Properties

Label 8649.2.a.be.1.3
Level $8649$
Weight $2$
Character 8649.1
Self dual yes
Analytic conductor $69.063$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8649,2,Mod(1,8649)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8649, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8649.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8649 = 3^{2} \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8649.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-2,0,8,-3,0,-2,9,0,-13,-18,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(69.0626127082\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.2051578125.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 9x^{6} + 19x^{5} + 14x^{4} - 28x^{3} - 11x^{2} + 6x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.431370\) of defining polynomial
Character \(\chi\) \(=\) 8649.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.26660 q^{2} -0.395721 q^{4} +3.80032 q^{5} +2.18899 q^{7} +3.03442 q^{8} -4.81349 q^{10} -0.950596 q^{11} -0.168142 q^{13} -2.77258 q^{14} -3.05196 q^{16} -6.57666 q^{17} -1.15284 q^{19} -1.50387 q^{20} +1.20403 q^{22} -4.62850 q^{23} +9.44244 q^{25} +0.212969 q^{26} -0.866228 q^{28} +1.33672 q^{29} -2.20322 q^{32} +8.33000 q^{34} +8.31886 q^{35} +3.87165 q^{37} +1.46019 q^{38} +11.5318 q^{40} -0.328203 q^{41} -9.63057 q^{43} +0.376170 q^{44} +5.86247 q^{46} -5.63858 q^{47} -2.20832 q^{49} -11.9598 q^{50} +0.0665374 q^{52} -7.33294 q^{53} -3.61257 q^{55} +6.64232 q^{56} -1.69309 q^{58} +2.65312 q^{59} +1.74967 q^{61} +8.89454 q^{64} -0.638995 q^{65} +0.552007 q^{67} +2.60252 q^{68} -10.5367 q^{70} -1.13699 q^{71} +7.92260 q^{73} -4.90384 q^{74} +0.456203 q^{76} -2.08084 q^{77} -4.54228 q^{79} -11.5984 q^{80} +0.415702 q^{82} +0.326396 q^{83} -24.9934 q^{85} +12.1981 q^{86} -2.88451 q^{88} -14.7102 q^{89} -0.368062 q^{91} +1.83159 q^{92} +7.14183 q^{94} -4.38117 q^{95} +15.5192 q^{97} +2.79707 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + 8 q^{4} - 3 q^{5} - 2 q^{7} + 9 q^{8} - 13 q^{10} - 18 q^{11} + 8 q^{13} + 9 q^{14} + 4 q^{16} - 14 q^{17} - 6 q^{19} + 7 q^{20} + 4 q^{22} - 22 q^{23} + 13 q^{25} - 9 q^{26} - 5 q^{28}+ \cdots - 10 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.26660 −0.895623 −0.447811 0.894128i \(-0.647796\pi\)
−0.447811 + 0.894128i \(0.647796\pi\)
\(3\) 0 0
\(4\) −0.395721 −0.197860
\(5\) 3.80032 1.69956 0.849778 0.527141i \(-0.176736\pi\)
0.849778 + 0.527141i \(0.176736\pi\)
\(6\) 0 0
\(7\) 2.18899 0.827360 0.413680 0.910422i \(-0.364243\pi\)
0.413680 + 0.910422i \(0.364243\pi\)
\(8\) 3.03442 1.07283
\(9\) 0 0
\(10\) −4.81349 −1.52216
\(11\) −0.950596 −0.286615 −0.143308 0.989678i \(-0.545774\pi\)
−0.143308 + 0.989678i \(0.545774\pi\)
\(12\) 0 0
\(13\) −0.168142 −0.0466343 −0.0233172 0.999728i \(-0.507423\pi\)
−0.0233172 + 0.999728i \(0.507423\pi\)
\(14\) −2.77258 −0.741003
\(15\) 0 0
\(16\) −3.05196 −0.762991
\(17\) −6.57666 −1.59507 −0.797537 0.603271i \(-0.793864\pi\)
−0.797537 + 0.603271i \(0.793864\pi\)
\(18\) 0 0
\(19\) −1.15284 −0.264480 −0.132240 0.991218i \(-0.542217\pi\)
−0.132240 + 0.991218i \(0.542217\pi\)
\(20\) −1.50387 −0.336274
\(21\) 0 0
\(22\) 1.20403 0.256699
\(23\) −4.62850 −0.965109 −0.482554 0.875866i \(-0.660291\pi\)
−0.482554 + 0.875866i \(0.660291\pi\)
\(24\) 0 0
\(25\) 9.44244 1.88849
\(26\) 0.212969 0.0417667
\(27\) 0 0
\(28\) −0.866228 −0.163702
\(29\) 1.33672 0.248222 0.124111 0.992268i \(-0.460392\pi\)
0.124111 + 0.992268i \(0.460392\pi\)
\(30\) 0 0
\(31\) 0 0
\(32\) −2.20322 −0.389479
\(33\) 0 0
\(34\) 8.33000 1.42858
\(35\) 8.31886 1.40614
\(36\) 0 0
\(37\) 3.87165 0.636495 0.318248 0.948008i \(-0.396906\pi\)
0.318248 + 0.948008i \(0.396906\pi\)
\(38\) 1.46019 0.236874
\(39\) 0 0
\(40\) 11.5318 1.82333
\(41\) −0.328203 −0.0512566 −0.0256283 0.999672i \(-0.508159\pi\)
−0.0256283 + 0.999672i \(0.508159\pi\)
\(42\) 0 0
\(43\) −9.63057 −1.46865 −0.734324 0.678799i \(-0.762501\pi\)
−0.734324 + 0.678799i \(0.762501\pi\)
\(44\) 0.376170 0.0567098
\(45\) 0 0
\(46\) 5.86247 0.864373
\(47\) −5.63858 −0.822471 −0.411235 0.911529i \(-0.634903\pi\)
−0.411235 + 0.911529i \(0.634903\pi\)
\(48\) 0 0
\(49\) −2.20832 −0.315475
\(50\) −11.9598 −1.69137
\(51\) 0 0
\(52\) 0.0665374 0.00922708
\(53\) −7.33294 −1.00726 −0.503629 0.863920i \(-0.668002\pi\)
−0.503629 + 0.863920i \(0.668002\pi\)
\(54\) 0 0
\(55\) −3.61257 −0.487119
\(56\) 6.64232 0.887617
\(57\) 0 0
\(58\) −1.69309 −0.222313
\(59\) 2.65312 0.345407 0.172703 0.984974i \(-0.444750\pi\)
0.172703 + 0.984974i \(0.444750\pi\)
\(60\) 0 0
\(61\) 1.74967 0.224023 0.112011 0.993707i \(-0.464271\pi\)
0.112011 + 0.993707i \(0.464271\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 8.89454 1.11182
\(65\) −0.638995 −0.0792576
\(66\) 0 0
\(67\) 0.552007 0.0674383 0.0337192 0.999431i \(-0.489265\pi\)
0.0337192 + 0.999431i \(0.489265\pi\)
\(68\) 2.60252 0.315602
\(69\) 0 0
\(70\) −10.5367 −1.25937
\(71\) −1.13699 −0.134936 −0.0674679 0.997721i \(-0.521492\pi\)
−0.0674679 + 0.997721i \(0.521492\pi\)
\(72\) 0 0
\(73\) 7.92260 0.927270 0.463635 0.886026i \(-0.346545\pi\)
0.463635 + 0.886026i \(0.346545\pi\)
\(74\) −4.90384 −0.570059
\(75\) 0 0
\(76\) 0.456203 0.0523301
\(77\) −2.08084 −0.237134
\(78\) 0 0
\(79\) −4.54228 −0.511046 −0.255523 0.966803i \(-0.582248\pi\)
−0.255523 + 0.966803i \(0.582248\pi\)
\(80\) −11.5984 −1.29675
\(81\) 0 0
\(82\) 0.415702 0.0459066
\(83\) 0.326396 0.0358266 0.0179133 0.999840i \(-0.494298\pi\)
0.0179133 + 0.999840i \(0.494298\pi\)
\(84\) 0 0
\(85\) −24.9934 −2.71091
\(86\) 12.1981 1.31535
\(87\) 0 0
\(88\) −2.88451 −0.307490
\(89\) −14.7102 −1.55927 −0.779637 0.626232i \(-0.784596\pi\)
−0.779637 + 0.626232i \(0.784596\pi\)
\(90\) 0 0
\(91\) −0.368062 −0.0385834
\(92\) 1.83159 0.190957
\(93\) 0 0
\(94\) 7.14183 0.736623
\(95\) −4.38117 −0.449498
\(96\) 0 0
\(97\) 15.5192 1.57573 0.787867 0.615845i \(-0.211185\pi\)
0.787867 + 0.615845i \(0.211185\pi\)
\(98\) 2.79707 0.282546
\(99\) 0 0
\(100\) −3.73657 −0.373657
\(101\) −4.87360 −0.484941 −0.242471 0.970159i \(-0.577958\pi\)
−0.242471 + 0.970159i \(0.577958\pi\)
\(102\) 0 0
\(103\) 1.93062 0.190230 0.0951148 0.995466i \(-0.469678\pi\)
0.0951148 + 0.995466i \(0.469678\pi\)
\(104\) −0.510215 −0.0500307
\(105\) 0 0
\(106\) 9.28792 0.902122
\(107\) −12.5275 −1.21108 −0.605540 0.795815i \(-0.707043\pi\)
−0.605540 + 0.795815i \(0.707043\pi\)
\(108\) 0 0
\(109\) −10.2625 −0.982968 −0.491484 0.870887i \(-0.663545\pi\)
−0.491484 + 0.870887i \(0.663545\pi\)
\(110\) 4.57568 0.436274
\(111\) 0 0
\(112\) −6.68072 −0.631268
\(113\) 3.84294 0.361514 0.180757 0.983528i \(-0.442145\pi\)
0.180757 + 0.983528i \(0.442145\pi\)
\(114\) 0 0
\(115\) −17.5898 −1.64026
\(116\) −0.528966 −0.0491132
\(117\) 0 0
\(118\) −3.36045 −0.309354
\(119\) −14.3962 −1.31970
\(120\) 0 0
\(121\) −10.0964 −0.917852
\(122\) −2.21614 −0.200640
\(123\) 0 0
\(124\) 0 0
\(125\) 16.8827 1.51003
\(126\) 0 0
\(127\) −7.34389 −0.651665 −0.325832 0.945428i \(-0.605644\pi\)
−0.325832 + 0.945428i \(0.605644\pi\)
\(128\) −6.85938 −0.606290
\(129\) 0 0
\(130\) 0.809352 0.0709849
\(131\) −13.0337 −1.13876 −0.569379 0.822075i \(-0.692816\pi\)
−0.569379 + 0.822075i \(0.692816\pi\)
\(132\) 0 0
\(133\) −2.52356 −0.218820
\(134\) −0.699172 −0.0603993
\(135\) 0 0
\(136\) −19.9564 −1.71124
\(137\) −0.134299 −0.0114740 −0.00573698 0.999984i \(-0.501826\pi\)
−0.00573698 + 0.999984i \(0.501826\pi\)
\(138\) 0 0
\(139\) −11.5275 −0.977749 −0.488874 0.872354i \(-0.662592\pi\)
−0.488874 + 0.872354i \(0.662592\pi\)
\(140\) −3.29195 −0.278220
\(141\) 0 0
\(142\) 1.44011 0.120851
\(143\) 0.159835 0.0133661
\(144\) 0 0
\(145\) 5.07995 0.421867
\(146\) −10.0348 −0.830484
\(147\) 0 0
\(148\) −1.53209 −0.125937
\(149\) 5.44108 0.445751 0.222875 0.974847i \(-0.428456\pi\)
0.222875 + 0.974847i \(0.428456\pi\)
\(150\) 0 0
\(151\) −13.6892 −1.11401 −0.557005 0.830509i \(-0.688050\pi\)
−0.557005 + 0.830509i \(0.688050\pi\)
\(152\) −3.49821 −0.283742
\(153\) 0 0
\(154\) 2.63560 0.212383
\(155\) 0 0
\(156\) 0 0
\(157\) −15.0553 −1.20155 −0.600774 0.799419i \(-0.705141\pi\)
−0.600774 + 0.799419i \(0.705141\pi\)
\(158\) 5.75326 0.457705
\(159\) 0 0
\(160\) −8.37296 −0.661941
\(161\) −10.1317 −0.798493
\(162\) 0 0
\(163\) 17.0381 1.33453 0.667263 0.744822i \(-0.267466\pi\)
0.667263 + 0.744822i \(0.267466\pi\)
\(164\) 0.129877 0.0101417
\(165\) 0 0
\(166\) −0.413414 −0.0320871
\(167\) −16.1982 −1.25346 −0.626729 0.779238i \(-0.715607\pi\)
−0.626729 + 0.779238i \(0.715607\pi\)
\(168\) 0 0
\(169\) −12.9717 −0.997825
\(170\) 31.6567 2.42796
\(171\) 0 0
\(172\) 3.81102 0.290587
\(173\) 2.33122 0.177239 0.0886196 0.996066i \(-0.471754\pi\)
0.0886196 + 0.996066i \(0.471754\pi\)
\(174\) 0 0
\(175\) 20.6694 1.56246
\(176\) 2.90118 0.218685
\(177\) 0 0
\(178\) 18.6319 1.39652
\(179\) −16.9706 −1.26844 −0.634222 0.773151i \(-0.718679\pi\)
−0.634222 + 0.773151i \(0.718679\pi\)
\(180\) 0 0
\(181\) 7.33576 0.545263 0.272631 0.962119i \(-0.412106\pi\)
0.272631 + 0.962119i \(0.412106\pi\)
\(182\) 0.466188 0.0345561
\(183\) 0 0
\(184\) −14.0448 −1.03540
\(185\) 14.7135 1.08176
\(186\) 0 0
\(187\) 6.25174 0.457173
\(188\) 2.23130 0.162734
\(189\) 0 0
\(190\) 5.54919 0.402581
\(191\) −7.82276 −0.566035 −0.283018 0.959115i \(-0.591335\pi\)
−0.283018 + 0.959115i \(0.591335\pi\)
\(192\) 0 0
\(193\) −4.63151 −0.333383 −0.166692 0.986009i \(-0.553308\pi\)
−0.166692 + 0.986009i \(0.553308\pi\)
\(194\) −19.6566 −1.41126
\(195\) 0 0
\(196\) 0.873880 0.0624200
\(197\) −22.3844 −1.59482 −0.797411 0.603437i \(-0.793797\pi\)
−0.797411 + 0.603437i \(0.793797\pi\)
\(198\) 0 0
\(199\) 26.6038 1.88589 0.942945 0.332948i \(-0.108043\pi\)
0.942945 + 0.332948i \(0.108043\pi\)
\(200\) 28.6524 2.02603
\(201\) 0 0
\(202\) 6.17291 0.434324
\(203\) 2.92606 0.205369
\(204\) 0 0
\(205\) −1.24728 −0.0871135
\(206\) −2.44533 −0.170374
\(207\) 0 0
\(208\) 0.513165 0.0355816
\(209\) 1.09589 0.0758040
\(210\) 0 0
\(211\) 1.32614 0.0912951 0.0456476 0.998958i \(-0.485465\pi\)
0.0456476 + 0.998958i \(0.485465\pi\)
\(212\) 2.90180 0.199296
\(213\) 0 0
\(214\) 15.8674 1.08467
\(215\) −36.5993 −2.49605
\(216\) 0 0
\(217\) 0 0
\(218\) 12.9985 0.880368
\(219\) 0 0
\(220\) 1.42957 0.0963814
\(221\) 1.10581 0.0743851
\(222\) 0 0
\(223\) 12.1199 0.811612 0.405806 0.913959i \(-0.366991\pi\)
0.405806 + 0.913959i \(0.366991\pi\)
\(224\) −4.82284 −0.322239
\(225\) 0 0
\(226\) −4.86748 −0.323780
\(227\) 15.9022 1.05546 0.527732 0.849411i \(-0.323043\pi\)
0.527732 + 0.849411i \(0.323043\pi\)
\(228\) 0 0
\(229\) 16.2986 1.07704 0.538521 0.842612i \(-0.318983\pi\)
0.538521 + 0.842612i \(0.318983\pi\)
\(230\) 22.2792 1.46905
\(231\) 0 0
\(232\) 4.05616 0.266300
\(233\) 5.12296 0.335616 0.167808 0.985820i \(-0.446331\pi\)
0.167808 + 0.985820i \(0.446331\pi\)
\(234\) 0 0
\(235\) −21.4284 −1.39783
\(236\) −1.04989 −0.0683423
\(237\) 0 0
\(238\) 18.2343 1.18195
\(239\) 8.56800 0.554218 0.277109 0.960839i \(-0.410624\pi\)
0.277109 + 0.960839i \(0.410624\pi\)
\(240\) 0 0
\(241\) 6.84676 0.441039 0.220519 0.975383i \(-0.429225\pi\)
0.220519 + 0.975383i \(0.429225\pi\)
\(242\) 12.7881 0.822049
\(243\) 0 0
\(244\) −0.692382 −0.0443252
\(245\) −8.39234 −0.536167
\(246\) 0 0
\(247\) 0.193842 0.0123338
\(248\) 0 0
\(249\) 0 0
\(250\) −21.3836 −1.35242
\(251\) 22.6661 1.43067 0.715336 0.698781i \(-0.246274\pi\)
0.715336 + 0.698781i \(0.246274\pi\)
\(252\) 0 0
\(253\) 4.39983 0.276615
\(254\) 9.30178 0.583645
\(255\) 0 0
\(256\) −9.10097 −0.568810
\(257\) 16.6584 1.03912 0.519560 0.854434i \(-0.326096\pi\)
0.519560 + 0.854434i \(0.326096\pi\)
\(258\) 0 0
\(259\) 8.47500 0.526611
\(260\) 0.252864 0.0156819
\(261\) 0 0
\(262\) 16.5085 1.01990
\(263\) −24.5864 −1.51606 −0.758030 0.652220i \(-0.773838\pi\)
−0.758030 + 0.652220i \(0.773838\pi\)
\(264\) 0 0
\(265\) −27.8675 −1.71189
\(266\) 3.19634 0.195980
\(267\) 0 0
\(268\) −0.218440 −0.0133434
\(269\) 12.5141 0.763001 0.381501 0.924369i \(-0.375407\pi\)
0.381501 + 0.924369i \(0.375407\pi\)
\(270\) 0 0
\(271\) 27.1673 1.65030 0.825148 0.564917i \(-0.191092\pi\)
0.825148 + 0.564917i \(0.191092\pi\)
\(272\) 20.0717 1.21703
\(273\) 0 0
\(274\) 0.170104 0.0102763
\(275\) −8.97594 −0.541270
\(276\) 0 0
\(277\) 15.1573 0.910716 0.455358 0.890308i \(-0.349511\pi\)
0.455358 + 0.890308i \(0.349511\pi\)
\(278\) 14.6007 0.875694
\(279\) 0 0
\(280\) 25.2430 1.50855
\(281\) −30.2477 −1.80443 −0.902214 0.431289i \(-0.858059\pi\)
−0.902214 + 0.431289i \(0.858059\pi\)
\(282\) 0 0
\(283\) 3.14532 0.186970 0.0934850 0.995621i \(-0.470199\pi\)
0.0934850 + 0.995621i \(0.470199\pi\)
\(284\) 0.449930 0.0266984
\(285\) 0 0
\(286\) −0.202448 −0.0119710
\(287\) −0.718432 −0.0424077
\(288\) 0 0
\(289\) 26.2524 1.54426
\(290\) −6.43427 −0.377833
\(291\) 0 0
\(292\) −3.13514 −0.183470
\(293\) −1.90008 −0.111004 −0.0555020 0.998459i \(-0.517676\pi\)
−0.0555020 + 0.998459i \(0.517676\pi\)
\(294\) 0 0
\(295\) 10.0827 0.587038
\(296\) 11.7482 0.682851
\(297\) 0 0
\(298\) −6.89168 −0.399224
\(299\) 0.778247 0.0450072
\(300\) 0 0
\(301\) −21.0812 −1.21510
\(302\) 17.3387 0.997733
\(303\) 0 0
\(304\) 3.51843 0.201796
\(305\) 6.64932 0.380739
\(306\) 0 0
\(307\) 22.7281 1.29716 0.648580 0.761146i \(-0.275363\pi\)
0.648580 + 0.761146i \(0.275363\pi\)
\(308\) 0.823433 0.0469194
\(309\) 0 0
\(310\) 0 0
\(311\) −15.8754 −0.900213 −0.450106 0.892975i \(-0.648614\pi\)
−0.450106 + 0.892975i \(0.648614\pi\)
\(312\) 0 0
\(313\) −6.34935 −0.358886 −0.179443 0.983768i \(-0.557430\pi\)
−0.179443 + 0.983768i \(0.557430\pi\)
\(314\) 19.0691 1.07613
\(315\) 0 0
\(316\) 1.79747 0.101116
\(317\) 15.3010 0.859390 0.429695 0.902974i \(-0.358621\pi\)
0.429695 + 0.902974i \(0.358621\pi\)
\(318\) 0 0
\(319\) −1.27068 −0.0711442
\(320\) 33.8021 1.88959
\(321\) 0 0
\(322\) 12.8329 0.715148
\(323\) 7.58184 0.421865
\(324\) 0 0
\(325\) −1.58767 −0.0880683
\(326\) −21.5805 −1.19523
\(327\) 0 0
\(328\) −0.995906 −0.0549897
\(329\) −12.3428 −0.680480
\(330\) 0 0
\(331\) 8.96795 0.492923 0.246462 0.969153i \(-0.420732\pi\)
0.246462 + 0.969153i \(0.420732\pi\)
\(332\) −0.129162 −0.00708866
\(333\) 0 0
\(334\) 20.5167 1.12262
\(335\) 2.09780 0.114615
\(336\) 0 0
\(337\) 4.36877 0.237982 0.118991 0.992895i \(-0.462034\pi\)
0.118991 + 0.992895i \(0.462034\pi\)
\(338\) 16.4300 0.893675
\(339\) 0 0
\(340\) 9.89040 0.536382
\(341\) 0 0
\(342\) 0 0
\(343\) −20.1569 −1.08837
\(344\) −29.2232 −1.57561
\(345\) 0 0
\(346\) −2.95272 −0.158739
\(347\) 24.4053 1.31015 0.655073 0.755566i \(-0.272638\pi\)
0.655073 + 0.755566i \(0.272638\pi\)
\(348\) 0 0
\(349\) 13.0439 0.698224 0.349112 0.937081i \(-0.386483\pi\)
0.349112 + 0.937081i \(0.386483\pi\)
\(350\) −26.1799 −1.39937
\(351\) 0 0
\(352\) 2.09438 0.111631
\(353\) 10.8248 0.576146 0.288073 0.957608i \(-0.406985\pi\)
0.288073 + 0.957608i \(0.406985\pi\)
\(354\) 0 0
\(355\) −4.32092 −0.229331
\(356\) 5.82111 0.308518
\(357\) 0 0
\(358\) 21.4950 1.13605
\(359\) −33.7834 −1.78302 −0.891510 0.453001i \(-0.850353\pi\)
−0.891510 + 0.453001i \(0.850353\pi\)
\(360\) 0 0
\(361\) −17.6710 −0.930050
\(362\) −9.29149 −0.488350
\(363\) 0 0
\(364\) 0.145650 0.00763412
\(365\) 30.1084 1.57595
\(366\) 0 0
\(367\) −22.6313 −1.18135 −0.590673 0.806911i \(-0.701138\pi\)
−0.590673 + 0.806911i \(0.701138\pi\)
\(368\) 14.1260 0.736369
\(369\) 0 0
\(370\) −18.6362 −0.968847
\(371\) −16.0517 −0.833365
\(372\) 0 0
\(373\) −32.9720 −1.70723 −0.853613 0.520908i \(-0.825593\pi\)
−0.853613 + 0.520908i \(0.825593\pi\)
\(374\) −7.91846 −0.409454
\(375\) 0 0
\(376\) −17.1098 −0.882372
\(377\) −0.224759 −0.0115757
\(378\) 0 0
\(379\) −32.4919 −1.66900 −0.834498 0.551012i \(-0.814242\pi\)
−0.834498 + 0.551012i \(0.814242\pi\)
\(380\) 1.73372 0.0889379
\(381\) 0 0
\(382\) 9.90832 0.506954
\(383\) −26.7804 −1.36842 −0.684208 0.729287i \(-0.739852\pi\)
−0.684208 + 0.729287i \(0.739852\pi\)
\(384\) 0 0
\(385\) −7.90787 −0.403023
\(386\) 5.86627 0.298585
\(387\) 0 0
\(388\) −6.14126 −0.311775
\(389\) −17.7375 −0.899327 −0.449663 0.893198i \(-0.648456\pi\)
−0.449663 + 0.893198i \(0.648456\pi\)
\(390\) 0 0
\(391\) 30.4400 1.53942
\(392\) −6.70099 −0.338451
\(393\) 0 0
\(394\) 28.3521 1.42836
\(395\) −17.2621 −0.868552
\(396\) 0 0
\(397\) 9.94953 0.499352 0.249676 0.968329i \(-0.419676\pi\)
0.249676 + 0.968329i \(0.419676\pi\)
\(398\) −33.6964 −1.68905
\(399\) 0 0
\(400\) −28.8180 −1.44090
\(401\) 19.8956 0.993538 0.496769 0.867883i \(-0.334520\pi\)
0.496769 + 0.867883i \(0.334520\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 1.92858 0.0959506
\(405\) 0 0
\(406\) −3.70615 −0.183933
\(407\) −3.68037 −0.182429
\(408\) 0 0
\(409\) 24.3255 1.20282 0.601410 0.798941i \(-0.294606\pi\)
0.601410 + 0.798941i \(0.294606\pi\)
\(410\) 1.57980 0.0780208
\(411\) 0 0
\(412\) −0.763986 −0.0376389
\(413\) 5.80765 0.285776
\(414\) 0 0
\(415\) 1.24041 0.0608893
\(416\) 0.370456 0.0181631
\(417\) 0 0
\(418\) −1.38805 −0.0678918
\(419\) 4.40675 0.215284 0.107642 0.994190i \(-0.465670\pi\)
0.107642 + 0.994190i \(0.465670\pi\)
\(420\) 0 0
\(421\) −12.4237 −0.605493 −0.302746 0.953071i \(-0.597904\pi\)
−0.302746 + 0.953071i \(0.597904\pi\)
\(422\) −1.67969 −0.0817660
\(423\) 0 0
\(424\) −22.2513 −1.08062
\(425\) −62.0997 −3.01228
\(426\) 0 0
\(427\) 3.83002 0.185348
\(428\) 4.95739 0.239625
\(429\) 0 0
\(430\) 46.3567 2.23552
\(431\) 18.5653 0.894259 0.447130 0.894469i \(-0.352446\pi\)
0.447130 + 0.894469i \(0.352446\pi\)
\(432\) 0 0
\(433\) 36.1204 1.73584 0.867918 0.496708i \(-0.165458\pi\)
0.867918 + 0.496708i \(0.165458\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 4.06108 0.194490
\(437\) 5.33593 0.255252
\(438\) 0 0
\(439\) −19.0094 −0.907268 −0.453634 0.891188i \(-0.649873\pi\)
−0.453634 + 0.891188i \(0.649873\pi\)
\(440\) −10.9621 −0.522596
\(441\) 0 0
\(442\) −1.40063 −0.0666210
\(443\) −12.4540 −0.591709 −0.295854 0.955233i \(-0.595604\pi\)
−0.295854 + 0.955233i \(0.595604\pi\)
\(444\) 0 0
\(445\) −55.9033 −2.65007
\(446\) −15.3511 −0.726898
\(447\) 0 0
\(448\) 19.4700 0.919873
\(449\) 25.4366 1.20043 0.600214 0.799840i \(-0.295082\pi\)
0.600214 + 0.799840i \(0.295082\pi\)
\(450\) 0 0
\(451\) 0.311988 0.0146909
\(452\) −1.52073 −0.0715292
\(453\) 0 0
\(454\) −20.1417 −0.945297
\(455\) −1.39875 −0.0655746
\(456\) 0 0
\(457\) −31.9740 −1.49568 −0.747839 0.663880i \(-0.768909\pi\)
−0.747839 + 0.663880i \(0.768909\pi\)
\(458\) −20.6438 −0.964623
\(459\) 0 0
\(460\) 6.96064 0.324542
\(461\) 19.3501 0.901223 0.450612 0.892720i \(-0.351206\pi\)
0.450612 + 0.892720i \(0.351206\pi\)
\(462\) 0 0
\(463\) −0.0414625 −0.00192693 −0.000963463 1.00000i \(-0.500307\pi\)
−0.000963463 1.00000i \(0.500307\pi\)
\(464\) −4.07961 −0.189391
\(465\) 0 0
\(466\) −6.48875 −0.300586
\(467\) −25.3083 −1.17113 −0.585564 0.810626i \(-0.699127\pi\)
−0.585564 + 0.810626i \(0.699127\pi\)
\(468\) 0 0
\(469\) 1.20834 0.0557958
\(470\) 27.1412 1.25193
\(471\) 0 0
\(472\) 8.05069 0.370563
\(473\) 9.15478 0.420937
\(474\) 0 0
\(475\) −10.8856 −0.499467
\(476\) 5.69688 0.261116
\(477\) 0 0
\(478\) −10.8522 −0.496370
\(479\) 21.2411 0.970533 0.485266 0.874366i \(-0.338723\pi\)
0.485266 + 0.874366i \(0.338723\pi\)
\(480\) 0 0
\(481\) −0.650988 −0.0296825
\(482\) −8.67212 −0.395004
\(483\) 0 0
\(484\) 3.99534 0.181606
\(485\) 58.9779 2.67805
\(486\) 0 0
\(487\) −26.7620 −1.21270 −0.606350 0.795198i \(-0.707367\pi\)
−0.606350 + 0.795198i \(0.707367\pi\)
\(488\) 5.30925 0.240338
\(489\) 0 0
\(490\) 10.6298 0.480203
\(491\) −12.5664 −0.567113 −0.283557 0.958955i \(-0.591514\pi\)
−0.283557 + 0.958955i \(0.591514\pi\)
\(492\) 0 0
\(493\) −8.79111 −0.395932
\(494\) −0.245520 −0.0110465
\(495\) 0 0
\(496\) 0 0
\(497\) −2.48886 −0.111640
\(498\) 0 0
\(499\) 23.0304 1.03098 0.515490 0.856895i \(-0.327610\pi\)
0.515490 + 0.856895i \(0.327610\pi\)
\(500\) −6.68083 −0.298776
\(501\) 0 0
\(502\) −28.7089 −1.28134
\(503\) −0.661578 −0.0294983 −0.0147492 0.999891i \(-0.504695\pi\)
−0.0147492 + 0.999891i \(0.504695\pi\)
\(504\) 0 0
\(505\) −18.5212 −0.824184
\(506\) −5.57283 −0.247743
\(507\) 0 0
\(508\) 2.90613 0.128939
\(509\) −11.6674 −0.517149 −0.258574 0.965991i \(-0.583253\pi\)
−0.258574 + 0.965991i \(0.583253\pi\)
\(510\) 0 0
\(511\) 17.3425 0.767186
\(512\) 25.2461 1.11573
\(513\) 0 0
\(514\) −21.0995 −0.930659
\(515\) 7.33697 0.323306
\(516\) 0 0
\(517\) 5.36001 0.235733
\(518\) −10.7344 −0.471644
\(519\) 0 0
\(520\) −1.93898 −0.0850300
\(521\) 31.9184 1.39837 0.699186 0.714940i \(-0.253546\pi\)
0.699186 + 0.714940i \(0.253546\pi\)
\(522\) 0 0
\(523\) 0.00415040 0.000181484 0 9.07421e−5 1.00000i \(-0.499971\pi\)
9.07421e−5 1.00000i \(0.499971\pi\)
\(524\) 5.15769 0.225315
\(525\) 0 0
\(526\) 31.1411 1.35782
\(527\) 0 0
\(528\) 0 0
\(529\) −1.57699 −0.0685646
\(530\) 35.2971 1.53321
\(531\) 0 0
\(532\) 0.998624 0.0432958
\(533\) 0.0551848 0.00239032
\(534\) 0 0
\(535\) −47.6086 −2.05830
\(536\) 1.67502 0.0723499
\(537\) 0 0
\(538\) −15.8504 −0.683361
\(539\) 2.09922 0.0904200
\(540\) 0 0
\(541\) 29.2750 1.25863 0.629316 0.777150i \(-0.283335\pi\)
0.629316 + 0.777150i \(0.283335\pi\)
\(542\) −34.4101 −1.47804
\(543\) 0 0
\(544\) 14.4898 0.621247
\(545\) −39.0007 −1.67061
\(546\) 0 0
\(547\) 41.1653 1.76010 0.880050 0.474880i \(-0.157509\pi\)
0.880050 + 0.474880i \(0.157509\pi\)
\(548\) 0.0531450 0.00227024
\(549\) 0 0
\(550\) 11.3689 0.484773
\(551\) −1.54102 −0.0656497
\(552\) 0 0
\(553\) −9.94300 −0.422820
\(554\) −19.1983 −0.815658
\(555\) 0 0
\(556\) 4.56167 0.193458
\(557\) −5.73810 −0.243131 −0.121566 0.992583i \(-0.538791\pi\)
−0.121566 + 0.992583i \(0.538791\pi\)
\(558\) 0 0
\(559\) 1.61931 0.0684894
\(560\) −25.3889 −1.07288
\(561\) 0 0
\(562\) 38.3118 1.61609
\(563\) 14.2942 0.602428 0.301214 0.953557i \(-0.402608\pi\)
0.301214 + 0.953557i \(0.402608\pi\)
\(564\) 0 0
\(565\) 14.6044 0.614412
\(566\) −3.98387 −0.167455
\(567\) 0 0
\(568\) −3.45011 −0.144763
\(569\) 14.3618 0.602078 0.301039 0.953612i \(-0.402667\pi\)
0.301039 + 0.953612i \(0.402667\pi\)
\(570\) 0 0
\(571\) −33.3790 −1.39687 −0.698434 0.715674i \(-0.746119\pi\)
−0.698434 + 0.715674i \(0.746119\pi\)
\(572\) −0.0632502 −0.00264462
\(573\) 0 0
\(574\) 0.909967 0.0379813
\(575\) −43.7043 −1.82260
\(576\) 0 0
\(577\) −22.4796 −0.935838 −0.467919 0.883771i \(-0.654996\pi\)
−0.467919 + 0.883771i \(0.654996\pi\)
\(578\) −33.2513 −1.38307
\(579\) 0 0
\(580\) −2.01024 −0.0834706
\(581\) 0.714477 0.0296415
\(582\) 0 0
\(583\) 6.97067 0.288695
\(584\) 24.0405 0.994804
\(585\) 0 0
\(586\) 2.40665 0.0994176
\(587\) −6.41617 −0.264824 −0.132412 0.991195i \(-0.542272\pi\)
−0.132412 + 0.991195i \(0.542272\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −12.7708 −0.525764
\(591\) 0 0
\(592\) −11.8161 −0.485640
\(593\) 20.8601 0.856623 0.428312 0.903631i \(-0.359109\pi\)
0.428312 + 0.903631i \(0.359109\pi\)
\(594\) 0 0
\(595\) −54.7103 −2.24290
\(596\) −2.15315 −0.0881963
\(597\) 0 0
\(598\) −0.985729 −0.0403095
\(599\) 11.5584 0.472263 0.236131 0.971721i \(-0.424120\pi\)
0.236131 + 0.971721i \(0.424120\pi\)
\(600\) 0 0
\(601\) −4.31742 −0.176111 −0.0880555 0.996116i \(-0.528065\pi\)
−0.0880555 + 0.996116i \(0.528065\pi\)
\(602\) 26.7015 1.08827
\(603\) 0 0
\(604\) 5.41709 0.220418
\(605\) −38.3694 −1.55994
\(606\) 0 0
\(607\) 44.9092 1.82281 0.911405 0.411510i \(-0.134999\pi\)
0.911405 + 0.411510i \(0.134999\pi\)
\(608\) 2.53997 0.103009
\(609\) 0 0
\(610\) −8.42204 −0.340998
\(611\) 0.948084 0.0383554
\(612\) 0 0
\(613\) 2.60516 0.105222 0.0526108 0.998615i \(-0.483246\pi\)
0.0526108 + 0.998615i \(0.483246\pi\)
\(614\) −28.7874 −1.16177
\(615\) 0 0
\(616\) −6.31416 −0.254405
\(617\) 24.9868 1.00593 0.502965 0.864307i \(-0.332242\pi\)
0.502965 + 0.864307i \(0.332242\pi\)
\(618\) 0 0
\(619\) −31.9083 −1.28250 −0.641252 0.767330i \(-0.721585\pi\)
−0.641252 + 0.767330i \(0.721585\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 20.1078 0.806251
\(623\) −32.2004 −1.29008
\(624\) 0 0
\(625\) 16.9474 0.677898
\(626\) 8.04209 0.321427
\(627\) 0 0
\(628\) 5.95771 0.237739
\(629\) −25.4625 −1.01526
\(630\) 0 0
\(631\) 0.359751 0.0143215 0.00716073 0.999974i \(-0.497721\pi\)
0.00716073 + 0.999974i \(0.497721\pi\)
\(632\) −13.7832 −0.548266
\(633\) 0 0
\(634\) −19.3803 −0.769689
\(635\) −27.9091 −1.10754
\(636\) 0 0
\(637\) 0.371313 0.0147120
\(638\) 1.60944 0.0637183
\(639\) 0 0
\(640\) −26.0679 −1.03042
\(641\) −30.8069 −1.21680 −0.608400 0.793630i \(-0.708188\pi\)
−0.608400 + 0.793630i \(0.708188\pi\)
\(642\) 0 0
\(643\) 1.75184 0.0690856 0.0345428 0.999403i \(-0.489002\pi\)
0.0345428 + 0.999403i \(0.489002\pi\)
\(644\) 4.00934 0.157990
\(645\) 0 0
\(646\) −9.60317 −0.377832
\(647\) −24.6504 −0.969106 −0.484553 0.874762i \(-0.661018\pi\)
−0.484553 + 0.874762i \(0.661018\pi\)
\(648\) 0 0
\(649\) −2.52204 −0.0989989
\(650\) 2.01095 0.0788760
\(651\) 0 0
\(652\) −6.74233 −0.264050
\(653\) 0.285664 0.0111789 0.00558946 0.999984i \(-0.498221\pi\)
0.00558946 + 0.999984i \(0.498221\pi\)
\(654\) 0 0
\(655\) −49.5321 −1.93538
\(656\) 1.00166 0.0391083
\(657\) 0 0
\(658\) 15.6334 0.609453
\(659\) −37.4247 −1.45786 −0.728929 0.684589i \(-0.759982\pi\)
−0.728929 + 0.684589i \(0.759982\pi\)
\(660\) 0 0
\(661\) 4.19157 0.163033 0.0815167 0.996672i \(-0.474024\pi\)
0.0815167 + 0.996672i \(0.474024\pi\)
\(662\) −11.3588 −0.441473
\(663\) 0 0
\(664\) 0.990423 0.0384359
\(665\) −9.59033 −0.371897
\(666\) 0 0
\(667\) −6.18699 −0.239561
\(668\) 6.40998 0.248009
\(669\) 0 0
\(670\) −2.65708 −0.102652
\(671\) −1.66323 −0.0642084
\(672\) 0 0
\(673\) −9.97267 −0.384418 −0.192209 0.981354i \(-0.561565\pi\)
−0.192209 + 0.981354i \(0.561565\pi\)
\(674\) −5.53349 −0.213142
\(675\) 0 0
\(676\) 5.13318 0.197430
\(677\) −47.7577 −1.83548 −0.917738 0.397186i \(-0.869987\pi\)
−0.917738 + 0.397186i \(0.869987\pi\)
\(678\) 0 0
\(679\) 33.9713 1.30370
\(680\) −75.8406 −2.90835
\(681\) 0 0
\(682\) 0 0
\(683\) −27.7600 −1.06221 −0.531104 0.847307i \(-0.678223\pi\)
−0.531104 + 0.847307i \(0.678223\pi\)
\(684\) 0 0
\(685\) −0.510380 −0.0195006
\(686\) 25.5308 0.974770
\(687\) 0 0
\(688\) 29.3922 1.12057
\(689\) 1.23298 0.0469728
\(690\) 0 0
\(691\) 38.0310 1.44677 0.723383 0.690447i \(-0.242586\pi\)
0.723383 + 0.690447i \(0.242586\pi\)
\(692\) −0.922511 −0.0350686
\(693\) 0 0
\(694\) −30.9118 −1.17340
\(695\) −43.8082 −1.66174
\(696\) 0 0
\(697\) 2.15848 0.0817581
\(698\) −16.5214 −0.625346
\(699\) 0 0
\(700\) −8.17931 −0.309149
\(701\) −41.0562 −1.55067 −0.775336 0.631548i \(-0.782420\pi\)
−0.775336 + 0.631548i \(0.782420\pi\)
\(702\) 0 0
\(703\) −4.46340 −0.168340
\(704\) −8.45511 −0.318664
\(705\) 0 0
\(706\) −13.7107 −0.516010
\(707\) −10.6683 −0.401221
\(708\) 0 0
\(709\) −42.0657 −1.57981 −0.789906 0.613229i \(-0.789870\pi\)
−0.789906 + 0.613229i \(0.789870\pi\)
\(710\) 5.47289 0.205394
\(711\) 0 0
\(712\) −44.6368 −1.67284
\(713\) 0 0
\(714\) 0 0
\(715\) 0.607426 0.0227164
\(716\) 6.71563 0.250975
\(717\) 0 0
\(718\) 42.7901 1.59691
\(719\) −33.2690 −1.24072 −0.620362 0.784316i \(-0.713014\pi\)
−0.620362 + 0.784316i \(0.713014\pi\)
\(720\) 0 0
\(721\) 4.22611 0.157388
\(722\) 22.3821 0.832974
\(723\) 0 0
\(724\) −2.90291 −0.107886
\(725\) 12.6218 0.468764
\(726\) 0 0
\(727\) −32.7229 −1.21363 −0.606813 0.794845i \(-0.707552\pi\)
−0.606813 + 0.794845i \(0.707552\pi\)
\(728\) −1.11686 −0.0413934
\(729\) 0 0
\(730\) −38.1354 −1.41145
\(731\) 63.3370 2.34260
\(732\) 0 0
\(733\) −9.96391 −0.368025 −0.184013 0.982924i \(-0.558909\pi\)
−0.184013 + 0.982924i \(0.558909\pi\)
\(734\) 28.6649 1.05804
\(735\) 0 0
\(736\) 10.1976 0.375889
\(737\) −0.524735 −0.0193289
\(738\) 0 0
\(739\) −30.9584 −1.13882 −0.569412 0.822052i \(-0.692829\pi\)
−0.569412 + 0.822052i \(0.692829\pi\)
\(740\) −5.82244 −0.214037
\(741\) 0 0
\(742\) 20.3312 0.746380
\(743\) 1.11003 0.0407231 0.0203615 0.999793i \(-0.493518\pi\)
0.0203615 + 0.999793i \(0.493518\pi\)
\(744\) 0 0
\(745\) 20.6778 0.757578
\(746\) 41.7624 1.52903
\(747\) 0 0
\(748\) −2.47394 −0.0904563
\(749\) −27.4226 −1.00200
\(750\) 0 0
\(751\) 28.1553 1.02740 0.513701 0.857969i \(-0.328274\pi\)
0.513701 + 0.857969i \(0.328274\pi\)
\(752\) 17.2087 0.627538
\(753\) 0 0
\(754\) 0.284679 0.0103674
\(755\) −52.0233 −1.89332
\(756\) 0 0
\(757\) −38.7223 −1.40739 −0.703693 0.710504i \(-0.748467\pi\)
−0.703693 + 0.710504i \(0.748467\pi\)
\(758\) 41.1542 1.49479
\(759\) 0 0
\(760\) −13.2943 −0.482236
\(761\) 43.4369 1.57459 0.787293 0.616580i \(-0.211482\pi\)
0.787293 + 0.616580i \(0.211482\pi\)
\(762\) 0 0
\(763\) −22.4645 −0.813269
\(764\) 3.09563 0.111996
\(765\) 0 0
\(766\) 33.9201 1.22558
\(767\) −0.446102 −0.0161078
\(768\) 0 0
\(769\) −3.11019 −0.112156 −0.0560781 0.998426i \(-0.517860\pi\)
−0.0560781 + 0.998426i \(0.517860\pi\)
\(770\) 10.0161 0.360956
\(771\) 0 0
\(772\) 1.83278 0.0659633
\(773\) 21.6402 0.778343 0.389172 0.921165i \(-0.372761\pi\)
0.389172 + 0.921165i \(0.372761\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 47.0918 1.69050
\(777\) 0 0
\(778\) 22.4663 0.805457
\(779\) 0.378366 0.0135564
\(780\) 0 0
\(781\) 1.08082 0.0386747
\(782\) −38.5554 −1.37874
\(783\) 0 0
\(784\) 6.73973 0.240705
\(785\) −57.2151 −2.04210
\(786\) 0 0
\(787\) 7.87653 0.280768 0.140384 0.990097i \(-0.455166\pi\)
0.140384 + 0.990097i \(0.455166\pi\)
\(788\) 8.85796 0.315552
\(789\) 0 0
\(790\) 21.8642 0.777894
\(791\) 8.41216 0.299102
\(792\) 0 0
\(793\) −0.294194 −0.0104471
\(794\) −12.6021 −0.447231
\(795\) 0 0
\(796\) −10.5277 −0.373143
\(797\) 29.5182 1.04559 0.522793 0.852459i \(-0.324890\pi\)
0.522793 + 0.852459i \(0.324890\pi\)
\(798\) 0 0
\(799\) 37.0830 1.31190
\(800\) −20.8038 −0.735526
\(801\) 0 0
\(802\) −25.1998 −0.889835
\(803\) −7.53119 −0.265770
\(804\) 0 0
\(805\) −38.5039 −1.35708
\(806\) 0 0
\(807\) 0 0
\(808\) −14.7886 −0.520260
\(809\) −2.12753 −0.0747998 −0.0373999 0.999300i \(-0.511908\pi\)
−0.0373999 + 0.999300i \(0.511908\pi\)
\(810\) 0 0
\(811\) 7.20504 0.253003 0.126502 0.991966i \(-0.459625\pi\)
0.126502 + 0.991966i \(0.459625\pi\)
\(812\) −1.15790 −0.0406343
\(813\) 0 0
\(814\) 4.66157 0.163388
\(815\) 64.7502 2.26810
\(816\) 0 0
\(817\) 11.1025 0.388428
\(818\) −30.8107 −1.07727
\(819\) 0 0
\(820\) 0.493572 0.0172363
\(821\) 42.0597 1.46789 0.733947 0.679206i \(-0.237676\pi\)
0.733947 + 0.679206i \(0.237676\pi\)
\(822\) 0 0
\(823\) 30.1730 1.05176 0.525882 0.850558i \(-0.323735\pi\)
0.525882 + 0.850558i \(0.323735\pi\)
\(824\) 5.85832 0.204084
\(825\) 0 0
\(826\) −7.35598 −0.255947
\(827\) −3.87046 −0.134589 −0.0672945 0.997733i \(-0.521437\pi\)
−0.0672945 + 0.997733i \(0.521437\pi\)
\(828\) 0 0
\(829\) −13.1716 −0.457469 −0.228735 0.973489i \(-0.573459\pi\)
−0.228735 + 0.973489i \(0.573459\pi\)
\(830\) −1.57110 −0.0545338
\(831\) 0 0
\(832\) −1.49555 −0.0518488
\(833\) 14.5234 0.503206
\(834\) 0 0
\(835\) −61.5585 −2.13032
\(836\) −0.433665 −0.0149986
\(837\) 0 0
\(838\) −5.58159 −0.192813
\(839\) 34.2490 1.18241 0.591204 0.806522i \(-0.298653\pi\)
0.591204 + 0.806522i \(0.298653\pi\)
\(840\) 0 0
\(841\) −27.2132 −0.938386
\(842\) 15.7358 0.542293
\(843\) 0 0
\(844\) −0.524780 −0.0180637
\(845\) −49.2967 −1.69586
\(846\) 0 0
\(847\) −22.1008 −0.759394
\(848\) 22.3799 0.768528
\(849\) 0 0
\(850\) 78.6555 2.69786
\(851\) −17.9199 −0.614287
\(852\) 0 0
\(853\) −14.4479 −0.494686 −0.247343 0.968928i \(-0.579557\pi\)
−0.247343 + 0.968928i \(0.579557\pi\)
\(854\) −4.85111 −0.166001
\(855\) 0 0
\(856\) −38.0138 −1.29928
\(857\) −27.8331 −0.950759 −0.475379 0.879781i \(-0.657689\pi\)
−0.475379 + 0.879781i \(0.657689\pi\)
\(858\) 0 0
\(859\) 47.3202 1.61454 0.807272 0.590180i \(-0.200943\pi\)
0.807272 + 0.590180i \(0.200943\pi\)
\(860\) 14.4831 0.493869
\(861\) 0 0
\(862\) −23.5148 −0.800919
\(863\) 26.0534 0.886867 0.443434 0.896307i \(-0.353760\pi\)
0.443434 + 0.896307i \(0.353760\pi\)
\(864\) 0 0
\(865\) 8.85937 0.301228
\(866\) −45.7502 −1.55465
\(867\) 0 0
\(868\) 0 0
\(869\) 4.31787 0.146474
\(870\) 0 0
\(871\) −0.0928157 −0.00314494
\(872\) −31.1407 −1.05456
\(873\) 0 0
\(874\) −6.75849 −0.228609
\(875\) 36.9560 1.24934
\(876\) 0 0
\(877\) −34.3215 −1.15895 −0.579477 0.814989i \(-0.696743\pi\)
−0.579477 + 0.814989i \(0.696743\pi\)
\(878\) 24.0773 0.812570
\(879\) 0 0
\(880\) 11.0254 0.371667
\(881\) −3.63467 −0.122455 −0.0612276 0.998124i \(-0.519502\pi\)
−0.0612276 + 0.998124i \(0.519502\pi\)
\(882\) 0 0
\(883\) −39.4574 −1.32785 −0.663923 0.747801i \(-0.731110\pi\)
−0.663923 + 0.747801i \(0.731110\pi\)
\(884\) −0.437594 −0.0147179
\(885\) 0 0
\(886\) 15.7743 0.529948
\(887\) 42.3027 1.42039 0.710194 0.704007i \(-0.248607\pi\)
0.710194 + 0.704007i \(0.248607\pi\)
\(888\) 0 0
\(889\) −16.0757 −0.539161
\(890\) 70.8072 2.37346
\(891\) 0 0
\(892\) −4.79611 −0.160586
\(893\) 6.50038 0.217527
\(894\) 0 0
\(895\) −64.4938 −2.15579
\(896\) −15.0151 −0.501620
\(897\) 0 0
\(898\) −32.2180 −1.07513
\(899\) 0 0
\(900\) 0 0
\(901\) 48.2262 1.60665
\(902\) −0.395164 −0.0131575
\(903\) 0 0
\(904\) 11.6611 0.387843
\(905\) 27.8782 0.926704
\(906\) 0 0
\(907\) −32.3680 −1.07476 −0.537381 0.843339i \(-0.680586\pi\)
−0.537381 + 0.843339i \(0.680586\pi\)
\(908\) −6.29281 −0.208834
\(909\) 0 0
\(910\) 1.77166 0.0587301
\(911\) −27.0607 −0.896563 −0.448281 0.893893i \(-0.647964\pi\)
−0.448281 + 0.893893i \(0.647964\pi\)
\(912\) 0 0
\(913\) −0.310271 −0.0102685
\(914\) 40.4983 1.33956
\(915\) 0 0
\(916\) −6.44969 −0.213104
\(917\) −28.5306 −0.942162
\(918\) 0 0
\(919\) 20.7649 0.684972 0.342486 0.939523i \(-0.388731\pi\)
0.342486 + 0.939523i \(0.388731\pi\)
\(920\) −53.3749 −1.75972
\(921\) 0 0
\(922\) −24.5088 −0.807156
\(923\) 0.191176 0.00629264
\(924\) 0 0
\(925\) 36.5578 1.20201
\(926\) 0.0525165 0.00172580
\(927\) 0 0
\(928\) −2.94508 −0.0966771
\(929\) −20.6589 −0.677798 −0.338899 0.940823i \(-0.610055\pi\)
−0.338899 + 0.940823i \(0.610055\pi\)
\(930\) 0 0
\(931\) 2.54585 0.0834368
\(932\) −2.02726 −0.0664052
\(933\) 0 0
\(934\) 32.0555 1.04889
\(935\) 23.7586 0.776990
\(936\) 0 0
\(937\) 2.92060 0.0954119 0.0477059 0.998861i \(-0.484809\pi\)
0.0477059 + 0.998861i \(0.484809\pi\)
\(938\) −1.53048 −0.0499720
\(939\) 0 0
\(940\) 8.47966 0.276576
\(941\) 32.8501 1.07088 0.535441 0.844573i \(-0.320145\pi\)
0.535441 + 0.844573i \(0.320145\pi\)
\(942\) 0 0
\(943\) 1.51909 0.0494682
\(944\) −8.09722 −0.263542
\(945\) 0 0
\(946\) −11.5955 −0.377001
\(947\) 39.1247 1.27138 0.635692 0.771943i \(-0.280715\pi\)
0.635692 + 0.771943i \(0.280715\pi\)
\(948\) 0 0
\(949\) −1.33212 −0.0432426
\(950\) 13.7878 0.447334
\(951\) 0 0
\(952\) −43.6843 −1.41581
\(953\) 6.01975 0.194999 0.0974994 0.995236i \(-0.468916\pi\)
0.0974994 + 0.995236i \(0.468916\pi\)
\(954\) 0 0
\(955\) −29.7290 −0.962008
\(956\) −3.39053 −0.109658
\(957\) 0 0
\(958\) −26.9041 −0.869231
\(959\) −0.293980 −0.00949310
\(960\) 0 0
\(961\) 0 0
\(962\) 0.824543 0.0265843
\(963\) 0 0
\(964\) −2.70941 −0.0872641
\(965\) −17.6012 −0.566603
\(966\) 0 0
\(967\) −26.3103 −0.846083 −0.423042 0.906110i \(-0.639038\pi\)
−0.423042 + 0.906110i \(0.639038\pi\)
\(968\) −30.6367 −0.984699
\(969\) 0 0
\(970\) −74.7015 −2.39852
\(971\) 4.73587 0.151981 0.0759906 0.997109i \(-0.475788\pi\)
0.0759906 + 0.997109i \(0.475788\pi\)
\(972\) 0 0
\(973\) −25.2336 −0.808951
\(974\) 33.8967 1.08612
\(975\) 0 0
\(976\) −5.33994 −0.170927
\(977\) 17.2800 0.552837 0.276419 0.961037i \(-0.410852\pi\)
0.276419 + 0.961037i \(0.410852\pi\)
\(978\) 0 0
\(979\) 13.9834 0.446912
\(980\) 3.32102 0.106086
\(981\) 0 0
\(982\) 15.9166 0.507920
\(983\) −40.9665 −1.30663 −0.653315 0.757087i \(-0.726622\pi\)
−0.653315 + 0.757087i \(0.726622\pi\)
\(984\) 0 0
\(985\) −85.0678 −2.71049
\(986\) 11.1348 0.354605
\(987\) 0 0
\(988\) −0.0767071 −0.00244038
\(989\) 44.5751 1.41741
\(990\) 0 0
\(991\) −14.1338 −0.448975 −0.224487 0.974477i \(-0.572071\pi\)
−0.224487 + 0.974477i \(0.572071\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 3.15239 0.0999877
\(995\) 101.103 3.20517
\(996\) 0 0
\(997\) 15.4538 0.489428 0.244714 0.969595i \(-0.421306\pi\)
0.244714 + 0.969595i \(0.421306\pi\)
\(998\) −29.1703 −0.923370
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8649.2.a.be.1.3 8
3.2 odd 2 961.2.a.j.1.6 8
31.11 odd 30 279.2.y.c.28.2 16
31.17 odd 30 279.2.y.c.10.2 16
31.30 odd 2 8649.2.a.bf.1.3 8
93.2 odd 10 961.2.d.q.531.3 16
93.5 odd 6 961.2.c.i.521.6 16
93.8 odd 10 961.2.d.n.374.2 16
93.11 even 30 31.2.g.a.28.1 yes 16
93.14 odd 30 961.2.g.l.816.1 16
93.17 even 30 31.2.g.a.10.1 16
93.20 odd 30 961.2.g.l.338.1 16
93.23 even 10 961.2.d.o.374.2 16
93.26 even 6 961.2.c.j.521.6 16
93.29 even 10 961.2.d.p.531.3 16
93.35 odd 10 961.2.d.n.388.2 16
93.38 odd 30 961.2.g.j.235.1 16
93.41 odd 30 961.2.g.n.844.2 16
93.44 even 30 961.2.g.s.448.2 16
93.47 odd 10 961.2.d.q.628.3 16
93.50 odd 30 961.2.g.m.547.2 16
93.53 even 30 961.2.g.k.732.1 16
93.56 odd 6 961.2.c.i.439.6 16
93.59 odd 30 961.2.g.n.846.2 16
93.65 even 30 961.2.g.t.846.2 16
93.68 even 6 961.2.c.j.439.6 16
93.71 odd 30 961.2.g.j.732.1 16
93.74 even 30 961.2.g.s.547.2 16
93.77 even 10 961.2.d.p.628.3 16
93.80 odd 30 961.2.g.m.448.2 16
93.83 even 30 961.2.g.t.844.2 16
93.86 even 30 961.2.g.k.235.1 16
93.89 even 10 961.2.d.o.388.2 16
93.92 even 2 961.2.a.i.1.6 8
372.11 odd 30 496.2.bg.c.369.2 16
372.203 odd 30 496.2.bg.c.289.2 16
465.17 odd 60 775.2.ck.a.599.4 32
465.104 even 30 775.2.bl.a.276.2 16
465.197 odd 60 775.2.ck.a.524.1 32
465.203 odd 60 775.2.ck.a.599.1 32
465.383 odd 60 775.2.ck.a.524.4 32
465.389 even 30 775.2.bl.a.351.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.10.1 16 93.17 even 30
31.2.g.a.28.1 yes 16 93.11 even 30
279.2.y.c.10.2 16 31.17 odd 30
279.2.y.c.28.2 16 31.11 odd 30
496.2.bg.c.289.2 16 372.203 odd 30
496.2.bg.c.369.2 16 372.11 odd 30
775.2.bl.a.276.2 16 465.104 even 30
775.2.bl.a.351.2 16 465.389 even 30
775.2.ck.a.524.1 32 465.197 odd 60
775.2.ck.a.524.4 32 465.383 odd 60
775.2.ck.a.599.1 32 465.203 odd 60
775.2.ck.a.599.4 32 465.17 odd 60
961.2.a.i.1.6 8 93.92 even 2
961.2.a.j.1.6 8 3.2 odd 2
961.2.c.i.439.6 16 93.56 odd 6
961.2.c.i.521.6 16 93.5 odd 6
961.2.c.j.439.6 16 93.68 even 6
961.2.c.j.521.6 16 93.26 even 6
961.2.d.n.374.2 16 93.8 odd 10
961.2.d.n.388.2 16 93.35 odd 10
961.2.d.o.374.2 16 93.23 even 10
961.2.d.o.388.2 16 93.89 even 10
961.2.d.p.531.3 16 93.29 even 10
961.2.d.p.628.3 16 93.77 even 10
961.2.d.q.531.3 16 93.2 odd 10
961.2.d.q.628.3 16 93.47 odd 10
961.2.g.j.235.1 16 93.38 odd 30
961.2.g.j.732.1 16 93.71 odd 30
961.2.g.k.235.1 16 93.86 even 30
961.2.g.k.732.1 16 93.53 even 30
961.2.g.l.338.1 16 93.20 odd 30
961.2.g.l.816.1 16 93.14 odd 30
961.2.g.m.448.2 16 93.80 odd 30
961.2.g.m.547.2 16 93.50 odd 30
961.2.g.n.844.2 16 93.41 odd 30
961.2.g.n.846.2 16 93.59 odd 30
961.2.g.s.448.2 16 93.44 even 30
961.2.g.s.547.2 16 93.74 even 30
961.2.g.t.844.2 16 93.83 even 30
961.2.g.t.846.2 16 93.65 even 30
8649.2.a.be.1.3 8 1.1 even 1 trivial
8649.2.a.bf.1.3 8 31.30 odd 2