.462190 1.42247i −0.400292 0.916388i \(-0.631091\pi\)
0.862482 0.506087i \(-0.168909\pi\)
\(458\) −13.8134 + 15.3414i −0.645459 + 0.716855i
\(459\) −18.5319 32.0982i −0.864995 1.49822i
\(460\) 3.48032 6.02809i 0.162271 0.281061i
\(461\) 5.97950 + 18.4030i 0.278493 + 0.857114i 0.988274 + 0.152691i \(0.0487940\pi\)
−0.709781 + 0.704423i \(0.751206\pi\)
\(462\) −3.57385 1.59118i −0.166270 0.0740283i
\(463\) −0.0335439 0.0243710i −0.00155892 0.00113262i 0.587006 0.809583i \(-0.300307\pi\)
−0.588564 + 0.808450i \(0.700307\pi\)
\(464\) −4.07961 −0.189391
\(465\) 0 0
\(466\) −6.48875 −0.300586
\(467\) −20.4748 14.8758i −0.947462 0.688372i 0.00274297 0.999996i \(-0.499127\pi\)
−0.950205 + 0.311625i \(0.899127\pi\)
\(468\) 0.0484340 + 0.0215642i 0.00223886 + 0.000996806i
\(469\) 0.373397 + 1.14920i 0.0172419 + 0.0530650i
\(470\) 13.5706 23.5050i 0.625966 1.08420i
\(471\) 11.1734 + 19.3530i 0.514845 + 0.891737i
\(472\) 5.38696 5.98283i 0.247955 0.275382i
\(473\) −2.82898 + 8.70671i −0.130077 + 0.400335i
\(474\) 5.71414 + 6.34620i 0.262459 + 0.291490i
\(475\) −9.94452 + 4.42759i −0.456286 + 0.203152i
\(476\) −5.57239 1.18445i −0.255410 0.0542891i
\(477\) −0.610755 + 5.81095i −0.0279646 + 0.266065i
\(478\) −1.13437 10.7928i −0.0518848 0.493651i
\(479\) 20.7770 4.41628i 0.949324 0.201785i 0.292871 0.956152i \(-0.405389\pi\)
0.656453 + 0.754367i \(0.272056\pi\)
\(480\) 10.0546 7.30506i 0.458925 0.333429i
\(481\) 0.526661 0.382641i 0.0240137 0.0174469i
\(482\) 8.48261 1.80304i 0.386372 0.0821260i
\(483\) 1.57197 + 14.9563i 0.0715272 + 0.680536i
\(484\) −0.417627 + 3.97345i −0.0189830 + 0.180612i
\(485\) 57.6891 + 12.2622i 2.61953 + 0.556797i
\(486\) 9.30156 4.14132i 0.421927 0.187854i
\(487\) 17.9073 + 19.8880i 0.811455 + 0.901212i 0.996675 0.0814851i \(-0.0259663\pi\)
−0.185220 + 0.982697i \(0.559300\pi\)
\(488\) 1.64065 5.04940i 0.0742687 0.228575i
\(489\) 16.9222 18.7941i 0.765250 0.849897i
\(490\) −5.31488 9.20564i −0.240102 0.415868i
\(491\) 6.28320 10.8828i 0.283557 0.491135i −0.688701 0.725045i \(-0.741819\pi\)
0.972258 + 0.233910i \(0.0751522\pi\)
\(492\) −0.0595716 0.183342i −0.00268569 0.00826572i
\(493\) −8.03108 3.57567i −0.361702 0.161040i
\(494\) 0.198630 + 0.144313i 0.00893678 + 0.00649295i
\(495\) −2.87853 −0.129380
\(496\) 0 0
\(497\) 2.48886 0.111640
\(498\) −0.496442 0.360686i −0.0222461 0.0161627i
\(499\) −21.0393 9.36729i −0.941848 0.419338i −0.122393 0.992482i \(-0.539057\pi\)
−0.819455 + 0.573144i \(0.805724\pi\)
\(500\) 2.06449 + 6.35384i 0.0923268 + 0.284153i
\(501\) 12.0216 20.8221i 0.537087 0.930263i
\(502\) −14.3545 24.8626i −0.640671 1.10967i
\(503\) 0.442682 0.491648i 0.0197382 0.0219215i −0.733195 0.680019i \(-0.761972\pi\)
0.752933 + 0.658097i \(0.228638\pi\)
\(504\) 1.63552 5.03362i 0.0728520 0.224215i
\(505\) −12.3931 13.7640i −0.551487 0.612488i
\(506\) 5.09104 2.26668i 0.226324 0.100766i
\(507\) 18.8334 + 4.00316i 0.836420 + 0.177787i
\(508\) 0.303773 2.89021i 0.0134777 0.128232i
\(509\) 1.21958 + 11.6035i 0.0540568 + 0.514316i 0.987728 + 0.156184i \(0.0499194\pi\)
−0.933671 + 0.358131i \(0.883414\pi\)
\(510\) −45.9617 + 9.76945i −2.03522 + 0.432599i
\(511\) 14.0304 10.1937i 0.620667 0.450941i
\(512\) 20.4245 14.8393i 0.902644 0.655809i
\(513\) −6.35505 + 1.35081i −0.280582 + 0.0596396i
\(514\) 2.20550 + 20.9839i 0.0972804 + 0.925561i
\(515\) 0.766922 7.29678i 0.0337946 0.321535i
\(516\) 5.53313 + 1.17610i 0.243583 + 0.0517751i
\(517\) −4.89661 + 2.18011i −0.215353 + 0.0958812i
\(518\) −7.18275 7.97725i −0.315592 0.350500i
\(519\) −1.06928 + 3.29090i −0.0469362 + 0.144455i
\(520\) 1.29743 1.44094i 0.0568962 0.0631896i
\(521\) 15.9592 + 27.6422i 0.699186 + 1.21103i 0.968749 + 0.248043i \(0.0797874\pi\)
−0.269563 + 0.962983i \(0.586879\pi\)
\(522\) 0.674533 1.16833i 0.0295235 0.0511362i
\(523\) −0.00128254 0.00394726i −5.60817e−5 0.000172602i 0.951028 0.309103i \(-0.100029\pi\)
−0.951085 + 0.308931i \(0.900029\pi\)
\(524\) −4.71179 2.09782i −0.205835 0.0916438i
\(525\) −24.8206 18.0332i −1.08326 0.787033i
\(526\) −31.1411 −1.35782
\(527\) 0 0
\(528\) 4.30627 0.187406
\(529\) 1.27581 + 0.926929i 0.0554699 + 0.0403013i
\(530\) 32.2455 + 14.3566i 1.40065 + 0.623611i
\(531\) 0.653271 + 2.01056i 0.0283496 + 0.0872510i
\(532\) −0.499312 + 0.864834i −0.0216479 + 0.0374953i
\(533\) −0.0275924 0.0477914i −0.00119516 0.00207008i
\(534\) −18.5052 + 20.5521i −0.800799 + 0.889378i
\(535\) −14.7119 + 45.2784i −0.636049 + 1.95756i
\(536\) −1.12081 1.24478i −0.0484115 0.0537665i
\(537\) −23.0120 + 10.2456i −0.993040 + 0.442130i
\(538\) −15.5041 3.29549i −0.668428 0.142079i
\(539\) −0.219429 + 2.08772i −0.00945146 + 0.0899246i
\(540\) 0.885907 + 8.42885i 0.0381234 + 0.362720i
\(541\) −28.6353 + 6.08662i −1.23113 + 0.261684i −0.777142 0.629325i \(-0.783332\pi\)
−0.453985 + 0.891009i \(0.649998\pi\)
\(542\) 27.8384 20.2258i 1.19576 0.868771i
\(543\) 8.80905 6.40015i 0.378032 0.274657i
\(544\) 14.1732 3.01261i 0.607671 0.129165i
\(545\) −4.07669 38.7871i −0.174626 1.66146i
\(546\) −0.0723305 + 0.688179i −0.00309546 + 0.0294513i
\(547\) −40.2657 8.55875i −1.72164 0.365946i −0.762086 0.647476i \(-0.775825\pi\)
−0.959552 + 0.281530i \(0.909158\pi\)
\(548\) 0.0485504 0.0216160i 0.00207397 0.000923391i
\(549\) 0.932873 + 1.03606i 0.0398140 + 0.0442180i
\(550\) −3.51320 + 10.8125i −0.149803 + 0.461047i
\(551\) −1.03114 + 1.14520i −0.0439282 + 0.0487872i
\(552\) −10.4235 18.0540i −0.443653 0.768429i
\(553\) −4.97150 + 8.61089i −0.211410 + 0.366172i
\(554\) −5.93260 18.2587i −0.252052 0.775737i
\(555\) 19.9514 + 8.88292i 0.846888 + 0.377059i
\(556\) 3.69046 + 2.68128i 0.156511 + 0.113712i
\(557\) −5.73810 −0.243131 −0.121566 0.992583i \(-0.538791\pi\)
−0.121566 + 0.992583i \(0.538791\pi\)
\(558\) 0 0
\(559\) 1.61931 0.0684894
\(560\) −20.5400 14.9232i −0.867975 0.630620i
\(561\) 8.47729 + 3.77433i 0.357912 + 0.159352i
\(562\) 11.8390 + 36.4367i 0.499398 + 1.53699i
\(563\) 7.14710 12.3791i 0.301214 0.521718i −0.675197 0.737637i \(-0.735941\pi\)
0.976411 + 0.215919i \(0.0692748\pi\)
\(564\) 1.65598 + 2.86823i 0.0697292 + 0.120774i
\(565\) 9.77226 10.8532i 0.411122 0.456597i
\(566\) 1.23108 3.78889i 0.0517463 0.159259i
\(567\) −8.75121 9.71921i −0.367516 0.408168i
\(568\) −3.15183 + 1.40328i −0.132248 + 0.0588805i
\(569\) −14.0480 2.98598i −0.588921 0.125179i −0.0961933 0.995363i \(-0.530667\pi\)
−0.492727 + 0.870184i \(0.664000\pi\)
\(570\) −0.860975 + 8.19163i −0.0360623 + 0.343110i
\(571\) −3.48906 33.1962i −0.146012 1.38922i −0.784760 0.619800i \(-0.787214\pi\)
0.638748 0.769416i \(-0.279453\pi\)
\(572\) −0.0618680 + 0.0131505i −0.00258683 + 0.000549848i
\(573\) −9.39385 + 6.82503i −0.392434 + 0.285120i
\(574\) −0.736179 + 0.534865i −0.0307275 + 0.0223248i
\(575\) 42.7493 9.08664i 1.78277 0.378939i
\(576\) 0.740819 + 7.04842i 0.0308675 + 0.293684i
\(577\) 2.34976 22.3565i 0.0978217 0.930712i −0.830019 0.557735i \(-0.811670\pi\)
0.927841 0.372977i \(-0.121663\pi\)
\(578\) −32.5247 6.91334i −1.35285 0.287557i
\(579\) −6.28027 + 2.79616i −0.260999 + 0.116204i
\(580\) 1.34511 + 1.49390i 0.0558528 + 0.0620308i
\(581\) 0.220786 0.679508i 0.00915973 0.0281908i
\(582\) 19.5230 21.6825i 0.809253 0.898767i
\(583\) −3.48533 6.03677i −0.144348 0.250018i
\(584\) −12.0203 + 20.8197i −0.497402 + 0.861525i
\(585\) 0.157338 + 0.484237i 0.00650514 + 0.0200207i
\(586\) 2.19858 + 0.978871i 0.0908225 + 0.0404368i
\(587\) 5.19079 + 3.77133i 0.214247 + 0.155659i 0.689733 0.724064i \(-0.257728\pi\)
−0.475486 + 0.879723i \(0.657728\pi\)
\(588\) 1.29711 0.0534920
\(589\) 0 0
\(590\) 12.7708 0.525764
\(591\) 26.8800 + 19.5294i 1.10569 + 0.803334i
\(592\) 10.7946 + 4.80605i 0.443654 + 0.197528i
\(593\) −6.44614 19.8392i −0.264711 0.814697i −0.991760 0.128111i \(-0.959109\pi\)
0.727049 0.686586i \(-0.240891\pi\)
\(594\) −3.39274 + 5.87640i −0.139206 + 0.241112i
\(595\) −27.3551 47.3805i −1.12145 1.94241i
\(596\) 1.44074 1.60010i 0.0590149 0.0655427i
\(597\) −12.2026 + 37.5557i −0.499418 + 1.53705i
\(598\) −0.659582 0.732539i −0.0269723 0.0299558i
\(599\) −10.5591 + 4.70122i −0.431434 + 0.192087i −0.610951 0.791668i \(-0.709213\pi\)
0.179518 + 0.983755i \(0.442546\pi\)
\(600\) 41.5998 + 8.84230i 1.69830 + 0.360985i
\(601\) −0.451293 + 4.29377i −0.0184086 + 0.175146i −0.999863 0.0165493i \(-0.994732\pi\)
0.981454 + 0.191696i \(0.0613986\pi\)
\(602\) −2.79107 26.5552i −0.113755 1.08231i
\(603\) 0.430232 0.0914487i 0.0175204 0.00372408i
\(604\) 4.38252 3.18409i 0.178322 0.129559i
\(605\) −31.0415 + 22.5530i −1.26202 + 0.916909i
\(606\) −8.96231 + 1.90500i −0.364069 + 0.0773853i
\(607\) −4.69429 44.6632i −0.190536 1.81282i −0.504524 0.863398i \(-0.668332\pi\)
0.313988 0.949427i \(-0.398335\pi\)
\(608\) 0.265499 2.52605i 0.0107674 0.102445i
\(609\) −4.24828 0.902999i −0.172149 0.0365914i
\(610\) 7.69392 3.42555i 0.311518 0.138697i
\(611\) 0.634392 + 0.704563i 0.0256647 + 0.0285036i
\(612\) −0.640812 + 1.97222i −0.0259033 + 0.0797221i
\(613\) −1.74319 + 1.93601i −0.0704070 + 0.0781949i −0.777319 0.629106i \(-0.783421\pi\)
0.706912 + 0.707301i \(0.250088\pi\)
\(614\) −14.3937 24.9306i −0.580883 1.00612i
\(615\) 0.925674 1.60332i 0.0373268 0.0646519i
\(616\) 1.95118 + 6.00512i 0.0786154 + 0.241953i
\(617\) −22.8266 10.1630i −0.918963 0.409149i −0.107936 0.994158i \(-0.534424\pi\)
−0.811027 + 0.585009i \(0.801091\pi\)
\(618\) −2.93643 2.13344i −0.118121 0.0858197i
\(619\) 31.9083 1.28250 0.641252 0.767330i \(-0.278415\pi\)
0.641252 + 0.767330i \(0.278415\pi\)
\(620\) 0 0
\(621\) 26.0847 1.04674
\(622\) −16.2676 11.8191i −0.652271 0.473902i
\(623\) −29.4165 13.0971i −1.17855 0.524723i
\(624\) −0.235378 0.724418i −0.00942264 0.0289999i
\(625\) −8.47372 + 14.6769i −0.338949 + 0.587077i
\(626\) −4.02105 6.96466i −0.160713 0.278364i
\(627\) 1.08843 1.20883i 0.0434679 0.0482760i
\(628\) 1.84103 5.66612i 0.0734652 0.226103i
\(629\) 17.0377 + 18.9223i 0.679339 + 0.754482i
\(630\) 7.66988 3.41485i 0.305575 0.136051i
\(631\) 0.351890 + 0.0747965i 0.0140085 + 0.00297760i 0.214911 0.976634i \(-0.431054\pi\)
−0.200902 + 0.979611i \(0.564387\pi\)
\(632\) 1.44074 13.7077i 0.0573094 0.545263i
\(633\) −0.205755 1.95762i −0.00817801 0.0778086i
\(634\) 18.9568 4.02939i 0.752869 0.160027i
\(635\) 22.5790 16.4046i 0.896019 0.650996i
\(636\) −3.48458 + 2.53170i −0.138173 + 0.100388i
\(637\) 0.363199 0.0772003i 0.0143905 0.00305879i
\(638\) 0.168232 + 1.60062i 0.00666038 + 0.0633693i
\(639\) 0.0946989 0.901000i 0.00374623 0.0356430i
\(640\) 25.4982 + 5.41981i 1.00791 + 0.214237i
\(641\) −28.1435 + 12.5303i −1.11160 + 0.494917i −0.878600 0.477559i \(-0.841522\pi\)
−0.233003 + 0.972476i \(0.574855\pi\)
\(642\) 15.7595 + 17.5027i 0.621977 + 0.690775i
\(643\) −0.541347 + 1.66609i −0.0213486 + 0.0657044i −0.961163 0.275980i \(-0.910998\pi\)
0.939815 + 0.341685i \(0.110998\pi\)
\(644\) 2.68277 2.97952i 0.105716 0.117409i
\(645\) 27.1624 + 47.0467i 1.06952 + 1.85246i
\(646\) −4.80159 + 8.31659i −0.188916 + 0.327212i
\(647\) −7.61739 23.4439i −0.299470 0.921675i −0.981683 0.190521i \(-0.938982\pi\)
0.682213 0.731154i \(-0.261018\pi\)
\(648\) 16.5623 + 7.37400i 0.650628 + 0.289678i
\(649\) −2.04038 1.48242i −0.0800918 0.0581901i
\(650\) 2.01095 0.0788760
\(651\) 0 0
\(652\) −6.74233 −0.264050
\(653\) 0.231107 + 0.167909i 0.00904393 + 0.00657080i 0.592298 0.805719i \(-0.298221\pi\)
−0.583254 + 0.812290i \(0.698221\pi\)
\(654\) −17.6258 7.84751i −0.689223 0.306862i
\(655\) −15.3063 47.1079i −0.598065 1.84066i
\(656\) 0.500831 0.867465i 0.0195542 0.0338688i
\(657\) −3.15640 5.46704i −0.123143 0.213290i
\(658\) 10.4608 11.6179i 0.407804 0.452912i
\(659\) 11.5649 35.5930i 0.450503 1.38651i −0.425832 0.904802i \(-0.640018\pi\)
0.876335 0.481703i \(-0.159982\pi\)
\(660\) −1.41985 1.57690i −0.0552675 0.0613808i
\(661\) 3.82919 1.70487i 0.148938 0.0663116i −0.330914 0.943661i \(-0.607357\pi\)
0.479852 + 0.877349i \(0.340690\pi\)
\(662\) 11.1106 + 2.36163i 0.431826 + 0.0917875i
\(663\) 0.171571 1.63239i 0.00666325 0.0633966i
\(664\) 0.103527 + 0.984998i 0.00401764 + 0.0382253i
\(665\) −9.38076 + 1.99394i −0.363770 + 0.0773218i
\(666\) −3.16117 + 2.29673i −0.122493 + 0.0889963i
\(667\) 5.00538 3.63662i 0.193809 0.140810i
\(668\) −6.26990 + 1.33271i −0.242590 + 0.0515641i
\(669\) 1.88045 + 17.8913i 0.0727023 + 0.691716i
\(670\) 0.277740 2.64252i 0.0107300 0.102090i
\(671\) −1.62689 0.345805i −0.0628053 0.0133497i
\(672\) 6.53971 2.91167i 0.252275 0.112320i
\(673\) 6.67302 + 7.41114i 0.257226 + 0.285678i 0.857901 0.513815i \(-0.171768\pi\)
−0.600675 + 0.799493i \(0.705101\pi\)
\(674\) −1.70994 + 5.26266i −0.0658645 + 0.202710i
\(675\) −35.6074 + 39.5460i −1.37053 + 1.52213i
\(676\) −2.56659 4.44546i −0.0987150 0.170979i
\(677\) 23.8788 41.3594i 0.917738 1.58957i 0.114896 0.993377i \(-0.463346\pi\)
0.802842 0.596192i \(-0.203320\pi\)
\(678\) −2.23261 6.87126i −0.0857428 0.263889i
\(679\) 31.0344 + 13.8174i 1.19099 + 0.530263i
\(680\) 61.3563 + 44.5780i 2.35291 + 1.70949i
\(681\) −23.6038 −0.904500
\(682\) 0 0
\(683\) 27.7600 1.06221 0.531104 0.847307i \(-0.321777\pi\)
0.531104 + 0.847307i \(0.321777\pi\)
\(684\) 0.294083 + 0.213664i 0.0112446 + 0.00816965i
\(685\) 0.466256 + 0.207590i 0.0178147 + 0.00793162i
\(686\) −7.88945 24.2812i −0.301221 0.927062i
\(687\) 12.0961 20.9511i 0.461496 0.799335i
\(688\) 14.6961 + 25.4544i 0.560283 + 0.970438i
\(689\) −0.825024 + 0.916282i −0.0314309 + 0.0349076i
\(690\) 10.2190 31.4509i 0.389031 1.19731i
\(691\) 25.4477 + 28.2625i 0.968075 + 1.07516i 0.997140 + 0.0755790i \(0.0240805\pi\)
−0.0290645 + 0.999578i \(0.509253\pi\)
\(692\) 0.842756 0.375219i 0.0320368 0.0142637i
\(693\) −1.62180 0.344725i −0.0616072 0.0130950i
\(694\) −3.23116 + 30.7425i −0.122653 + 1.16697i
\(695\) 4.57920 + 43.5682i 0.173699 + 1.65263i
\(696\) 5.88905 1.25176i 0.223224 0.0474477i
\(697\) 1.74624 1.26872i 0.0661437 0.0480562i
\(698\) −13.3661 + 9.71106i −0.505915 + 0.367569i
\(699\) 7.43792 1.58098i 0.281328 0.0597981i
\(700\) 0.854970 + 8.13450i 0.0323148 + 0.307455i
\(701\) −4.29155 + 40.8313i −0.162089 + 1.54218i 0.547044 + 0.837104i \(0.315753\pi\)
−0.709133 + 0.705074i \(0.750914\pi\)
\(702\) 1.17400 + 0.249541i 0.0443096 + 0.00941830i
\(703\) 4.07752 1.81543i 0.153786 0.0684701i
\(704\) −5.65757 6.28337i −0.213228 0.236813i
\(705\) −9.82874 + 30.2498i −0.370172 + 1.13927i
\(706\) 9.17426 10.1891i 0.345278 0.383470i
\(707\) −5.33413 9.23898i −0.200611 0.347468i
\(708\) −0.779187 + 1.34959i −0.0292836 + 0.0507207i
\(709\) 12.9990 + 40.0069i 0.488188 + 1.50249i 0.827309 + 0.561747i \(0.189870\pi\)
−0.339121 + 0.940743i \(0.610130\pi\)
\(710\) −4.99973 2.22602i −0.187637 0.0835412i
\(711\) 2.92810 + 2.12739i 0.109812 + 0.0797833i
\(712\) 44.6368 1.67284
\(713\) 0 0
\(714\) −27.0654 −1.01290
\(715\) −0.491418 0.357036i −0.0183780 0.0133524i
\(716\) 6.13503 + 2.73149i 0.229277 + 0.102081i
\(717\) 3.92996 + 12.0952i 0.146767 + 0.451702i
\(718\) −21.3951 + 37.0573i −0.798456 + 1.38297i
\(719\) 16.6345 + 28.8118i 0.620362 + 1.07450i 0.989418 + 0.145092i \(0.0463477\pi\)
−0.369056 + 0.929407i \(0.620319\pi\)
\(720\) −6.18394 + 6.86796i −0.230462 + 0.255954i
\(721\) 1.30594 4.01926i 0.0486357 0.149685i
\(722\) −14.9765 16.6331i −0.557368 0.619020i
\(723\) −9.28414 + 4.13356i −0.345281 + 0.153729i
\(724\) −2.83948 0.603549i −0.105528 0.0224307i
\(725\) −1.31934 + 12.5527i −0.0489991 + 0.466196i
\(726\) 1.98411 + 18.8775i 0.0736372 + 0.700611i
\(727\) 32.0078 6.80347i 1.18710 0.252327i 0.428295 0.903639i \(-0.359115\pi\)
0.758810 + 0.651312i \(0.225781\pi\)
\(728\) 0.903555 0.656471i 0.0334880 0.0243305i
\(729\) −24.1540 + 17.5489i −0.894592 + 0.649959i
\(730\) −37.3020 + 7.92879i −1.38061 + 0.293458i
\(731\) 6.62051 + 62.9900i 0.244869 + 2.32977i
\(732\) −0.107425 + 1.02208i −0.00397055 + 0.0377773i
\(733\) 9.74617 + 2.07161i 0.359983 + 0.0765168i 0.384353 0.923186i \(-0.374425\pi\)
−0.0243699 + 0.999703i \(0.507758\pi\)
\(734\) 26.1867 11.6591i 0.966567 0.430343i
\(735\) 8.33528 + 9.25726i 0.307451 + 0.341459i
\(736\) −3.15124 + 9.69852i −0.116156 + 0.357492i
\(737\) −0.351116 + 0.389954i −0.0129335 + 0.0143641i
\(738\) 0.165618 + 0.286858i 0.00609647 + 0.0105594i
\(739\) −15.4792 + 26.8108i −0.569412 + 0.986251i 0.427212 + 0.904152i \(0.359496\pi\)
−0.996624 + 0.0820995i \(0.973837\pi\)
\(740\) −1.79923 5.53747i −0.0661411 0.203561i
\(741\) −0.262847 0.117027i −0.00965593 0.00429910i
\(742\) 16.4483 + 11.9504i 0.603834 + 0.438711i
\(743\) 1.11003 0.0407231 0.0203615 0.999793i \(-0.493518\pi\)
0.0203615 + 0.999793i \(0.493518\pi\)
\(744\) 0 0
\(745\) 20.6778 0.757578
\(746\) 33.7865 + 24.5473i 1.23701 + 0.898741i
\(747\) −0.237591 0.105782i −0.00869299 0.00387037i
\(748\) −0.764490 2.35286i −0.0279525 0.0860290i
\(749\) −13.7113 + 23.7487i −0.501000 + 0.867757i
\(750\) 15.8700 + 27.4877i 0.579491 + 1.00371i
\(751\) 18.8396 20.9235i 0.687466 0.763508i −0.293863 0.955848i \(-0.594941\pi\)
0.981328 + 0.192339i \(0.0616075\pi\)
\(752\) −5.31779 + 16.3665i −0.193920 + 0.596824i
\(753\) 22.5120 + 25.0021i 0.820382 + 0.911127i
\(754\) 0.260068 0.115790i 0.00947110 0.00421681i
\(755\) 50.8865 + 10.8163i 1.85195 + 0.393644i
\(756\) −0.510284 + 4.85503i −0.0185588 + 0.176576i
\(757\) −4.04758 38.5102i −0.147112 1.39968i −0.780168 0.625570i \(-0.784866\pi\)
0.633056 0.774106i \(-0.281800\pi\)
\(758\) 40.2549 8.55645i 1.46212 0.310784i
\(759\) −5.28348 + 3.83867i −0.191778 + 0.139335i
\(760\) 10.7553 7.81420i 0.390137 0.283451i
\(761\) −42.4877 + 9.03103i −1.54018 + 0.327375i −0.898282 0.439419i \(-0.855185\pi\)
−0.641894 + 0.766793i \(0.721851\pi\)
\(762\) −1.44320 13.7311i −0.0522816 0.497426i
\(763\) 2.34818 22.3414i 0.0850097 0.808814i
\(764\) 3.02798 + 0.643617i 0.109549 + 0.0232853i
\(765\) −18.1932 + 8.10015i −0.657778 + 0.292861i
\(766\) −22.6970 25.2076i −0.820076 0.910786i
\(767\) −0.137853 + 0.424268i −0.00497759 + 0.0153194i
\(768\) −9.03908 + 10.0389i −0.326170 + 0.362248i
\(769\) 1.55509 + 2.69350i 0.0560781 + 0.0971302i 0.892702 0.450648i \(-0.148807\pi\)
−0.836624 + 0.547778i \(0.815474\pi\)
\(770\) −5.00806 + 8.67422i −0.180478 + 0.312597i
\(771\) −7.64083 23.5161i −0.275178 0.846910i
\(772\) 1.67433 + 0.745460i 0.0602604 + 0.0268297i
\(773\) −17.5073 12.7198i −0.629693 0.457499i 0.226601 0.973988i \(-0.427239\pi\)
−0.856294 + 0.516489i \(0.827239\pi\)
\(774\) −9.71956 −0.349362
\(775\) 0 0
\(776\) −47.0918 −1.69050
\(777\) 10.1771 + 7.39408i 0.365101 + 0.265261i
\(778\) −20.5240 9.13789i −0.735822 0.327609i
\(779\) −0.116921 0.359847i −0.00418914 0.0128929i
\(780\) −0.187665 + 0.325045i −0.00671947 + 0.0116385i
\(781\) 0.540408 + 0.936015i 0.0193373 + 0.0334932i
\(782\) 25.7986 28.6523i 0.922556 1.02460i
\(783\) −2.32791 + 7.16457i −0.0831927 + 0.256041i
\(784\) 4.50976 + 5.00859i 0.161063 + 0.178878i
\(785\) 52.2686 23.2715i 1.86555 0.830595i
\(786\) −23.9683 5.09462i −0.854921 0.181719i
\(787\) 0.823322 7.83339i 0.0293483 0.279230i −0.969999 0.243108i \(-0.921833\pi\)
0.999347 0.0361217i \(-0.0115004\pi\)
\(788\) −0.925909 8.80944i −0.0329841 0.313823i
\(789\) 35.6964 7.58751i 1.27083 0.270122i
\(790\) 17.6885 12.8515i 0.629330 0.457235i
\(791\) 6.80558 4.94454i 0.241979 0.175808i
\(792\) 2.24818 0.477865i 0.0798855 0.0169802i
\(793\) 0.0307517 + 0.292583i 0.00109202 + 0.0103899i
\(794\) −1.31728 + 12.5330i −0.0467484 + 0.444781i
\(795\) −40.4603 8.60010i −1.43498 0.305014i
\(796\) 9.61749 4.28198i 0.340883 0.151771i
\(797\) 19.7515 + 21.9363i 0.699634 + 0.777022i 0.983318 0.181896i \(-0.0582233\pi\)
−0.283684 + 0.958918i \(0.591557\pi\)
\(798\) −1.46609 + 4.51217i −0.0518992 + 0.159729i
\(799\) −24.8133 + 27.5580i −0.877833 + 0.974932i
\(800\) −10.4019 18.0166i −0.367763 0.636984i
\(801\) −5.86059 + 10.1508i −0.207074 + 0.358663i
\(802\) 7.78716 + 23.9664i 0.274974 + 0.846283i
\(803\) 6.88008 + 3.06321i 0.242793 + 0.108098i
\(804\) 0.262311 + 0.190580i 0.00925100 + 0.00672124i
\(805\) 38.5039 1.35708
\(806\) 0 0
\(807\) 18.5749 0.653869
\(808\) 11.9642 + 8.69250i 0.420899 + 0.305801i
\(809\) −1.94359 0.865343i −0.0683331 0.0304238i 0.372286 0.928118i \(-0.378574\pi\)
−0.440619 + 0.897694i \(0.645241\pi\)
\(810\) 8.88702 + 27.3514i 0.312258 + 0.961032i
\(811\) −3.60252 + 6.23975i −0.126502 + 0.219107i −0.922319 0.386430i \(-0.873708\pi\)
0.795817 + 0.605537i \(0.207042\pi\)
\(812\) 0.578950 + 1.00277i 0.0203172 + 0.0351904i
\(813\) −26.9826 + 29.9672i −0.946320 + 1.05100i
\(814\) 1.44050 4.43341i 0.0504896 0.155391i
\(815\) −43.3264 48.1188i −1.51766 1.68553i
\(816\) 27.2170 12.1178i 0.952787 0.424208i
\(817\) 10.8599 + 2.30834i 0.379940 + 0.0807588i
\(818\) 3.22060 30.6419i 0.112606 1.07137i
\(819\) 0.0306556 + 0.291669i 0.00107119 + 0.0101917i
\(820\) −0.482787 + 0.102619i −0.0168596 + 0.00358363i
\(821\) −34.0270 + 24.7221i −1.18755 + 0.862807i −0.993003 0.118086i \(-0.962324\pi\)
−0.194548 + 0.980893i \(0.562324\pi\)
\(822\) 0.204267 0.148408i 0.00712462 0.00517634i
\(823\) 29.5136 6.27331i 1.02878 0.218674i 0.337549 0.941308i \(-0.390402\pi\)
0.691231 + 0.722634i \(0.257069\pi\)
\(824\) 0.612361 + 5.82622i 0.0213326 + 0.202966i
\(825\) 1.39265 13.2501i 0.0484857 0.461311i
\(826\) 7.19523 + 1.52939i 0.250354 + 0.0532144i
\(827\) −3.53584 + 1.57426i −0.122953 + 0.0547423i −0.467291 0.884103i \(-0.654770\pi\)
0.344338 + 0.938846i \(0.388103\pi\)
\(828\) −0.976549 1.08457i −0.0339374 0.0376913i
\(829\) 4.07025 12.5269i 0.141366 0.435079i −0.855160 0.518364i \(-0.826541\pi\)
0.996526 + 0.0832851i \(0.0265412\pi\)
\(830\) −1.05127 + 1.16756i −0.0364902 + 0.0405265i
\(831\) 11.2491 + 19.4841i 0.390228 + 0.675895i
\(832\) −0.747774 + 1.29518i −0.0259244 + 0.0449024i
\(833\) 4.48797 + 13.8126i 0.155499 + 0.478577i
\(834\) 19.7984 + 8.81483i 0.685564 + 0.305233i
\(835\) −49.8019 36.1832i −1.72346 1.25217i
\(836\) −0.433665 −0.0149986
\(837\) 0 0
\(838\) −5.58159 −0.192813
\(839\) 27.7080 + 20.1311i 0.956588 + 0.695002i 0.952356 0.304989i \(-0.0986530\pi\)
0.00423187 + 0.999991i \(0.498653\pi\)
\(840\) 34.2292 + 15.2398i 1.18102 + 0.525823i
\(841\) −8.40934 25.8813i −0.289977 0.892458i
\(842\) 7.86792 13.6276i 0.271147 0.469640i
\(843\) −22.4486 38.8821i −0.773170 1.33917i
\(844\) −0.351147 + 0.389988i −0.0120870 + 0.0134239i
\(845\) 15.2335 46.8840i 0.524049 1.61286i
\(846\) −3.80780 4.22900i −0.130915 0.145396i
\(847\) −20.1901 + 8.98922i −0.693741 + 0.308873i
\(848\) −21.8908 4.65304i −0.751734 0.159786i
\(849\) −0.488007 + 4.64307i −0.0167483 + 0.159350i
\(850\) 8.22174 + 78.2246i 0.282003 + 2.68308i
\(851\) −17.5283 + 3.72576i −0.600864 + 0.127717i
\(852\) 0.540292 0.392545i 0.0185101 0.0134484i
\(853\) 11.6886 8.49225i 0.400209 0.290769i −0.369417 0.929264i \(-0.620443\pi\)
0.769626 + 0.638495i \(0.220443\pi\)
\(854\) 4.74510 1.00860i 0.162374 0.0345136i
\(855\) 0.364904 + 3.47183i 0.0124795 + 0.118734i
\(856\) 3.97352 37.8055i 0.135812 1.29217i
\(857\) −27.2248 5.78682i −0.929983 0.197674i −0.282075 0.959392i \(-0.591023\pi\)
−0.647908 + 0.761719i \(0.724356\pi\)
\(858\) −0.274517 + 0.122223i −0.00937186 + 0.00417262i
\(859\) −31.6634 35.1657i −1.08034 1.19984i −0.978759 0.205012i \(-0.934277\pi\)
−0.101581 0.994827i \(-0.532390\pi\)
\(860\) 4.47552 13.7742i 0.152614 0.469697i
\(861\) 0.713547 0.792474i 0.0243176 0.0270075i
\(862\) 11.7574 + 20.3644i 0.400459 + 0.693616i
\(863\) −13.0267 + 22.5629i −0.443434 + 0.768049i −0.997942 0.0641289i \(-0.979573\pi\)
0.554508 + 0.832178i \(0.312906\pi\)
\(864\) −3.83695 11.8089i −0.130536 0.401747i
\(865\) 8.09344 + 3.60343i 0.275185 + 0.122520i
\(866\) 37.0127 + 26.8913i 1.25774 + 0.913802i
\(867\) 38.9668 1.32338
\(868\) 0 0
\(869\) −4.31787 −0.146474
\(870\) 7.72650 + 5.61363i 0.261953 + 0.190320i
\(871\) 0.0847914 + 0.0377516i 0.00287305 + 0.00127916i
\(872\) 9.62302 + 29.6166i 0.325876 + 1.00294i
\(873\) 6.18291 10.7091i 0.209260 0.362449i
\(874\) −3.37925 5.85303i −0.114305 0.197982i
\(875\) −24.7284 + 27.4637i −0.835973 + 0.928442i
\(876\) 1.43802 4.42577i 0.0485862 0.149533i
\(877\) −22.9655 25.5058i −0.775491 0.861271i 0.217909 0.975969i \(-0.430076\pi\)
−0.993400 + 0.114699i \(0.963410\pi\)
\(878\) −21.9957 + 9.79313i −0.742320 + 0.330502i
\(879\) −2.75869 0.586377i −0.0930483 0.0197780i
\(880\) 1.15247 10.9650i 0.0388498 0.369631i
\(881\) 0.379927 + 3.61476i 0.0128001 + 0.121784i 0.999056 0.0434401i \(-0.0138318\pi\)
−0.986256 + 0.165225i \(0.947165\pi\)
\(882\) −2.18003 + 0.463379i −0.0734053 + 0.0156028i
\(883\) −31.9217 + 23.1925i −1.07425 + 0.780489i −0.976671 0.214739i \(-0.931110\pi\)
−0.0975789 + 0.995228i \(0.531110\pi\)
\(884\) −0.354021 + 0.257211i −0.0119070 + 0.00865095i
\(885\) −14.6389 + 3.11159i −0.492080 + 0.104595i
\(886\) −1.64886 15.6879i −0.0553946 0.527045i
\(887\) 4.42184 42.0710i 0.148471 1.41261i −0.625914 0.779892i \(-0.715274\pi\)
0.774385 0.632714i \(-0.218059\pi\)
\(888\) −17.0570 3.62558i −0.572395 0.121666i
\(889\) 14.6859 6.53857i 0.492548 0.219297i
\(890\) 47.3793 + 52.6200i 1.58816 + 1.76383i
\(891\) 1.75506 5.40152i 0.0587967 0.180958i
\(892\) 3.20923 3.56421i 0.107453 0.119338i
\(893\) 3.25019 + 5.62950i 0.108764 + 0.188384i
\(894\) 5.11471 8.85894i 0.171062 0.296287i
\(895\) 19.9297 + 61.3373i 0.666176 + 2.05028i
\(896\) 13.7170 + 6.10720i 0.458253 + 0.204027i
\(897\) 0.934547 + 0.678988i 0.0312036 + 0.0226708i
\(898\) 32.2180 1.07513
\(899\) 0 0
\(900\) 2.97733 0.0992444
\(901\) −39.0159 28.3467i −1.29981 0.944365i
\(902\) −0.361001 0.160728i −0.0120200 0.00535165i
\(903\) 9.66950 + 29.7597i 0.321781 + 0.990340i
\(904\) −5.83056 + 10.0988i −0.193921 + 0.335882i
\(905\) −13.9391 24.1433i −0.463352 0.802549i
\(906\) 17.2208 19.1257i 0.572124 0.635409i
\(907\) −10.0023 + 30.7838i −0.332120 + 1.02216i 0.636003 + 0.771686i \(0.280586\pi\)
−0.968123 + 0.250474i \(0.919414\pi\)
\(908\) 4.21071 + 4.67647i 0.139737 + 0.155194i
\(909\) −3.54760 + 1.57949i −0.117666 + 0.0523884i
\(910\) 1.73295 + 0.368350i 0.0574467 + 0.0122107i
\(911\) 2.82862 26.9125i 0.0937163 0.891651i −0.842138 0.539263i \(-0.818703\pi\)
0.935854 0.352388i \(-0.114630\pi\)
\(912\) −0.545896 5.19385i −0.0180764 0.171986i
\(913\) 0.303490 0.0645089i 0.0100441 0.00213493i
\(914\) −32.7638 + 23.8043i −1.08373 + 0.787376i
\(915\) −7.98474 + 5.80126i −0.263968 + 0.191784i
\(916\) −6.30875 + 1.34097i −0.208447 + 0.0443068i
\(917\) −2.98226 28.3743i −0.0984828 0.937001i
\(918\) −4.90709 + 46.6879i −0.161958 + 1.54093i
\(919\) −20.3112 4.31727i −0.670004 0.142414i −0.139664 0.990199i \(-0.544602\pi\)
−0.530340 + 0.847785i \(0.677936\pi\)
\(920\) −48.7604 + 21.7095i −1.60758 + 0.715741i
\(921\) 22.5736 + 25.0705i 0.743824 + 0.826100i
\(922\) 7.57365 23.3093i 0.249425 0.767651i
\(923\) 0.127922 0.142071i 0.00421060 0.00467634i
\(924\) −0.611117 1.05849i −0.0201043 0.0348216i
\(925\) 18.2789 31.6600i 0.601007 1.04097i
\(926\) 0.0162285 + 0.0499461i 0.000533301 + 0.00164133i
\(927\) −1.40534 0.625697i −0.0461574 0.0205506i
\(928\) −2.38262 1.73108i −0.0782134 0.0568254i
\(929\) −20.6589 −0.677798 −0.338899 0.940823i \(-0.610055\pi\)
−0.338899 + 0.940823i \(0.610055\pi\)
\(930\) 0 0
\(931\) 2.54585 0.0834368
\(932\) −1.64009 1.19159i −0.0537229 0.0390320i
\(933\) 21.5269 + 9.58440i 0.704759 + 0.313779i
\(934\) 9.90570 + 30.4866i 0.324124 + 0.997552i
\(935\) 11.8793 20.5756i 0.388495 0.672893i
\(936\) −0.203272 0.352078i −0.00664416 0.0115080i
\(937\) 1.95426 2.17043i 0.0638430 0.0709048i −0.710377 0.703821i \(-0.751476\pi\)
0.774220 + 0.632916i \(0.218142\pi\)
\(938\) 0.472945 1.45557i 0.0154422 0.0475262i
\(939\) 6.30618 + 7.00372i 0.205794 + 0.228558i
\(940\) 7.74655 3.44899i 0.252665 0.112494i
\(941\) −32.1322 6.82992i −1.04748 0.222649i −0.348144 0.937441i \(-0.613188\pi\)
−0.699337 + 0.714792i \(0.746521\pi\)
\(942\) 2.95863 28.1495i 0.0963975 0.917161i
\(943\) 0.158788 + 1.51076i 0.00517084 + 0.0491972i
\(944\) −7.92028 + 1.68351i −0.257783 + 0.0547935i
\(945\) −37.9286 + 27.5567i −1.23382 + 0.896420i
\(946\) 9.38092 6.81564i 0.305000 0.221596i
\(947\) −38.2698 + 8.13449i −1.24360 + 0.264335i −0.782296 0.622907i \(-0.785952\pi\)
−0.461304 + 0.887242i \(0.652618\pi\)
\(948\) 0.278884 + 2.65340i 0.00905772 + 0.0861785i
\(949\) 0.139245 1.32483i 0.00452008 0.0430057i
\(950\) 13.4865 + 2.86664i 0.437559 + 0.0930060i
\(951\) −20.7480 + 9.23760i −0.672800 + 0.299550i
\(952\) 29.2305 + 32.4637i 0.947365 + 1.05216i
\(953\) 1.86020 5.72512i 0.0602579 0.185455i −0.916396 0.400272i \(-0.868916\pi\)
0.976654 + 0.214817i \(0.0689156\pi\)
\(954\) 4.95203 5.49979i 0.160328 0.178062i
\(955\) 14.8645 + 25.7461i 0.481004 + 0.833123i
\(956\) 1.69527 2.93629i 0.0548288 0.0949663i
\(957\) −0.582832 1.79377i −0.0188403 0.0579844i
\(958\) −24.5781 10.9429i −0.794082 0.353548i
\(959\) 0.237835 + 0.172797i 0.00768008 + 0.00557991i
\(960\) −50.1729 −1.61932
\(961\) 0 0
\(962\) −0.824543 −0.0265843
\(963\) 8.07564 + 5.86729i 0.260234 + 0.189071i
\(964\) 2.47516 + 1.10201i 0.0797197 + 0.0354935i
\(965\) 5.43907 + 16.7397i 0.175090 + 0.538871i
\(966\) 9.52401 16.4961i 0.306430 0.530753i
\(967\) −13.1552 22.7854i −0.423042 0.732730i 0.573194 0.819420i \(-0.305704\pi\)
−0.996235 + 0.0866903i \(0.972371\pi\)
\(968\) 20.4999 22.7675i 0.658892 0.731774i
\(969\) 3.47763 10.7030i 0.111718 0.343831i
\(970\) −49.9850 55.5140i −1.60492 1.78245i
\(971\) −4.32643 + 1.92625i −0.138842 + 0.0618164i −0.474981 0.879996i \(-0.657545\pi\)
0.336140 + 0.941812i \(0.390879\pi\)
\(972\) 3.11156 + 0.661383i 0.0998034 + 0.0212139i
\(973\) −2.63762 + 25.0953i −0.0845584 + 0.804519i
\(974\) −3.54318 33.7111i −0.113531 1.08017i
\(975\) −2.30511 + 0.489966i −0.0738226 + 0.0156915i
\(976\) −4.32010 + 3.13874i −0.138283 + 0.100469i
\(977\) 13.9798 10.1569i 0.447255 0.324950i −0.341256 0.939970i \(-0.610852\pi\)
0.788511 + 0.615021i \(0.210852\pi\)
\(978\) −31.3322 + 6.65987i −1.00189 + 0.212959i
\(979\) −1.46166 13.9068i −0.0467150 0.444464i
\(980\) 0.347141 3.30283i 0.0110890 0.105505i
\(981\) −7.99855 1.70014i −0.255374 0.0542814i
\(982\) −14.5406 + 6.47387i −0.464008 + 0.206589i
\(983\) −27.4120 30.4441i −0.874306 0.971015i 0.125472 0.992097i \(-0.459955\pi\)
−0.999778 + 0.0210824i \(0.993289\pi\)
\(984\) −0.456801 + 1.40589i −0.0145623 + 0.0448181i
\(985\) 56.9215 63.2177i 1.81367 2.01428i
\(986\) 5.56742 + 9.64305i 0.177303 + 0.307097i
\(987\) −9.16029 + 15.8661i −0.291575 + 0.505023i
\(988\) 0.0237038 + 0.0729528i 0.000754118 + 0.00232094i
\(989\) −40.7214 18.1303i −1.29486 0.576511i
\(990\) 2.94963 + 2.14303i 0.0937455 + 0.0681101i
\(991\) 14.1338 0.448975 0.224487 0.974477i \(-0.427929\pi\)
0.224487 + 0.974477i \(0.427929\pi\)
\(992\) 0 0
\(993\) −13.3113 −0.422420
\(994\) −2.55034 1.85293i −0.0808918 0.0587713i
\(995\) 92.3620 + 41.1222i 2.92807 + 1.30366i
\(996\) −0.0592436 0.182333i −0.00187721 0.00577745i
\(997\) −7.72692 + 13.3834i −0.244714 + 0.423857i −0.962051 0.272869i \(-0.912027\pi\)
0.717337 + 0.696726i \(0.245361\pi\)
\(998\) 14.5852 + 25.2622i 0.461685 + 0.799662i
\(999\) 14.6000 16.2149i 0.461922 0.513017i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.k.732.1 16
31.2 even 5 961.2.g.s.448.2 16
31.3 odd 30 961.2.d.n.388.2 16
31.4 even 5 961.2.c.j.521.6 16
31.5 even 3 31.2.g.a.10.1 16
31.6 odd 6 961.2.d.n.374.2 16
31.7 even 15 961.2.a.i.1.6 8
31.8 even 5 961.2.g.t.844.2 16
31.9 even 15 961.2.g.s.547.2 16
31.10 even 15 961.2.g.t.846.2 16
31.11 odd 30 961.2.c.i.439.6 16
31.12 odd 30 961.2.d.q.628.3 16
31.13 odd 30 961.2.g.j.235.1 16
31.14 even 15 961.2.d.p.531.3 16
31.15 odd 10 961.2.g.l.338.1 16
31.16 even 5 31.2.g.a.28.1 yes 16
31.17 odd 30 961.2.d.q.531.3 16
31.18 even 15 inner 961.2.g.k.235.1 16
31.19 even 15 961.2.d.p.628.3 16
31.20 even 15 961.2.c.j.439.6 16
31.21 odd 30 961.2.g.n.846.2 16
31.22 odd 30 961.2.g.m.547.2 16
31.23 odd 10 961.2.g.n.844.2 16
31.24 odd 30 961.2.a.j.1.6 8
31.25 even 3 961.2.d.o.374.2 16
31.26 odd 6 961.2.g.l.816.1 16
31.27 odd 10 961.2.c.i.521.6 16
31.28 even 15 961.2.d.o.388.2 16
31.29 odd 10 961.2.g.m.448.2 16
31.30 odd 2 961.2.g.j.732.1 16
93.5 odd 6 279.2.y.c.10.2 16
93.38 odd 30 8649.2.a.bf.1.3 8
93.47 odd 10 279.2.y.c.28.2 16
93.86 even 30 8649.2.a.be.1.3 8
124.47 odd 10 496.2.bg.c.369.2 16
124.67 odd 6 496.2.bg.c.289.2 16
155.47 odd 20 775.2.ck.a.524.1 32
155.67 odd 12 775.2.ck.a.599.4 32
155.78 odd 20 775.2.ck.a.524.4 32
155.98 odd 12 775.2.ck.a.599.1 32
155.109 even 10 775.2.bl.a.276.2 16
155.129 even 6 775.2.bl.a.351.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.10.1 16 31.5 even 3
31.2.g.a.28.1 yes 16 31.16 even 5
279.2.y.c.10.2 16 93.5 odd 6
279.2.y.c.28.2 16 93.47 odd 10
496.2.bg.c.289.2 16 124.67 odd 6
496.2.bg.c.369.2 16 124.47 odd 10
775.2.bl.a.276.2 16 155.109 even 10
775.2.bl.a.351.2 16 155.129 even 6
775.2.ck.a.524.1 32 155.47 odd 20
775.2.ck.a.524.4 32 155.78 odd 20
775.2.ck.a.599.1 32 155.98 odd 12
775.2.ck.a.599.4 32 155.67 odd 12
961.2.a.i.1.6 8 31.7 even 15
961.2.a.j.1.6 8 31.24 odd 30
961.2.c.i.439.6 16 31.11 odd 30
961.2.c.i.521.6 16 31.27 odd 10
961.2.c.j.439.6 16 31.20 even 15
961.2.c.j.521.6 16 31.4 even 5
961.2.d.n.374.2 16 31.6 odd 6
961.2.d.n.388.2 16 31.3 odd 30
961.2.d.o.374.2 16 31.25 even 3
961.2.d.o.388.2 16 31.28 even 15
961.2.d.p.531.3 16 31.14 even 15
961.2.d.p.628.3 16 31.19 even 15
961.2.d.q.531.3 16 31.17 odd 30
961.2.d.q.628.3 16 31.12 odd 30
961.2.g.j.235.1 16 31.13 odd 30
961.2.g.j.732.1 16 31.30 odd 2
961.2.g.k.235.1 16 31.18 even 15 inner
961.2.g.k.732.1 16 1.1 even 1 trivial
961.2.g.l.338.1 16 31.15 odd 10
961.2.g.l.816.1 16 31.26 odd 6
961.2.g.m.448.2 16 31.29 odd 10
961.2.g.m.547.2 16 31.22 odd 30
961.2.g.n.844.2 16 31.23 odd 10
961.2.g.n.846.2 16 31.21 odd 30
961.2.g.s.448.2 16 31.2 even 5
961.2.g.s.547.2 16 31.9 even 15
961.2.g.t.844.2 16 31.8 even 5
961.2.g.t.846.2 16 31.10 even 15
8649.2.a.be.1.3 8 93.86 even 30
8649.2.a.bf.1.3 8 93.38 odd 30