Properties

Label 961.2.g.j.235.1
Level $961$
Weight $2$
Character 961.235
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(235,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([26])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.235"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-6,-3,-14,-3,-11,-13] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 235.1
Root \(-1.03739i\) of defining polynomial
Character \(\chi\) \(=\) 961.235
Dual form 961.2.g.j.732.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.02470 + 0.744490i) q^{2} +(-1.35599 + 0.603725i) q^{3} +(-0.122284 + 0.376353i) q^{4} +(1.90016 + 3.29117i) q^{5} +(0.940018 - 1.62816i) q^{6} +(1.46472 + 1.62674i) q^{7} +(-0.937688 - 2.88591i) q^{8} +(-0.533169 + 0.592145i) q^{9} +(-4.39734 - 1.95782i) q^{10} +(-0.929823 + 0.197640i) q^{11} +(-0.0613973 - 0.584156i) q^{12} +(0.0175757 - 0.167221i) q^{13} +(-2.71199 - 0.576451i) q^{14} +(-4.56356 - 3.31562i) q^{15} +(2.46909 + 1.79390i) q^{16} +(-6.43294 - 1.36736i) q^{17} +(0.105494 - 1.00371i) q^{18} +(0.120505 + 1.14653i) q^{19} +(-1.47100 + 0.312671i) q^{20} +(-2.96825 - 1.32155i) q^{21} +(0.805651 - 0.894766i) q^{22} +(1.43029 + 4.40197i) q^{23} +(3.01379 + 3.34715i) q^{24} +(-4.72122 + 8.17739i) q^{25} +(0.106485 + 0.184437i) q^{26} +(1.74151 - 5.35983i) q^{27} +(-0.791339 + 0.352327i) q^{28} +(1.08143 - 0.785701i) q^{29} +7.14474 q^{30} +2.20322 q^{32} +(1.14151 - 0.829355i) q^{33} +(7.60983 - 3.38812i) q^{34} +(-2.57067 + 7.91171i) q^{35} +(-0.157657 - 0.273070i) q^{36} +(-1.93582 + 3.35295i) q^{37} +(-0.977059 - 1.08513i) q^{38} +(0.0771233 + 0.237361i) q^{39} +(7.71627 - 8.56978i) q^{40} +(0.299828 + 0.133492i) q^{41} +(4.02545 - 0.855635i) q^{42} +(1.00667 + 9.57782i) q^{43} +(0.0393205 - 0.374110i) q^{44} +(-2.96196 - 0.629584i) q^{45} +(-4.74283 - 3.44587i) q^{46} +(-4.56170 - 3.31427i) q^{47} +(-4.43108 - 0.941856i) q^{48} +(0.230833 - 2.19623i) q^{49} +(-1.25014 - 11.8943i) q^{50} +(9.54851 - 2.02960i) q^{51} +(0.0607850 + 0.0270632i) q^{52} +(4.90670 - 5.44944i) q^{53} +(2.20581 + 6.78877i) q^{54} +(-2.41728 - 2.68466i) q^{55} +(3.32116 - 5.75242i) q^{56} +(-0.855590 - 1.48193i) q^{57} +(-0.523192 + 1.61022i) q^{58} +(-2.42375 + 1.07912i) q^{59} +(1.80590 - 1.31206i) q^{60} +1.74967 q^{61} -1.74421 q^{63} +(-7.19583 + 5.22808i) q^{64} +(0.583751 - 0.259903i) q^{65} +(-0.552261 + 1.69968i) q^{66} +(-0.276003 - 0.478052i) q^{67} +(1.30126 - 2.25385i) q^{68} +(-4.59703 - 5.10552i) q^{69} +(-3.25601 - 10.0210i) q^{70} +(0.760794 - 0.844947i) q^{71} +(2.20882 + 0.983431i) q^{72} +(-7.74947 + 1.64720i) q^{73} +(-0.512590 - 4.87697i) q^{74} +(1.46502 - 13.9388i) q^{75} +(-0.446234 - 0.0948500i) q^{76} +(-1.68344 - 1.22309i) q^{77} +(-0.255741 - 0.185807i) q^{78} +(4.44302 + 0.944393i) q^{79} +(-1.21237 + 11.5349i) q^{80} +(0.624523 + 5.94194i) q^{81} +(-0.406618 + 0.0864293i) q^{82} +(-0.298177 - 0.132757i) q^{83} +(0.860338 - 0.955503i) q^{84} +(-7.72338 - 23.7701i) q^{85} +(-8.16212 - 9.06495i) q^{86} +(-0.992053 + 1.71829i) q^{87} +(1.44225 + 2.49806i) q^{88} +(4.54569 - 13.9902i) q^{89} +(3.50384 - 1.56001i) q^{90} +(0.297768 - 0.216341i) q^{91} -1.83159 q^{92} +7.14183 q^{94} +(-3.54444 + 2.57519i) q^{95} +(-2.98755 + 1.33014i) q^{96} +(4.79569 - 14.7596i) q^{97} +(1.39853 + 2.42233i) q^{98} +(0.378722 - 0.655965i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} - 3 q^{3} - 14 q^{4} - 3 q^{5} - 11 q^{6} - 13 q^{7} + 17 q^{8} + 5 q^{9} - 17 q^{10} + 7 q^{11} + 10 q^{12} - 8 q^{13} - 21 q^{14} - 14 q^{15} - 2 q^{16} - 9 q^{17} + 12 q^{18} - 29 q^{19}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{13}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.02470 + 0.744490i −0.724574 + 0.526434i −0.887842 0.460148i \(-0.847796\pi\)
0.163268 + 0.986582i \(0.447796\pi\)
\(3\) −1.35599 + 0.603725i −0.782881 + 0.348561i −0.758947 0.651153i \(-0.774286\pi\)
−0.0239339 + 0.999714i \(0.507619\pi\)
\(4\) −0.122284 + 0.376353i −0.0611422 + 0.188176i
\(5\) 1.90016 + 3.29117i 0.849778 + 1.47186i 0.881407 + 0.472358i \(0.156597\pi\)
−0.0316291 + 0.999500i \(0.510070\pi\)
\(6\) 0.940018 1.62816i 0.383761 0.664693i
\(7\) 1.46472 + 1.62674i 0.553612 + 0.614849i 0.953382 0.301767i \(-0.0975765\pi\)
−0.399770 + 0.916616i \(0.630910\pi\)
\(8\) −0.937688 2.88591i −0.331523 1.02032i
\(9\) −0.533169 + 0.592145i −0.177723 + 0.197382i
\(10\) −4.39734 1.95782i −1.39056 0.619118i
\(11\) −0.929823 + 0.197640i −0.280352 + 0.0595907i −0.345942 0.938256i \(-0.612441\pi\)
0.0655896 + 0.997847i \(0.479107\pi\)
\(12\) −0.0613973 0.584156i −0.0177239 0.168631i
\(13\) 0.0175757 0.167221i 0.00487461 0.0463788i −0.991814 0.127689i \(-0.959244\pi\)
0.996689 + 0.0813106i \(0.0259106\pi\)
\(14\) −2.71199 0.576451i −0.724810 0.154063i
\(15\) −4.56356 3.31562i −1.17831 0.856090i
\(16\) 2.46909 + 1.79390i 0.617273 + 0.448475i
\(17\) −6.43294 1.36736i −1.56022 0.331634i −0.654681 0.755905i \(-0.727197\pi\)
−0.905535 + 0.424271i \(0.860531\pi\)
\(18\) 0.105494 1.00371i 0.0248652 0.236577i
\(19\) 0.120505 + 1.14653i 0.0276457 + 0.263031i 0.999611 + 0.0279051i \(0.00888363\pi\)
−0.971965 + 0.235126i \(0.924450\pi\)
\(20\) −1.47100 + 0.312671i −0.328926 + 0.0699154i
\(21\) −2.96825 1.32155i −0.647724 0.288385i
\(22\) 0.805651 0.894766i 0.171765 0.190765i
\(23\) 1.43029 + 4.40197i 0.298235 + 0.917873i 0.982116 + 0.188279i \(0.0602910\pi\)
−0.683880 + 0.729594i \(0.739709\pi\)
\(24\) 3.01379 + 3.34715i 0.615187 + 0.683235i
\(25\) −4.72122 + 8.17739i −0.944244 + 1.63548i
\(26\) 0.106485 + 0.184437i 0.0208834 + 0.0361711i
\(27\) 1.74151 5.35983i 0.335155 1.03150i
\(28\) −0.791339 + 0.352327i −0.149549 + 0.0665835i
\(29\) 1.08143 0.785701i 0.200816 0.145901i −0.482833 0.875713i \(-0.660392\pi\)
0.683649 + 0.729811i \(0.260392\pi\)
\(30\) 7.14474 1.30444
\(31\) 0 0
\(32\) 2.20322 0.389479
\(33\) 1.14151 0.829355i 0.198711 0.144372i
\(34\) 7.60983 3.38812i 1.30508 0.581057i
\(35\) −2.57067 + 7.91171i −0.434523 + 1.33732i
\(36\) −0.157657 0.273070i −0.0262762 0.0455116i
\(37\) −1.93582 + 3.35295i −0.318248 + 0.551221i −0.980122 0.198393i \(-0.936428\pi\)
0.661875 + 0.749614i \(0.269761\pi\)
\(38\) −0.977059 1.08513i −0.158500 0.176032i
\(39\) 0.0771233 + 0.237361i 0.0123496 + 0.0380082i
\(40\) 7.71627 8.56978i 1.22005 1.35500i
\(41\) 0.299828 + 0.133492i 0.0468253 + 0.0208480i 0.430016 0.902821i \(-0.358508\pi\)
−0.383190 + 0.923669i \(0.625175\pi\)
\(42\) 4.02545 0.855635i 0.621140 0.132027i
\(43\) 1.00667 + 9.57782i 0.153516 + 1.46060i 0.751838 + 0.659348i \(0.229167\pi\)
−0.598323 + 0.801255i \(0.704166\pi\)
\(44\) 0.0393205 0.374110i 0.00592779 0.0563991i
\(45\) −2.96196 0.629584i −0.441543 0.0938528i
\(46\) −4.74283 3.44587i −0.699293 0.508066i
\(47\) −4.56170 3.31427i −0.665393 0.483436i 0.203087 0.979161i \(-0.434903\pi\)
−0.868480 + 0.495725i \(0.834903\pi\)
\(48\) −4.43108 0.941856i −0.639572 0.135945i
\(49\) 0.230833 2.19623i 0.0329761 0.313747i
\(50\) −1.25014 11.8943i −0.176797 1.68211i
\(51\) 9.54851 2.02960i 1.33706 0.284201i
\(52\) 0.0607850 + 0.0270632i 0.00842936 + 0.00375299i
\(53\) 4.90670 5.44944i 0.673987 0.748538i −0.305024 0.952345i \(-0.598665\pi\)
0.979011 + 0.203806i \(0.0653313\pi\)
\(54\) 2.20581 + 6.78877i 0.300172 + 0.923835i
\(55\) −2.41728 2.68466i −0.325946 0.362000i
\(56\) 3.32116 5.75242i 0.443809 0.768699i
\(57\) −0.855590 1.48193i −0.113326 0.196286i
\(58\) −0.523192 + 1.61022i −0.0686985 + 0.211432i
\(59\) −2.42375 + 1.07912i −0.315545 + 0.140490i −0.558397 0.829574i \(-0.688584\pi\)
0.242853 + 0.970063i \(0.421917\pi\)
\(60\) 1.80590 1.31206i 0.233140 0.169386i
\(61\) 1.74967 0.224023 0.112011 0.993707i \(-0.464271\pi\)
0.112011 + 0.993707i \(0.464271\pi\)
\(62\) 0 0
\(63\) −1.74421 −0.219749
\(64\) −7.19583 + 5.22808i −0.899479 + 0.653510i
\(65\) 0.583751 0.259903i 0.0724054 0.0322370i
\(66\) −0.552261 + 1.69968i −0.0679786 + 0.209217i
\(67\) −0.276003 0.478052i −0.0337192 0.0584033i 0.848673 0.528917i \(-0.177402\pi\)
−0.882393 + 0.470514i \(0.844069\pi\)
\(68\) 1.30126 2.25385i 0.157801 0.273319i
\(69\) −4.59703 5.10552i −0.553417 0.614632i
\(70\) −3.25601 10.0210i −0.389168 1.19774i
\(71\) 0.760794 0.844947i 0.0902896 0.100277i −0.696307 0.717744i \(-0.745175\pi\)
0.786596 + 0.617468i \(0.211841\pi\)
\(72\) 2.20882 + 0.983431i 0.260312 + 0.115898i
\(73\) −7.74947 + 1.64720i −0.907007 + 0.192790i −0.637719 0.770269i \(-0.720122\pi\)
−0.269288 + 0.963060i \(0.586788\pi\)
\(74\) −0.512590 4.87697i −0.0595874 0.566937i
\(75\) 1.46502 13.9388i 0.169166 1.60951i
\(76\) −0.446234 0.0948500i −0.0511866 0.0108800i
\(77\) −1.68344 1.22309i −0.191846 0.139384i
\(78\) −0.255741 0.185807i −0.0289570 0.0210385i
\(79\) 4.44302 + 0.944393i 0.499879 + 0.106253i 0.450949 0.892550i \(-0.351086\pi\)
0.0489298 + 0.998802i \(0.484419\pi\)
\(80\) −1.21237 + 11.5349i −0.135547 + 1.28964i
\(81\) 0.624523 + 5.94194i 0.0693914 + 0.660215i
\(82\) −0.406618 + 0.0864293i −0.0449034 + 0.00954452i
\(83\) −0.298177 0.132757i −0.0327292 0.0145720i 0.390307 0.920685i \(-0.372369\pi\)
−0.423036 + 0.906113i \(0.639036\pi\)
\(84\) 0.860338 0.955503i 0.0938706 0.104254i
\(85\) −7.72338 23.7701i −0.837719 2.57823i
\(86\) −8.16212 9.06495i −0.880144 0.977499i
\(87\) −0.992053 + 1.71829i −0.106359 + 0.184220i
\(88\) 1.44225 + 2.49806i 0.153745 + 0.266294i
\(89\) 4.54569 13.9902i 0.481842 1.48296i −0.354661 0.934995i \(-0.615404\pi\)
0.836503 0.547962i \(-0.184596\pi\)
\(90\) 3.50384 1.56001i 0.369338 0.164440i
\(91\) 0.297768 0.216341i 0.0312146 0.0226787i
\(92\) −1.83159 −0.190957
\(93\) 0 0
\(94\) 7.14183 0.736623
\(95\) −3.54444 + 2.57519i −0.363652 + 0.264209i
\(96\) −2.98755 + 1.33014i −0.304915 + 0.135757i
\(97\) 4.79569 14.7596i 0.486929 1.49861i −0.342239 0.939613i \(-0.611185\pi\)
0.829168 0.559000i \(-0.188815\pi\)
\(98\) 1.39853 + 2.42233i 0.141273 + 0.244692i
\(99\) 0.378722 0.655965i 0.0380630 0.0659270i
\(100\) −2.50025 2.77681i −0.250025 0.277681i
\(101\) 1.50602 + 4.63507i 0.149855 + 0.461206i 0.997603 0.0691923i \(-0.0220422\pi\)
−0.847748 + 0.530399i \(0.822042\pi\)
\(102\) −8.27336 + 9.18850i −0.819185 + 0.909797i
\(103\) 1.76371 + 0.785254i 0.173783 + 0.0773733i 0.491784 0.870717i \(-0.336345\pi\)
−0.318001 + 0.948090i \(0.603012\pi\)
\(104\) −0.499066 + 0.106080i −0.0489374 + 0.0104020i
\(105\) −1.29070 12.2802i −0.125959 1.19842i
\(106\) −0.970852 + 9.23704i −0.0942975 + 0.897181i
\(107\) −12.2538 2.60462i −1.18462 0.251798i −0.426849 0.904323i \(-0.640376\pi\)
−0.757767 + 0.652525i \(0.773710\pi\)
\(108\) 1.80423 + 1.31085i 0.173612 + 0.126136i
\(109\) 8.30253 + 6.03214i 0.795238 + 0.577774i 0.909513 0.415675i \(-0.136455\pi\)
−0.114275 + 0.993449i \(0.536455\pi\)
\(110\) 4.47570 + 0.951338i 0.426741 + 0.0907066i
\(111\) 0.600699 5.71526i 0.0570158 0.542469i
\(112\) 0.698325 + 6.64412i 0.0659855 + 0.627810i
\(113\) 3.75896 0.798993i 0.353614 0.0751629i −0.0276801 0.999617i \(-0.508812\pi\)
0.381294 + 0.924454i \(0.375479\pi\)
\(114\) 1.98000 + 0.881554i 0.185444 + 0.0825651i
\(115\) −11.7699 + 13.0718i −1.09755 + 1.21895i
\(116\) 0.163459 + 0.503076i 0.0151768 + 0.0467095i
\(117\) 0.0896484 + 0.0995646i 0.00828800 + 0.00920475i
\(118\) 1.68022 2.91023i 0.154677 0.267908i
\(119\) −7.19811 12.4675i −0.659850 1.14289i
\(120\) −5.28938 + 16.2790i −0.482852 + 1.48607i
\(121\) −9.22349 + 4.10656i −0.838499 + 0.373324i
\(122\) −1.79289 + 1.30261i −0.162321 + 0.117933i
\(123\) −0.487156 −0.0439254
\(124\) 0 0
\(125\) −16.8827 −1.51003
\(126\) 1.78729 1.29854i 0.159225 0.115684i
\(127\) −6.70897 + 2.98703i −0.595325 + 0.265056i −0.682203 0.731163i \(-0.738978\pi\)
0.0868775 + 0.996219i \(0.472311\pi\)
\(128\) 2.11967 6.52366i 0.187354 0.576616i
\(129\) −7.14740 12.3797i −0.629294 1.08997i
\(130\) −0.404676 + 0.700920i −0.0354924 + 0.0614747i
\(131\) 8.72123 + 9.68591i 0.761977 + 0.846262i 0.991910 0.126945i \(-0.0405172\pi\)
−0.229932 + 0.973207i \(0.573851\pi\)
\(132\) 0.172541 + 0.531027i 0.0150178 + 0.0462200i
\(133\) −1.68859 + 1.87537i −0.146419 + 0.162615i
\(134\) 0.638726 + 0.284379i 0.0551775 + 0.0245666i
\(135\) 20.9493 4.45291i 1.80303 0.383246i
\(136\) 2.08601 + 19.8470i 0.178874 + 1.70187i
\(137\) −0.0140381 + 0.133564i −0.00119936 + 0.0114111i −0.995105 0.0988212i \(-0.968493\pi\)
0.993906 + 0.110232i \(0.0351595\pi\)
\(138\) 8.51159 + 1.80919i 0.724555 + 0.154009i
\(139\) 9.32593 + 6.77569i 0.791015 + 0.574706i 0.908265 0.418396i \(-0.137408\pi\)
−0.117249 + 0.993103i \(0.537408\pi\)
\(140\) −2.66324 1.93496i −0.225085 0.163534i
\(141\) 8.18653 + 1.74010i 0.689430 + 0.146543i
\(142\) −0.150533 + 1.43222i −0.0126324 + 0.120189i
\(143\) 0.0167074 + 0.158960i 0.00139714 + 0.0132929i
\(144\) −2.37869 + 0.505607i −0.198224 + 0.0421339i
\(145\) 4.64076 + 2.06620i 0.385394 + 0.171589i
\(146\) 6.71457 7.45729i 0.555702 0.617170i
\(147\) 1.01291 + 3.11742i 0.0835435 + 0.257120i
\(148\) −1.02517 1.13857i −0.0842684 0.0935895i
\(149\) 2.72054 4.71211i 0.222875 0.386031i −0.732805 0.680439i \(-0.761789\pi\)
0.955680 + 0.294408i \(0.0951224\pi\)
\(150\) 8.87606 + 15.3738i 0.724727 + 1.25526i
\(151\) −4.23019 + 13.0192i −0.344248 + 1.05949i 0.617737 + 0.786385i \(0.288050\pi\)
−0.961985 + 0.273102i \(0.911950\pi\)
\(152\) 3.19577 1.42285i 0.259211 0.115408i
\(153\) 4.23952 3.08019i 0.342745 0.249019i
\(154\) 2.63560 0.212383
\(155\) 0 0
\(156\) −0.0987625 −0.00790733
\(157\) 12.1800 8.84931i 0.972072 0.706252i 0.0161493 0.999870i \(-0.494859\pi\)
0.955923 + 0.293618i \(0.0948593\pi\)
\(158\) −5.25586 + 2.34006i −0.418134 + 0.186165i
\(159\) −3.36346 + 10.3517i −0.266740 + 0.820942i
\(160\) 4.18648 + 7.25120i 0.330970 + 0.573257i
\(161\) −5.06587 + 8.77434i −0.399246 + 0.691515i
\(162\) −5.06366 5.62377i −0.397839 0.441845i
\(163\) 5.26506 + 16.2042i 0.412391 + 1.26921i 0.914563 + 0.404443i \(0.132534\pi\)
−0.502172 + 0.864768i \(0.667466\pi\)
\(164\) −0.0869044 + 0.0965171i −0.00678609 + 0.00753672i
\(165\) 4.89860 + 2.18100i 0.381356 + 0.169791i
\(166\) 0.404379 0.0859535i 0.0313859 0.00667129i
\(167\) −1.69318 16.1095i −0.131022 1.24659i −0.840480 0.541843i \(-0.817727\pi\)
0.709458 0.704748i \(-0.248940\pi\)
\(168\) −1.03058 + 9.80529i −0.0795107 + 0.756494i
\(169\) 12.6883 + 2.69697i 0.976020 + 0.207460i
\(170\) 25.6108 + 18.6073i 1.96426 + 1.42712i
\(171\) −0.743159 0.539937i −0.0568308 0.0412900i
\(172\) −3.72774 0.792355i −0.284237 0.0604165i
\(173\) 0.243679 2.31845i 0.0185265 0.176268i −0.981346 0.192251i \(-0.938421\pi\)
0.999872 + 0.0159831i \(0.00508779\pi\)
\(174\) −0.262688 2.49930i −0.0199143 0.189472i
\(175\) −20.2177 + 4.29741i −1.52832 + 0.324854i
\(176\) −2.65036 1.18002i −0.199779 0.0889472i
\(177\) 2.63508 2.92655i 0.198065 0.219973i
\(178\) 5.75758 + 17.7200i 0.431549 + 1.32817i
\(179\) 11.3556 + 12.6116i 0.848755 + 0.942638i 0.998941 0.0460201i \(-0.0146538\pi\)
−0.150186 + 0.988658i \(0.547987\pi\)
\(180\) 0.599147 1.03775i 0.0446578 0.0773495i
\(181\) −3.66788 6.35296i −0.272631 0.472211i 0.696903 0.717165i \(-0.254561\pi\)
−0.969535 + 0.244954i \(0.921227\pi\)
\(182\) −0.144060 + 0.443371i −0.0106784 + 0.0328648i
\(183\) −2.37254 + 1.05632i −0.175383 + 0.0780856i
\(184\) 11.3625 8.25534i 0.837655 0.608592i
\(185\) −14.7135 −1.08176
\(186\) 0 0
\(187\) 6.25174 0.457173
\(188\) 1.80516 1.31153i 0.131655 0.0956528i
\(189\) 11.2699 5.01767i 0.819762 0.364982i
\(190\) 1.71480 5.27760i 0.124404 0.382877i
\(191\) −3.91138 6.77471i −0.283018 0.490201i 0.689109 0.724658i \(-0.258002\pi\)
−0.972127 + 0.234457i \(0.924669\pi\)
\(192\) 6.60115 11.4335i 0.476397 0.825143i
\(193\) −3.09908 3.44188i −0.223077 0.247752i 0.621209 0.783645i \(-0.286642\pi\)
−0.844286 + 0.535893i \(0.819975\pi\)
\(194\) 6.07423 + 18.6946i 0.436104 + 1.34219i
\(195\) −0.634650 + 0.704851i −0.0454483 + 0.0504754i
\(196\) 0.798329 + 0.355439i 0.0570235 + 0.0253885i
\(197\) −21.8952 + 4.65397i −1.55997 + 0.331582i −0.905447 0.424460i \(-0.860464\pi\)
−0.654524 + 0.756042i \(0.727131\pi\)
\(198\) 0.100282 + 0.954123i 0.00712676 + 0.0678066i
\(199\) −2.78085 + 26.4580i −0.197129 + 1.87556i 0.232560 + 0.972582i \(0.425290\pi\)
−0.429689 + 0.902977i \(0.641377\pi\)
\(200\) 28.0262 + 5.95716i 1.98175 + 0.421235i
\(201\) 0.662869 + 0.481603i 0.0467552 + 0.0339696i
\(202\) −4.99399 3.62834i −0.351376 0.255289i
\(203\) 2.86211 + 0.608361i 0.200881 + 0.0426986i
\(204\) −0.403789 + 3.84179i −0.0282709 + 0.268979i
\(205\) 0.130376 + 1.24044i 0.00910584 + 0.0866363i
\(206\) −2.39189 + 0.508412i −0.166651 + 0.0354227i
\(207\) −3.36918 1.50006i −0.234175 0.104261i
\(208\) 0.343374 0.381356i 0.0238087 0.0264423i
\(209\) −0.338648 1.04225i −0.0234247 0.0720939i
\(210\) 10.4650 + 11.6226i 0.722156 + 0.802036i
\(211\) −0.663069 + 1.14847i −0.0456476 + 0.0790639i −0.887946 0.459947i \(-0.847868\pi\)
0.842299 + 0.539011i \(0.181202\pi\)
\(212\) 1.45090 + 2.51303i 0.0996481 + 0.172596i
\(213\) −0.521512 + 1.60505i −0.0357334 + 0.109976i
\(214\) 14.4956 6.45384i 0.990896 0.441175i
\(215\) −29.6094 + 21.5125i −2.01935 + 1.46714i
\(216\) −17.1010 −1.16357
\(217\) 0 0
\(218\) −12.9985 −0.880368
\(219\) 9.51374 6.91214i 0.642879 0.467079i
\(220\) 1.30598 0.581458i 0.0880488 0.0392019i
\(221\) −0.341716 + 1.05169i −0.0229863 + 0.0707445i
\(222\) 3.63942 + 6.30366i 0.244262 + 0.423074i
\(223\) −6.05997 + 10.4962i −0.405806 + 0.702876i −0.994415 0.105542i \(-0.966342\pi\)
0.588609 + 0.808418i \(0.299676\pi\)
\(224\) 3.22711 + 3.58407i 0.215620 + 0.239470i
\(225\) −2.32499 7.15558i −0.154999 0.477039i
\(226\) −3.25698 + 3.61724i −0.216651 + 0.240615i
\(227\) −14.5273 6.46799i −0.964213 0.429296i −0.136620 0.990624i \(-0.543624\pi\)
−0.827593 + 0.561328i \(0.810291\pi\)
\(228\) 0.662352 0.140787i 0.0438653 0.00932386i
\(229\) −1.70367 16.2093i −0.112582 1.07114i −0.894287 0.447494i \(-0.852317\pi\)
0.781705 0.623648i \(-0.214350\pi\)
\(230\) 2.32882 22.1572i 0.153558 1.46100i
\(231\) 3.02113 + 0.642162i 0.198776 + 0.0422511i
\(232\) −3.28150 2.38415i −0.215441 0.156527i
\(233\) 4.14456 + 3.01120i 0.271519 + 0.197270i 0.715210 0.698910i \(-0.246331\pi\)
−0.443691 + 0.896180i \(0.646331\pi\)
\(234\) −0.165988 0.0352818i −0.0108510 0.00230644i
\(235\) 2.23988 21.3110i 0.146113 1.39018i
\(236\) −0.109744 1.04414i −0.00714371 0.0679679i
\(237\) −6.59484 + 1.40178i −0.428381 + 0.0910552i
\(238\) 16.6578 + 7.41655i 1.07977 + 0.480744i
\(239\) −5.73311 + 6.36726i −0.370844 + 0.411864i −0.899464 0.436994i \(-0.856043\pi\)
0.528620 + 0.848858i \(0.322710\pi\)
\(240\) −5.31996 16.3731i −0.343402 1.05688i
\(241\) 4.58138 + 5.08814i 0.295113 + 0.327756i 0.872407 0.488781i \(-0.162558\pi\)
−0.577294 + 0.816536i \(0.695891\pi\)
\(242\) 6.39404 11.0748i 0.411024 0.711915i
\(243\) 4.01935 + 6.96171i 0.257841 + 0.446594i
\(244\) −0.213958 + 0.658494i −0.0136972 + 0.0421558i
\(245\) 7.66679 3.41347i 0.489813 0.218079i
\(246\) 0.499190 0.362683i 0.0318272 0.0231238i
\(247\) 0.193842 0.0123338
\(248\) 0 0
\(249\) 0.484474 0.0307023
\(250\) 17.2997 12.5690i 1.09413 0.794933i
\(251\) −20.7065 + 9.21913i −1.30698 + 0.581906i −0.937712 0.347415i \(-0.887060\pi\)
−0.369272 + 0.929321i \(0.620393\pi\)
\(252\) 0.213289 0.656437i 0.0134360 0.0413516i
\(253\) −2.19992 3.81037i −0.138308 0.239556i
\(254\) 4.65089 8.05558i 0.291823 0.505452i
\(255\) 24.8235 + 27.5692i 1.55451 + 1.72645i
\(256\) −2.81235 8.65553i −0.175772 0.540971i
\(257\) −11.1466 + 12.3796i −0.695307 + 0.772217i −0.982622 0.185620i \(-0.940571\pi\)
0.287315 + 0.957836i \(0.407237\pi\)
\(258\) 16.5405 + 7.36430i 1.02977 + 0.458481i
\(259\) −8.28980 + 1.76205i −0.515103 + 0.109489i
\(260\) 0.0264314 + 0.251478i 0.00163921 + 0.0155960i
\(261\) −0.111334 + 1.05927i −0.00689140 + 0.0655673i
\(262\) −16.1477 3.43230i −0.997609 0.212048i
\(263\) −19.8908 14.4515i −1.22652 0.891118i −0.229894 0.973216i \(-0.573838\pi\)
−0.996624 + 0.0820979i \(0.973838\pi\)
\(264\) −3.46382 2.51661i −0.213184 0.154887i
\(265\) 27.2586 + 5.79399i 1.67448 + 0.355922i
\(266\) 0.334109 3.17883i 0.0204855 0.194907i
\(267\) 2.28233 + 21.7149i 0.139676 + 1.32893i
\(268\) 0.213667 0.0454163i 0.0130518 0.00277424i
\(269\) −11.4322 5.08996i −0.697036 0.310340i 0.0274565 0.999623i \(-0.491259\pi\)
−0.724493 + 0.689283i \(0.757926\pi\)
\(270\) −18.1516 + 20.1594i −1.10467 + 1.22686i
\(271\) 8.39516 + 25.8376i 0.509969 + 1.56952i 0.792252 + 0.610194i \(0.208908\pi\)
−0.282283 + 0.959331i \(0.591092\pi\)
\(272\) −13.4306 14.9162i −0.814350 0.904427i
\(273\) −0.273160 + 0.473127i −0.0165324 + 0.0286349i
\(274\) −0.0850519 0.147314i −0.00513817 0.00889957i
\(275\) 2.77372 8.53663i 0.167261 0.514778i
\(276\) 2.48362 1.10578i 0.149496 0.0665601i
\(277\) −12.2625 + 8.90926i −0.736785 + 0.535305i −0.891703 0.452622i \(-0.850489\pi\)
0.154918 + 0.987927i \(0.450489\pi\)
\(278\) −14.6007 −0.875694
\(279\) 0 0
\(280\) 25.2430 1.50855
\(281\) −24.4709 + 17.7792i −1.45981 + 1.06062i −0.476401 + 0.879228i \(0.658059\pi\)
−0.983412 + 0.181387i \(0.941941\pi\)
\(282\) −9.68424 + 4.31170i −0.576688 + 0.256758i
\(283\) 0.971958 2.99138i 0.0577769 0.177819i −0.918003 0.396573i \(-0.870199\pi\)
0.975780 + 0.218754i \(0.0701993\pi\)
\(284\) 0.224965 + 0.389651i 0.0133492 + 0.0231215i
\(285\) 3.25152 5.63179i 0.192603 0.333599i
\(286\) −0.135464 0.150448i −0.00801016 0.00889618i
\(287\) 0.222008 + 0.683269i 0.0131047 + 0.0403321i
\(288\) −1.17469 + 1.30463i −0.0692194 + 0.0768759i
\(289\) 23.9828 + 10.6778i 1.41075 + 0.628106i
\(290\) −6.29366 + 1.33776i −0.369577 + 0.0785559i
\(291\) 2.40785 + 22.9092i 0.141151 + 1.34296i
\(292\) 0.327711 3.11796i 0.0191778 0.182465i
\(293\) −1.85856 0.395049i −0.108578 0.0230790i 0.153302 0.988179i \(-0.451009\pi\)
−0.261880 + 0.965100i \(0.584343\pi\)
\(294\) −3.35882 2.44033i −0.195890 0.142323i
\(295\) −8.15708 5.92647i −0.474924 0.345052i
\(296\) 11.4915 + 2.44259i 0.667930 + 0.141973i
\(297\) −0.559984 + 5.32789i −0.0324935 + 0.309155i
\(298\) 0.720377 + 6.85393i 0.0417303 + 0.397037i
\(299\) 0.761241 0.161807i 0.0440237 0.00935752i
\(300\) 5.06674 + 2.25586i 0.292529 + 0.130242i
\(301\) −14.1061 + 15.6664i −0.813062 + 0.902996i
\(302\) −5.35797 16.4901i −0.308316 0.948900i
\(303\) −4.84046 5.37588i −0.278077 0.308836i
\(304\) −1.75922 + 3.04705i −0.100898 + 0.174760i
\(305\) 3.32466 + 5.75848i 0.190370 + 0.329730i
\(306\) −2.05108 + 6.31256i −0.117252 + 0.360865i
\(307\) 20.7631 9.24435i 1.18502 0.527603i 0.282922 0.959143i \(-0.408696\pi\)
0.902094 + 0.431540i \(0.142030\pi\)
\(308\) 0.666171 0.484002i 0.0379586 0.0275786i
\(309\) −2.86565 −0.163021
\(310\) 0 0
\(311\) 15.8754 0.900213 0.450106 0.892975i \(-0.351386\pi\)
0.450106 + 0.892975i \(0.351386\pi\)
\(312\) 0.612685 0.445142i 0.0346865 0.0252012i
\(313\) −5.80042 + 2.58251i −0.327859 + 0.145972i −0.564064 0.825731i \(-0.690763\pi\)
0.236205 + 0.971703i \(0.424096\pi\)
\(314\) −5.89268 + 18.1358i −0.332543 + 1.02346i
\(315\) −3.31427 5.74049i −0.186738 0.323440i
\(316\) −0.898737 + 1.55666i −0.0505579 + 0.0875689i
\(317\) −10.2384 11.3709i −0.575044 0.638651i 0.383518 0.923533i \(-0.374712\pi\)
−0.958563 + 0.284882i \(0.908046\pi\)
\(318\) −4.26017 13.1115i −0.238898 0.735254i
\(319\) −0.850248 + 0.944296i −0.0476047 + 0.0528704i
\(320\) −30.8797 13.7485i −1.72623 0.768567i
\(321\) 18.1884 3.86607i 1.01518 0.215783i
\(322\) −1.34140 12.7626i −0.0747533 0.711231i
\(323\) 0.792518 7.54031i 0.0440969 0.419554i
\(324\) −2.31263 0.491565i −0.128480 0.0273092i
\(325\) 1.28446 + 0.933212i 0.0712488 + 0.0517653i
\(326\) −17.4590 12.6847i −0.966963 0.702540i
\(327\) −14.8999 3.16707i −0.823966 0.175139i
\(328\) 0.104100 0.990450i 0.00574799 0.0546884i
\(329\) −1.29017 12.2752i −0.0711295 0.676752i
\(330\) −6.64334 + 1.41209i −0.365704 + 0.0777328i
\(331\) 8.19263 + 3.64760i 0.450308 + 0.200490i 0.619344 0.785120i \(-0.287399\pi\)
−0.169036 + 0.985610i \(0.554065\pi\)
\(332\) 0.0864260 0.0959858i 0.00474324 0.00526790i
\(333\) −0.953307 2.93398i −0.0522409 0.160781i
\(334\) 13.7284 + 15.2469i 0.751182 + 0.834273i
\(335\) 1.04890 1.81675i 0.0573076 0.0992597i
\(336\) −4.95814 8.58776i −0.270489 0.468501i
\(337\) 1.35002 4.15495i 0.0735405 0.226334i −0.907529 0.419989i \(-0.862034\pi\)
0.981070 + 0.193654i \(0.0620340\pi\)
\(338\) −15.0096 + 6.68269i −0.816413 + 0.363490i
\(339\) −4.61474 + 3.35281i −0.250638 + 0.182100i
\(340\) 9.89040 0.536382
\(341\) 0 0
\(342\) 1.16349 0.0629145
\(343\) 16.3073 11.8479i 0.880511 0.639729i
\(344\) 26.6968 11.8862i 1.43939 0.640859i
\(345\) 8.06806 24.8309i 0.434370 1.33685i
\(346\) 1.47636 + 2.55713i 0.0793697 + 0.137472i
\(347\) 12.2026 21.1356i 0.655073 1.13462i −0.326803 0.945092i \(-0.605971\pi\)
0.981876 0.189526i \(-0.0606953\pi\)
\(348\) −0.525369 0.583481i −0.0281627 0.0312779i
\(349\) 4.03079 + 12.4055i 0.215763 + 0.664051i 0.999099 + 0.0424515i \(0.0135168\pi\)
−0.783335 + 0.621599i \(0.786483\pi\)
\(350\) 17.5178 19.4554i 0.936364 1.03994i
\(351\) −0.865670 0.385421i −0.0462060 0.0205723i
\(352\) −2.04861 + 0.435445i −0.109191 + 0.0232093i
\(353\) 1.13150 + 10.7655i 0.0602237 + 0.572990i 0.982474 + 0.186398i \(0.0596813\pi\)
−0.922251 + 0.386592i \(0.873652\pi\)
\(354\) −0.521384 + 4.96063i −0.0277112 + 0.263655i
\(355\) 4.22650 + 0.898370i 0.224319 + 0.0476805i
\(356\) 4.70938 + 3.42156i 0.249597 + 0.181343i
\(357\) 17.2875 + 12.5601i 0.914952 + 0.664752i
\(358\) −21.0253 4.46907i −1.11122 0.236197i
\(359\) −3.53133 + 33.5983i −0.186376 + 1.77325i 0.357331 + 0.933978i \(0.383687\pi\)
−0.543708 + 0.839275i \(0.682980\pi\)
\(360\) 0.960473 + 9.13829i 0.0506214 + 0.481630i
\(361\) 17.2848 3.67400i 0.909726 0.193368i
\(362\) 8.48819 + 3.77919i 0.446130 + 0.198630i
\(363\) 10.0277 11.1369i 0.526319 0.584536i
\(364\) 0.0450082 + 0.138521i 0.00235907 + 0.00726048i
\(365\) −20.1465 22.3749i −1.05451 1.17116i
\(366\) 1.64472 2.84875i 0.0859711 0.148906i
\(367\) 11.3157 + 19.5993i 0.590673 + 1.02308i 0.994142 + 0.108082i \(0.0344709\pi\)
−0.403469 + 0.914993i \(0.632196\pi\)
\(368\) −4.36518 + 13.4346i −0.227551 + 0.700329i
\(369\) −0.238906 + 0.106368i −0.0124369 + 0.00553728i
\(370\) 15.0770 10.9541i 0.783814 0.569474i
\(371\) 16.0517 0.833365
\(372\) 0 0
\(373\) −32.9720 −1.70723 −0.853613 0.520908i \(-0.825593\pi\)
−0.853613 + 0.520908i \(0.825593\pi\)
\(374\) −6.40617 + 4.65436i −0.331255 + 0.240671i
\(375\) 22.8927 10.1925i 1.18218 0.526339i
\(376\) −5.28723 + 16.2724i −0.272668 + 0.839185i
\(377\) −0.112379 0.194647i −0.00578783 0.0100248i
\(378\) −7.81265 + 13.5319i −0.401840 + 0.696006i
\(379\) −21.7413 24.1462i −1.11678 1.24031i −0.967869 0.251454i \(-0.919091\pi\)
−0.148906 0.988851i \(-0.547575\pi\)
\(380\) −0.535748 1.64886i −0.0274833 0.0845850i
\(381\) 7.29395 8.10075i 0.373680 0.415014i
\(382\) 9.05170 + 4.03008i 0.463125 + 0.206197i
\(383\) −26.1952 + 5.56796i −1.33851 + 0.284510i −0.820884 0.571095i \(-0.806519\pi\)
−0.517629 + 0.855605i \(0.673185\pi\)
\(384\) 1.06425 + 10.1257i 0.0543100 + 0.516725i
\(385\) 0.826598 7.86455i 0.0421273 0.400815i
\(386\) 5.73808 + 1.21967i 0.292061 + 0.0620794i
\(387\) −6.20818 4.51050i −0.315579 0.229282i
\(388\) 4.96838 + 3.60974i 0.252232 + 0.183257i
\(389\) −17.3499 3.68783i −0.879675 0.186981i −0.254131 0.967170i \(-0.581789\pi\)
−0.625544 + 0.780189i \(0.715123\pi\)
\(390\) 0.125574 1.19475i 0.00635866 0.0604986i
\(391\) −3.18185 30.2733i −0.160913 1.53099i
\(392\) −6.55456 + 1.39321i −0.331055 + 0.0703680i
\(393\) −17.6735 7.86876i −0.891511 0.396926i
\(394\) 18.9713 21.0697i 0.955758 1.06148i
\(395\) 5.33429 + 16.4173i 0.268397 + 0.826042i
\(396\) 0.200563 + 0.222747i 0.0100786 + 0.0111935i
\(397\) −4.97476 + 8.61654i −0.249676 + 0.432452i −0.963436 0.267939i \(-0.913658\pi\)
0.713760 + 0.700391i \(0.246991\pi\)
\(398\) −16.8482 29.1819i −0.844523 1.46276i
\(399\) 1.15750 3.56243i 0.0579476 0.178344i
\(400\) −26.3265 + 11.7213i −1.31633 + 0.586066i
\(401\) 16.0959 11.6943i 0.803789 0.583987i −0.108234 0.994125i \(-0.534520\pi\)
0.912023 + 0.410138i \(0.134520\pi\)
\(402\) −1.03779 −0.0517604
\(403\) 0 0
\(404\) −1.92858 −0.0959506
\(405\) −18.3693 + 13.3460i −0.912776 + 0.663170i
\(406\) −3.38573 + 1.50743i −0.168031 + 0.0748123i
\(407\) 1.13730 3.50024i 0.0563738 0.173501i
\(408\) −14.8108 25.6530i −0.733242 1.27001i
\(409\) −12.1628 + 21.0665i −0.601410 + 1.04167i 0.391198 + 0.920306i \(0.372061\pi\)
−0.992608 + 0.121365i \(0.961273\pi\)
\(410\) −1.05709 1.17402i −0.0522061 0.0579807i
\(411\) −0.0616002 0.189586i −0.00303851 0.00935159i
\(412\) −0.511206 + 0.567752i −0.0251853 + 0.0279711i
\(413\) −5.30555 2.36218i −0.261069 0.116235i
\(414\) 4.56919 0.971211i 0.224563 0.0477324i
\(415\) −0.129658 1.23361i −0.00636466 0.0605557i
\(416\) 0.0387231 0.368426i 0.00189856 0.0180636i
\(417\) −16.7365 3.55746i −0.819591 0.174209i
\(418\) 1.12296 + 0.815876i 0.0549256 + 0.0399058i
\(419\) 3.56513 + 2.59022i 0.174168 + 0.126541i 0.671454 0.741046i \(-0.265670\pi\)
−0.497286 + 0.867587i \(0.665670\pi\)
\(420\) 4.77951 + 1.01592i 0.233216 + 0.0495716i
\(421\) 1.29863 12.3556i 0.0632912 0.602176i −0.916204 0.400711i \(-0.868763\pi\)
0.979496 0.201465i \(-0.0645702\pi\)
\(422\) −0.175575 1.67049i −0.00854687 0.0813181i
\(423\) 4.39469 0.934120i 0.213677 0.0454185i
\(424\) −20.3275 9.05040i −0.987192 0.439526i
\(425\) 41.5528 46.1490i 2.01561 2.23856i
\(426\) −0.660548 2.03296i −0.0320037 0.0984972i
\(427\) 2.56278 + 2.84626i 0.124022 + 0.137740i
\(428\) 2.47870 4.29323i 0.119812 0.207521i
\(429\) −0.118623 0.205461i −0.00572718 0.00991976i
\(430\) 14.3250 44.0878i 0.690813 2.12610i
\(431\) −16.9602 + 7.55119i −0.816946 + 0.363728i −0.772287 0.635274i \(-0.780887\pi\)
−0.0446597 + 0.999002i \(0.514220\pi\)
\(432\) 13.9150 10.1098i 0.669484 0.486408i
\(433\) 36.1204 1.73584 0.867918 0.496708i \(-0.165458\pi\)
0.867918 + 0.496708i \(0.165458\pi\)
\(434\) 0 0
\(435\) −7.54024 −0.361527
\(436\) −3.28548 + 2.38704i −0.157346 + 0.114319i
\(437\) −4.87461 + 2.17032i −0.233184 + 0.103820i
\(438\) −4.60274 + 14.1658i −0.219927 + 0.676866i
\(439\) 9.50469 + 16.4626i 0.453634 + 0.785718i 0.998609 0.0527352i \(-0.0167939\pi\)
−0.544974 + 0.838453i \(0.683461\pi\)
\(440\) −5.48103 + 9.49342i −0.261298 + 0.452581i
\(441\) 1.17741 + 1.30765i 0.0560672 + 0.0622689i
\(442\) −0.432817 1.33208i −0.0205870 0.0633603i
\(443\) 8.33337 9.25515i 0.395931 0.439725i −0.511911 0.859038i \(-0.671062\pi\)
0.907842 + 0.419313i \(0.137729\pi\)
\(444\) 2.07750 + 0.924962i 0.0985937 + 0.0438968i
\(445\) 54.6817 11.6230i 2.59216 0.550981i
\(446\) −1.60463 15.2670i −0.0759815 0.722916i
\(447\) −0.844201 + 8.03203i −0.0399293 + 0.379902i
\(448\) −19.0446 4.04805i −0.899772 0.191252i
\(449\) 20.5786 + 14.9513i 0.971166 + 0.705593i 0.955717 0.294287i \(-0.0950822\pi\)
0.0154490 + 0.999881i \(0.495082\pi\)
\(450\) 7.70968 + 5.60141i 0.363438 + 0.264053i
\(451\) −0.305170 0.0648659i −0.0143699 0.00305442i
\(452\) −0.158960 + 1.51240i −0.00747684 + 0.0711373i
\(453\) −2.12392 20.2078i −0.0997905 0.949443i
\(454\) 19.7015 4.18769i 0.924640 0.196538i
\(455\) 1.27783 + 0.568924i 0.0599054 + 0.0266716i
\(456\) −3.47442 + 3.85874i −0.162705 + 0.180702i
\(457\) −9.88049 30.4090i −0.462190 1.42247i −0.862482 0.506087i \(-0.831091\pi\)
0.400292 0.916388i \(-0.368909\pi\)
\(458\) 13.8134 + 15.3414i 0.645459 + 0.716855i
\(459\) −18.5319 + 32.0982i −0.864995 + 1.49822i
\(460\) −3.48032 6.02809i −0.162271 0.281061i
\(461\) −5.97950 + 18.4030i −0.278493 + 0.857114i 0.709781 + 0.704423i \(0.248794\pi\)
−0.988274 + 0.152691i \(0.951206\pi\)
\(462\) −3.57385 + 1.59118i −0.166270 + 0.0740283i
\(463\) 0.0335439 0.0243710i 0.00155892 0.00113262i −0.587006 0.809583i \(-0.699693\pi\)
0.588564 + 0.808450i \(0.299693\pi\)
\(464\) 4.07961 0.189391
\(465\) 0 0
\(466\) −6.48875 −0.300586
\(467\) −20.4748 + 14.8758i −0.947462 + 0.688372i −0.950205 0.311625i \(-0.899127\pi\)
0.00274297 + 0.999996i \(0.499127\pi\)
\(468\) −0.0484340 + 0.0215642i −0.00223886 + 0.000996806i
\(469\) 0.373397 1.14920i 0.0172419 0.0530650i
\(470\) 13.5706 + 23.5050i 0.625966 + 1.08420i
\(471\) −11.1734 + 19.3530i −0.514845 + 0.891737i
\(472\) 5.38696 + 5.98283i 0.247955 + 0.275382i
\(473\) −2.82898 8.70671i −0.130077 0.400335i
\(474\) 5.71414 6.34620i 0.262459 0.291490i
\(475\) −9.94452 4.42759i −0.456286 0.203152i
\(476\) 5.57239 1.18445i 0.255410 0.0542891i
\(477\) 0.610755 + 5.81095i 0.0279646 + 0.266065i
\(478\) 1.13437 10.7928i 0.0518848 0.493651i
\(479\) 20.7770 + 4.41628i 0.949324 + 0.201785i 0.656453 0.754367i \(-0.272056\pi\)
0.292871 + 0.956152i \(0.405389\pi\)
\(480\) −10.0546 7.30506i −0.458925 0.333429i
\(481\) 0.526661 + 0.382641i 0.0240137 + 0.0174469i
\(482\) −8.48261 1.80304i −0.386372 0.0821260i
\(483\) 1.57197 14.9563i 0.0715272 0.680536i
\(484\) −0.417627 3.97345i −0.0189830 0.180612i
\(485\) 57.6891 12.2622i 2.61953 0.556797i
\(486\) −9.30156 4.14132i −0.421927 0.187854i
\(487\) −17.9073 + 19.8880i −0.811455 + 0.901212i −0.996675 0.0814851i \(-0.974034\pi\)
0.185220 + 0.982697i \(0.440700\pi\)
\(488\) −1.64065 5.04940i −0.0742687 0.228575i
\(489\) −16.9222 18.7941i −0.765250 0.849897i
\(490\) −5.31488 + 9.20564i −0.240102 + 0.415868i
\(491\) −6.28320 10.8828i −0.283557 0.491135i 0.688701 0.725045i \(-0.258181\pi\)
−0.972258 + 0.233910i \(0.924848\pi\)
\(492\) 0.0595716 0.183342i 0.00268569 0.00826572i
\(493\) −8.03108 + 3.57567i −0.361702 + 0.161040i
\(494\) −0.198630 + 0.144313i −0.00893678 + 0.00649295i
\(495\) 2.87853 0.129380
\(496\) 0 0
\(497\) 2.48886 0.111640
\(498\) −0.496442 + 0.360686i −0.0222461 + 0.0161627i
\(499\) 21.0393 9.36729i 0.941848 0.419338i 0.122393 0.992482i \(-0.460943\pi\)
0.819455 + 0.573144i \(0.194276\pi\)
\(500\) 2.06449 6.35384i 0.0923268 0.284153i
\(501\) 12.0216 + 20.8221i 0.537087 + 0.930263i
\(502\) 14.3545 24.8626i 0.640671 1.10967i
\(503\) 0.442682 + 0.491648i 0.0197382 + 0.0219215i 0.752933 0.658097i \(-0.228638\pi\)
−0.733195 + 0.680019i \(0.761972\pi\)
\(504\) 1.63552 + 5.03362i 0.0728520 + 0.224215i
\(505\) −12.3931 + 13.7640i −0.551487 + 0.612488i
\(506\) 5.09104 + 2.26668i 0.226324 + 0.100766i
\(507\) −18.8334 + 4.00316i −0.836420 + 0.177787i
\(508\) −0.303773 2.89021i −0.0134777 0.128232i
\(509\) −1.21958 + 11.6035i −0.0540568 + 0.514316i 0.933671 + 0.358131i \(0.116586\pi\)
−0.987728 + 0.156184i \(0.950081\pi\)
\(510\) −45.9617 9.76945i −2.03522 0.432599i
\(511\) −14.0304 10.1937i −0.620667 0.450941i
\(512\) 20.4245 + 14.8393i 0.902644 + 0.655809i
\(513\) 6.35505 + 1.35081i 0.280582 + 0.0596396i
\(514\) 2.20550 20.9839i 0.0972804 0.925561i
\(515\) 0.766922 + 7.29678i 0.0337946 + 0.321535i
\(516\) 5.53313 1.17610i 0.243583 0.0517751i
\(517\) 4.89661 + 2.18011i 0.215353 + 0.0958812i
\(518\) 7.18275 7.97725i 0.315592 0.350500i
\(519\) 1.06928 + 3.29090i 0.0469362 + 0.144455i
\(520\) −1.29743 1.44094i −0.0568962 0.0631896i
\(521\) 15.9592 27.6422i 0.699186 1.21103i −0.269563 0.962983i \(-0.586879\pi\)
0.968749 0.248043i \(-0.0797874\pi\)
\(522\) −0.674533 1.16833i −0.0295235 0.0511362i
\(523\) 0.00128254 0.00394726i 5.60817e−5 0.000172602i −0.951028 0.309103i \(-0.899971\pi\)
0.951085 + 0.308931i \(0.0999711\pi\)
\(524\) −4.71179 + 2.09782i −0.205835 + 0.0916438i
\(525\) 24.8206 18.0332i 1.08326 0.787033i
\(526\) 31.1411 1.35782
\(527\) 0 0
\(528\) 4.30627 0.187406
\(529\) 1.27581 0.926929i 0.0554699 0.0403013i
\(530\) −32.2455 + 14.3566i −1.40065 + 0.623611i
\(531\) 0.653271 2.01056i 0.0283496 0.0872510i
\(532\) −0.499312 0.864834i −0.0216479 0.0374953i
\(533\) 0.0275924 0.0477914i 0.00119516 0.00207008i
\(534\) −18.5052 20.5521i −0.800799 0.889378i
\(535\) −14.7119 45.2784i −0.636049 1.95756i
\(536\) −1.12081 + 1.24478i −0.0484115 + 0.0537665i
\(537\) −23.0120 10.2456i −0.993040 0.442130i
\(538\) 15.5041 3.29549i 0.668428 0.142079i
\(539\) 0.219429 + 2.08772i 0.00945146 + 0.0899246i
\(540\) −0.885907 + 8.42885i −0.0381234 + 0.362720i
\(541\) −28.6353 6.08662i −1.23113 0.261684i −0.453985 0.891009i \(-0.649998\pi\)
−0.777142 + 0.629325i \(0.783332\pi\)
\(542\) −27.8384 20.2258i −1.19576 0.868771i
\(543\) 8.80905 + 6.40015i 0.378032 + 0.274657i
\(544\) −14.1732 3.01261i −0.607671 0.129165i
\(545\) −4.07669 + 38.7871i −0.174626 + 1.66146i
\(546\) −0.0723305 0.688179i −0.00309546 0.0294513i
\(547\) −40.2657 + 8.55875i −1.72164 + 0.365946i −0.959552 0.281530i \(-0.909158\pi\)
−0.762086 + 0.647476i \(0.775825\pi\)
\(548\) −0.0485504 0.0216160i −0.00207397 0.000923391i
\(549\) −0.932873 + 1.03606i −0.0398140 + 0.0442180i
\(550\) 3.51320 + 10.8125i 0.149803 + 0.461047i
\(551\) 1.03114 + 1.14520i 0.0439282 + 0.0487872i
\(552\) −10.4235 + 18.0540i −0.443653 + 0.768429i
\(553\) 4.97150 + 8.61089i 0.211410 + 0.366172i
\(554\) 5.93260 18.2587i 0.252052 0.775737i
\(555\) 19.9514 8.88292i 0.846888 0.377059i
\(556\) −3.69046 + 2.68128i −0.156511 + 0.113712i
\(557\) 5.73810 0.243131 0.121566 0.992583i \(-0.461209\pi\)
0.121566 + 0.992583i \(0.461209\pi\)
\(558\) 0 0
\(559\) 1.61931 0.0684894
\(560\) −20.5400 + 14.9232i −0.867975 + 0.630620i
\(561\) −8.47729 + 3.77433i −0.357912 + 0.159352i
\(562\) 11.8390 36.4367i 0.499398 1.53699i
\(563\) 7.14710 + 12.3791i 0.301214 + 0.521718i 0.976411 0.215919i \(-0.0692748\pi\)
−0.675197 + 0.737637i \(0.735941\pi\)
\(564\) −1.65598 + 2.86823i −0.0697292 + 0.120774i
\(565\) 9.77226 + 10.8532i 0.411122 + 0.456597i
\(566\) 1.23108 + 3.78889i 0.0517463 + 0.159259i
\(567\) −8.75121 + 9.71921i −0.367516 + 0.408168i
\(568\) −3.15183 1.40328i −0.132248 0.0588805i
\(569\) 14.0480 2.98598i 0.588921 0.125179i 0.0961933 0.995363i \(-0.469333\pi\)
0.492727 + 0.870184i \(0.336000\pi\)
\(570\) 0.860975 + 8.19163i 0.0360623 + 0.343110i
\(571\) 3.48906 33.1962i 0.146012 1.38922i −0.638748 0.769416i \(-0.720547\pi\)
0.784760 0.619800i \(-0.212786\pi\)
\(572\) −0.0618680 0.0131505i −0.00258683 0.000549848i
\(573\) 9.39385 + 6.82503i 0.392434 + 0.285120i
\(574\) −0.736179 0.534865i −0.0307275 0.0223248i
\(575\) −42.7493 9.08664i −1.78277 0.378939i
\(576\) 0.740819 7.04842i 0.0308675 0.293684i
\(577\) 2.34976 + 22.3565i 0.0978217 + 0.930712i 0.927841 + 0.372977i \(0.121663\pi\)
−0.830019 + 0.557735i \(0.811670\pi\)
\(578\) −32.5247 + 6.91334i −1.35285 + 0.287557i
\(579\) 6.28027 + 2.79616i 0.260999 + 0.116204i
\(580\) −1.34511 + 1.49390i −0.0558528 + 0.0620308i
\(581\) −0.220786 0.679508i −0.00915973 0.0281908i
\(582\) −19.5230 21.6825i −0.809253 0.898767i
\(583\) −3.48533 + 6.03677i −0.144348 + 0.250018i
\(584\) 12.0203 + 20.8197i 0.497402 + 0.861525i
\(585\) −0.157338 + 0.484237i −0.00650514 + 0.0200207i
\(586\) 2.19858 0.978871i 0.0908225 0.0404368i
\(587\) −5.19079 + 3.77133i −0.214247 + 0.155659i −0.689733 0.724064i \(-0.742272\pi\)
0.475486 + 0.879723i \(0.342272\pi\)
\(588\) −1.29711 −0.0534920
\(589\) 0 0
\(590\) 12.7708 0.525764
\(591\) 26.8800 19.5294i 1.10569 0.803334i
\(592\) −10.7946 + 4.80605i −0.443654 + 0.197528i
\(593\) −6.44614 + 19.8392i −0.264711 + 0.814697i 0.727049 + 0.686586i \(0.240891\pi\)
−0.991760 + 0.128111i \(0.959109\pi\)
\(594\) −3.39274 5.87640i −0.139206 0.241112i
\(595\) 27.3551 47.3805i 1.12145 1.94241i
\(596\) 1.44074 + 1.60010i 0.0590149 + 0.0655427i
\(597\) −12.2026 37.5557i −0.499418 1.53705i
\(598\) −0.659582 + 0.732539i −0.0269723 + 0.0299558i
\(599\) −10.5591 4.70122i −0.431434 0.192087i 0.179518 0.983755i \(-0.442546\pi\)
−0.610951 + 0.791668i \(0.709213\pi\)
\(600\) −41.5998 + 8.84230i −1.69830 + 0.360985i
\(601\) 0.451293 + 4.29377i 0.0184086 + 0.175146i 0.999863 0.0165493i \(-0.00526804\pi\)
−0.981454 + 0.191696i \(0.938601\pi\)
\(602\) 2.79107 26.5552i 0.113755 1.08231i
\(603\) 0.430232 + 0.0914487i 0.0175204 + 0.00372408i
\(604\) −4.38252 3.18409i −0.178322 0.129559i
\(605\) −31.0415 22.5530i −1.26202 0.916909i
\(606\) 8.96231 + 1.90500i 0.364069 + 0.0773853i
\(607\) −4.69429 + 44.6632i −0.190536 + 1.81282i 0.313988 + 0.949427i \(0.398335\pi\)
−0.504524 + 0.863398i \(0.668332\pi\)
\(608\) 0.265499 + 2.52605i 0.0107674 + 0.102445i
\(609\) −4.24828 + 0.902999i −0.172149 + 0.0365914i
\(610\) −7.69392 3.42555i −0.311518 0.138697i
\(611\) −0.634392 + 0.704563i −0.0256647 + 0.0285036i
\(612\) 0.640812 + 1.97222i 0.0259033 + 0.0797221i
\(613\) 1.74319 + 1.93601i 0.0704070 + 0.0781949i 0.777319 0.629106i \(-0.216579\pi\)
−0.706912 + 0.707301i \(0.749912\pi\)
\(614\) −14.3937 + 24.9306i −0.580883 + 1.00612i
\(615\) −0.925674 1.60332i −0.0373268 0.0646519i
\(616\) −1.95118 + 6.00512i −0.0786154 + 0.241953i
\(617\) −22.8266 + 10.1630i −0.918963 + 0.409149i −0.811027 0.585009i \(-0.801091\pi\)
−0.107936 + 0.994158i \(0.534424\pi\)
\(618\) 2.93643 2.13344i 0.118121 0.0858197i
\(619\) −31.9083 −1.28250 −0.641252 0.767330i \(-0.721585\pi\)
−0.641252 + 0.767330i \(0.721585\pi\)
\(620\) 0 0
\(621\) 26.0847 1.04674
\(622\) −16.2676 + 11.8191i −0.652271 + 0.473902i
\(623\) 29.4165 13.0971i 1.17855 0.524723i
\(624\) −0.235378 + 0.724418i −0.00942264 + 0.0289999i
\(625\) −8.47372 14.6769i −0.338949 0.587077i
\(626\) 4.02105 6.96466i 0.160713 0.278364i
\(627\) 1.08843 + 1.20883i 0.0434679 + 0.0482760i
\(628\) 1.84103 + 5.66612i 0.0734652 + 0.226103i
\(629\) 17.0377 18.9223i 0.679339 0.754482i
\(630\) 7.66988 + 3.41485i 0.305575 + 0.136051i
\(631\) −0.351890 + 0.0747965i −0.0140085 + 0.00297760i −0.214911 0.976634i \(-0.568946\pi\)
0.200902 + 0.979611i \(0.435613\pi\)
\(632\) −1.44074 13.7077i −0.0573094 0.545263i
\(633\) 0.205755 1.95762i 0.00817801 0.0778086i
\(634\) 18.9568 + 4.02939i 0.752869 + 0.160027i
\(635\) −22.5790 16.4046i −0.896019 0.650996i
\(636\) −3.48458 2.53170i −0.138173 0.100388i
\(637\) −0.363199 0.0772003i −0.0143905 0.00305879i
\(638\) 0.168232 1.60062i 0.00666038 0.0633693i
\(639\) 0.0946989 + 0.901000i 0.00374623 + 0.0356430i
\(640\) 25.4982 5.41981i 1.00791 0.214237i
\(641\) 28.1435 + 12.5303i 1.11160 + 0.494917i 0.878600 0.477559i \(-0.158478\pi\)
0.233003 + 0.972476i \(0.425145\pi\)
\(642\) −15.7595 + 17.5027i −0.621977 + 0.690775i
\(643\) 0.541347 + 1.66609i 0.0213486 + 0.0657044i 0.961163 0.275980i \(-0.0890025\pi\)
−0.939815 + 0.341685i \(0.889002\pi\)
\(644\) −2.68277 2.97952i −0.105716 0.117409i
\(645\) 27.1624 47.0467i 1.06952 1.85246i
\(646\) 4.80159 + 8.31659i 0.188916 + 0.327212i
\(647\) 7.61739 23.4439i 0.299470 0.921675i −0.682213 0.731154i \(-0.738982\pi\)
0.981683 0.190521i \(-0.0610178\pi\)
\(648\) 16.5623 7.37400i 0.650628 0.289678i
\(649\) 2.04038 1.48242i 0.0800918 0.0581901i
\(650\) −2.01095 −0.0788760
\(651\) 0 0
\(652\) −6.74233 −0.264050
\(653\) 0.231107 0.167909i 0.00904393 0.00657080i −0.583254 0.812290i \(-0.698221\pi\)
0.592298 + 0.805719i \(0.298221\pi\)
\(654\) 17.6258 7.84751i 0.689223 0.306862i
\(655\) −15.3063 + 47.1079i −0.598065 + 1.84066i
\(656\) 0.500831 + 0.867465i 0.0195542 + 0.0338688i
\(657\) 3.15640 5.46704i 0.123143 0.213290i
\(658\) 10.4608 + 11.6179i 0.407804 + 0.452912i
\(659\) 11.5649 + 35.5930i 0.450503 + 1.38651i 0.876335 + 0.481703i \(0.159982\pi\)
−0.425832 + 0.904802i \(0.640018\pi\)
\(660\) −1.41985 + 1.57690i −0.0552675 + 0.0613808i
\(661\) 3.82919 + 1.70487i 0.148938 + 0.0663116i 0.479852 0.877349i \(-0.340690\pi\)
−0.330914 + 0.943661i \(0.607357\pi\)
\(662\) −11.1106 + 2.36163i −0.431826 + 0.0917875i
\(663\) −0.171571 1.63239i −0.00666325 0.0633966i
\(664\) −0.103527 + 0.984998i −0.00401764 + 0.0382253i
\(665\) −9.38076 1.99394i −0.363770 0.0773218i
\(666\) 3.16117 + 2.29673i 0.122493 + 0.0889963i
\(667\) 5.00538 + 3.63662i 0.193809 + 0.140810i
\(668\) 6.26990 + 1.33271i 0.242590 + 0.0515641i
\(669\) 1.88045 17.8913i 0.0727023 0.691716i
\(670\) 0.277740 + 2.64252i 0.0107300 + 0.102090i
\(671\) −1.62689 + 0.345805i −0.0628053 + 0.0133497i
\(672\) −6.53971 2.91167i −0.252275 0.112320i
\(673\) −6.67302 + 7.41114i −0.257226 + 0.285678i −0.857901 0.513815i \(-0.828232\pi\)
0.600675 + 0.799493i \(0.294899\pi\)
\(674\) 1.70994 + 5.26266i 0.0658645 + 0.202710i
\(675\) 35.6074 + 39.5460i 1.37053 + 1.52213i
\(676\) −2.56659 + 4.44546i −0.0987150 + 0.170979i
\(677\) −23.8788 41.3594i −0.917738 1.58957i −0.802842 0.596192i \(-0.796680\pi\)
−0.114896 0.993377i \(-0.536654\pi\)
\(678\) 2.23261 6.87126i 0.0857428 0.263889i
\(679\) 31.0344 13.8174i 1.19099 0.530263i
\(680\) −61.3563 + 44.5780i −2.35291 + 1.70949i
\(681\) 23.6038 0.904500
\(682\) 0 0
\(683\) 27.7600 1.06221 0.531104 0.847307i \(-0.321777\pi\)
0.531104 + 0.847307i \(0.321777\pi\)
\(684\) 0.294083 0.213664i 0.0112446 0.00816965i
\(685\) −0.466256 + 0.207590i −0.0178147 + 0.00793162i
\(686\) −7.88945 + 24.2812i −0.301221 + 0.927062i
\(687\) 12.0961 + 20.9511i 0.461496 + 0.799335i
\(688\) −14.6961 + 25.4544i −0.560283 + 0.970438i
\(689\) −0.825024 0.916282i −0.0314309 0.0349076i
\(690\) 10.2190 + 31.4509i 0.389031 + 1.19731i
\(691\) 25.4477 28.2625i 0.968075 1.07516i −0.0290645 0.999578i \(-0.509253\pi\)
0.997140 0.0755790i \(-0.0240805\pi\)
\(692\) 0.842756 + 0.375219i 0.0320368 + 0.0142637i
\(693\) 1.62180 0.344725i 0.0616072 0.0130950i
\(694\) 3.23116 + 30.7425i 0.122653 + 1.16697i
\(695\) −4.57920 + 43.5682i −0.173699 + 1.65263i
\(696\) 5.88905 + 1.25176i 0.223224 + 0.0474477i
\(697\) −1.74624 1.26872i −0.0661437 0.0480562i
\(698\) −13.3661 9.71106i −0.505915 0.367569i
\(699\) −7.43792 1.58098i −0.281328 0.0597981i
\(700\) 0.854970 8.13450i 0.0323148 0.307455i
\(701\) −4.29155 40.8313i −0.162089 1.54218i −0.709133 0.705074i \(-0.750914\pi\)
0.547044 0.837104i \(-0.315753\pi\)
\(702\) 1.17400 0.249541i 0.0443096 0.00941830i
\(703\) −4.07752 1.81543i −0.153786 0.0684701i
\(704\) 5.65757 6.28337i 0.213228 0.236813i
\(705\) 9.82874 + 30.2498i 0.370172 + 1.13927i
\(706\) −9.17426 10.1891i −0.345278 0.383470i
\(707\) −5.33413 + 9.23898i −0.200611 + 0.347468i
\(708\) 0.779187 + 1.34959i 0.0292836 + 0.0507207i
\(709\) −12.9990 + 40.0069i −0.488188 + 1.50249i 0.339121 + 0.940743i \(0.389870\pi\)
−0.827309 + 0.561747i \(0.810130\pi\)
\(710\) −4.99973 + 2.22602i −0.187637 + 0.0835412i
\(711\) −2.92810 + 2.12739i −0.109812 + 0.0797833i
\(712\) −44.6368 −1.67284
\(713\) 0 0
\(714\) −27.0654 −1.01290
\(715\) −0.491418 + 0.357036i −0.0183780 + 0.0133524i
\(716\) −6.13503 + 2.73149i −0.229277 + 0.102081i
\(717\) 3.92996 12.0952i 0.146767 0.451702i
\(718\) −21.3951 37.0573i −0.798456 1.38297i
\(719\) −16.6345 + 28.8118i −0.620362 + 1.07450i 0.369056 + 0.929407i \(0.379681\pi\)
−0.989418 + 0.145092i \(0.953652\pi\)
\(720\) −6.18394 6.86796i −0.230462 0.255954i
\(721\) 1.30594 + 4.01926i 0.0486357 + 0.149685i
\(722\) −14.9765 + 16.6331i −0.557368 + 0.619020i
\(723\) −9.28414 4.13356i −0.345281 0.153729i
\(724\) 2.83948 0.603549i 0.105528 0.0224307i
\(725\) 1.31934 + 12.5527i 0.0489991 + 0.466196i
\(726\) −1.98411 + 18.8775i −0.0736372 + 0.700611i
\(727\) 32.0078 + 6.80347i 1.18710 + 0.252327i 0.758810 0.651312i \(-0.225781\pi\)
0.428295 + 0.903639i \(0.359115\pi\)
\(728\) −0.903555 0.656471i −0.0334880 0.0243305i
\(729\) −24.1540 17.5489i −0.894592 0.649959i
\(730\) 37.3020 + 7.92879i 1.38061 + 0.293458i
\(731\) 6.62051 62.9900i 0.244869 2.32977i
\(732\) −0.107425 1.02208i −0.00397055 0.0377773i
\(733\) 9.74617 2.07161i 0.359983 0.0765168i −0.0243699 0.999703i \(-0.507758\pi\)
0.384353 + 0.923186i \(0.374425\pi\)
\(734\) −26.1867 11.6591i −0.966567 0.430343i
\(735\) −8.33528 + 9.25726i −0.307451 + 0.341459i
\(736\) 3.15124 + 9.69852i 0.116156 + 0.357492i
\(737\) 0.351116 + 0.389954i 0.0129335 + 0.0143641i
\(738\) 0.165618 0.286858i 0.00609647 0.0105594i
\(739\) 15.4792 + 26.8108i 0.569412 + 0.986251i 0.996624 + 0.0820995i \(0.0261625\pi\)
−0.427212 + 0.904152i \(0.640504\pi\)
\(740\) 1.79923 5.53747i 0.0661411 0.203561i
\(741\) −0.262847 + 0.117027i −0.00965593 + 0.00429910i
\(742\) −16.4483 + 11.9504i −0.603834 + 0.438711i
\(743\) −1.11003 −0.0407231 −0.0203615 0.999793i \(-0.506482\pi\)
−0.0203615 + 0.999793i \(0.506482\pi\)
\(744\) 0 0
\(745\) 20.6778 0.757578
\(746\) 33.7865 24.5473i 1.23701 0.898741i
\(747\) 0.237591 0.105782i 0.00869299 0.00387037i
\(748\) −0.764490 + 2.35286i −0.0279525 + 0.0860290i
\(749\) −13.7113 23.7487i −0.501000 0.867757i
\(750\) −15.8700 + 27.4877i −0.579491 + 1.00371i
\(751\) 18.8396 + 20.9235i 0.687466 + 0.763508i 0.981328 0.192339i \(-0.0616075\pi\)
−0.293863 + 0.955848i \(0.594941\pi\)
\(752\) −5.31779 16.3665i −0.193920 0.596824i
\(753\) 22.5120 25.0021i 0.820382 0.911127i
\(754\) 0.260068 + 0.115790i 0.00947110 + 0.00421681i
\(755\) −50.8865 + 10.8163i −1.85195 + 0.393644i
\(756\) 0.510284 + 4.85503i 0.0185588 + 0.176576i
\(757\) 4.04758 38.5102i 0.147112 1.39968i −0.633056 0.774106i \(-0.718200\pi\)
0.780168 0.625570i \(-0.215134\pi\)
\(758\) 40.2549 + 8.55645i 1.46212 + 0.310784i
\(759\) 5.28348 + 3.83867i 0.191778 + 0.139335i
\(760\) 10.7553 + 7.81420i 0.390137 + 0.283451i
\(761\) 42.4877 + 9.03103i 1.54018 + 0.327375i 0.898282 0.439419i \(-0.144815\pi\)
0.641894 + 0.766793i \(0.278149\pi\)
\(762\) −1.44320 + 13.7311i −0.0522816 + 0.497426i
\(763\) 2.34818 + 22.3414i 0.0850097 + 0.808814i
\(764\) 3.02798 0.643617i 0.109549 0.0232853i
\(765\) 18.1932 + 8.10015i 0.657778 + 0.292861i
\(766\) 22.6970 25.2076i 0.820076 0.910786i
\(767\) 0.137853 + 0.424268i 0.00497759 + 0.0153194i
\(768\) 9.03908 + 10.0389i 0.326170 + 0.362248i
\(769\) 1.55509 2.69350i 0.0560781 0.0971302i −0.836624 0.547778i \(-0.815474\pi\)
0.892702 + 0.450648i \(0.148807\pi\)
\(770\) 5.00806 + 8.67422i 0.180478 + 0.312597i
\(771\) 7.64083 23.5161i 0.275178 0.846910i
\(772\) 1.67433 0.745460i 0.0602604 0.0268297i
\(773\) 17.5073 12.7198i 0.629693 0.457499i −0.226601 0.973988i \(-0.572761\pi\)
0.856294 + 0.516489i \(0.172761\pi\)
\(774\) 9.71956 0.349362
\(775\) 0 0
\(776\) −47.0918 −1.69050
\(777\) 10.1771 7.39408i 0.365101 0.265261i
\(778\) 20.5240 9.13789i 0.735822 0.327609i
\(779\) −0.116921 + 0.359847i −0.00418914 + 0.0128929i
\(780\) −0.187665 0.325045i −0.00671947 0.0116385i
\(781\) −0.540408 + 0.936015i −0.0193373 + 0.0334932i
\(782\) 25.7986 + 28.6523i 0.922556 + 1.02460i
\(783\) −2.32791 7.16457i −0.0831927 0.256041i
\(784\) 4.50976 5.00859i 0.161063 0.178878i
\(785\) 52.2686 + 23.2715i 1.86555 + 0.830595i
\(786\) 23.9683 5.09462i 0.854921 0.181719i
\(787\) −0.823322 7.83339i −0.0293483 0.279230i −0.999347 0.0361217i \(-0.988500\pi\)
0.969999 0.243108i \(-0.0781671\pi\)
\(788\) 0.925909 8.80944i 0.0329841 0.313823i
\(789\) 35.6964 + 7.58751i 1.27083 + 0.270122i
\(790\) −17.6885 12.8515i −0.629330 0.457235i
\(791\) 6.80558 + 4.94454i 0.241979 + 0.175808i
\(792\) −2.24818 0.477865i −0.0798855 0.0169802i
\(793\) 0.0307517 0.292583i 0.00109202 0.0103899i
\(794\) −1.31728 12.5330i −0.0467484 0.444781i
\(795\) −40.4603 + 8.60010i −1.43498 + 0.305014i
\(796\) −9.61749 4.28198i −0.340883 0.151771i
\(797\) −19.7515 + 21.9363i −0.699634 + 0.777022i −0.983318 0.181896i \(-0.941777\pi\)
0.283684 + 0.958918i \(0.408443\pi\)
\(798\) 1.46609 + 4.51217i 0.0518992 + 0.159729i
\(799\) 24.8133 + 27.5580i 0.877833 + 0.974932i
\(800\) −10.4019 + 18.0166i −0.367763 + 0.636984i
\(801\) 5.86059 + 10.1508i 0.207074 + 0.358663i
\(802\) −7.78716 + 23.9664i −0.274974 + 0.846283i
\(803\) 6.88008 3.06321i 0.242793 0.108098i
\(804\) −0.262311 + 0.190580i −0.00925100 + 0.00672124i
\(805\) −38.5039 −1.35708
\(806\) 0 0
\(807\) 18.5749 0.653869
\(808\) 11.9642 8.69250i 0.420899 0.305801i
\(809\) 1.94359 0.865343i 0.0683331 0.0304238i −0.372286 0.928118i \(-0.621426\pi\)
0.440619 + 0.897694i \(0.354759\pi\)
\(810\) 8.88702 27.3514i 0.312258 0.961032i
\(811\) −3.60252 6.23975i −0.126502 0.219107i 0.795817 0.605537i \(-0.207042\pi\)
−0.922319 + 0.386430i \(0.873708\pi\)
\(812\) −0.578950 + 1.00277i −0.0203172 + 0.0351904i
\(813\) −26.9826 29.9672i −0.946320 1.05100i
\(814\) 1.44050 + 4.43341i 0.0504896 + 0.155391i
\(815\) −43.3264 + 48.1188i −1.51766 + 1.68553i
\(816\) 27.2170 + 12.1178i 0.952787 + 0.424208i
\(817\) −10.8599 + 2.30834i −0.379940 + 0.0807588i
\(818\) −3.22060 30.6419i −0.112606 1.07137i
\(819\) −0.0306556 + 0.291669i −0.00107119 + 0.0101917i
\(820\) −0.482787 0.102619i −0.0168596 0.00358363i
\(821\) 34.0270 + 24.7221i 1.18755 + 0.862807i 0.993003 0.118086i \(-0.0376759\pi\)
0.194548 + 0.980893i \(0.437676\pi\)
\(822\) 0.204267 + 0.148408i 0.00712462 + 0.00517634i
\(823\) −29.5136 6.27331i −1.02878 0.218674i −0.337549 0.941308i \(-0.609598\pi\)
−0.691231 + 0.722634i \(0.742931\pi\)
\(824\) 0.612361 5.82622i 0.0213326 0.202966i
\(825\) 1.39265 + 13.2501i 0.0484857 + 0.461311i
\(826\) 7.19523 1.52939i 0.250354 0.0532144i
\(827\) 3.53584 + 1.57426i 0.122953 + 0.0547423i 0.467291 0.884103i \(-0.345230\pi\)
−0.344338 + 0.938846i \(0.611897\pi\)
\(828\) 0.976549 1.08457i 0.0339374 0.0376913i
\(829\) −4.07025 12.5269i −0.141366 0.435079i 0.855160 0.518364i \(-0.173459\pi\)
−0.996526 + 0.0832851i \(0.973459\pi\)
\(830\) 1.05127 + 1.16756i 0.0364902 + 0.0405265i
\(831\) 11.2491 19.4841i 0.390228 0.675895i
\(832\) 0.747774 + 1.29518i 0.0259244 + 0.0449024i
\(833\) −4.48797 + 13.8126i −0.155499 + 0.478577i
\(834\) 19.7984 8.81483i 0.685564 0.305233i
\(835\) 49.8019 36.1832i 1.72346 1.25217i
\(836\) 0.433665 0.0149986
\(837\) 0 0
\(838\) −5.58159 −0.192813
\(839\) 27.7080 20.1311i 0.956588 0.695002i 0.00423187 0.999991i \(-0.498653\pi\)
0.952356 + 0.304989i \(0.0986530\pi\)
\(840\) −34.2292 + 15.2398i −1.18102 + 0.525823i
\(841\) −8.40934 + 25.8813i −0.289977 + 0.892458i
\(842\) 7.86792 + 13.6276i 0.271147 + 0.469640i
\(843\) 22.4486 38.8821i 0.773170 1.33917i
\(844\) −0.351147 0.389988i −0.0120870 0.0134239i
\(845\) 15.2335 + 46.8840i 0.524049 + 1.61286i
\(846\) −3.80780 + 4.22900i −0.130915 + 0.145396i
\(847\) −20.1901 8.98922i −0.693741 0.308873i
\(848\) 21.8908 4.65304i 0.751734 0.159786i
\(849\) 0.488007 + 4.64307i 0.0167483 + 0.159350i
\(850\) −8.22174 + 78.2246i −0.282003 + 2.68308i
\(851\) −17.5283 3.72576i −0.600864 0.127717i
\(852\) −0.540292 0.392545i −0.0185101 0.0134484i
\(853\) 11.6886 + 8.49225i 0.400209 + 0.290769i 0.769626 0.638495i \(-0.220443\pi\)
−0.369417 + 0.929264i \(0.620443\pi\)
\(854\) −4.74510 1.00860i −0.162374 0.0345136i
\(855\) 0.364904 3.47183i 0.0124795 0.118734i
\(856\) 3.97352 + 37.8055i 0.135812 + 1.29217i
\(857\) −27.2248 + 5.78682i −0.929983 + 0.197674i −0.647908 0.761719i \(-0.724356\pi\)
−0.282075 + 0.959392i \(0.591023\pi\)
\(858\) 0.274517 + 0.122223i 0.00937186 + 0.00417262i
\(859\) 31.6634 35.1657i 1.08034 1.19984i 0.101581 0.994827i \(-0.467610\pi\)
0.978759 0.205012i \(-0.0657234\pi\)
\(860\) −4.47552 13.7742i −0.152614 0.469697i
\(861\) −0.713547 0.792474i −0.0243176 0.0270075i
\(862\) 11.7574 20.3644i 0.400459 0.693616i
\(863\) 13.0267 + 22.5629i 0.443434 + 0.768049i 0.997942 0.0641289i \(-0.0204269\pi\)
−0.554508 + 0.832178i \(0.687094\pi\)
\(864\) 3.83695 11.8089i 0.130536 0.401747i
\(865\) 8.09344 3.60343i 0.275185 0.122520i
\(866\) −37.0127 + 26.8913i −1.25774 + 0.913802i
\(867\) −38.9668 −1.32338
\(868\) 0 0
\(869\) −4.31787 −0.146474
\(870\) 7.72650 5.61363i 0.261953 0.190320i
\(871\) −0.0847914 + 0.0377516i −0.00287305 + 0.00127916i
\(872\) 9.62302 29.6166i 0.325876 1.00294i
\(873\) 6.18291 + 10.7091i 0.209260 + 0.362449i
\(874\) 3.37925 5.85303i 0.114305 0.197982i
\(875\) −24.7284 27.4637i −0.835973 0.928442i
\(876\) 1.43802 + 4.42577i 0.0485862 + 0.149533i
\(877\) −22.9655 + 25.5058i −0.775491 + 0.861271i −0.993400 0.114699i \(-0.963410\pi\)
0.217909 + 0.975969i \(0.430076\pi\)
\(878\) −21.9957 9.79313i −0.742320 0.330502i
\(879\) 2.75869 0.586377i 0.0930483 0.0197780i
\(880\) −1.15247 10.9650i −0.0388498 0.369631i
\(881\) −0.379927 + 3.61476i −0.0128001 + 0.121784i −0.999056 0.0434401i \(-0.986168\pi\)
0.986256 + 0.165225i \(0.0528349\pi\)
\(882\) −2.18003 0.463379i −0.0734053 0.0156028i
\(883\) 31.9217 + 23.1925i 1.07425 + 0.780489i 0.976671 0.214739i \(-0.0688902\pi\)
0.0975789 + 0.995228i \(0.468890\pi\)
\(884\) −0.354021 0.257211i −0.0119070 0.00865095i
\(885\) 14.6389 + 3.11159i 0.492080 + 0.104595i
\(886\) −1.64886 + 15.6879i −0.0553946 + 0.527045i
\(887\) 4.42184 + 42.0710i 0.148471 + 1.41261i 0.774385 + 0.632714i \(0.218059\pi\)
−0.625914 + 0.779892i \(0.715274\pi\)
\(888\) −17.0570 + 3.62558i −0.572395 + 0.121666i
\(889\) −14.6859 6.53857i −0.492548 0.219297i
\(890\) −47.3793 + 52.6200i −1.58816 + 1.76383i
\(891\) −1.75506 5.40152i −0.0587967 0.180958i
\(892\) −3.20923 3.56421i −0.107453 0.119338i
\(893\) 3.25019 5.62950i 0.108764 0.188384i
\(894\) −5.11471 8.85894i −0.171062 0.296287i
\(895\) −19.9297 + 61.3373i −0.666176 + 2.05028i
\(896\) 13.7170 6.10720i 0.458253 0.204027i
\(897\) −0.934547 + 0.678988i −0.0312036 + 0.0226708i
\(898\) −32.2180 −1.07513
\(899\) 0 0
\(900\) 2.97733 0.0992444
\(901\) −39.0159 + 28.3467i −1.29981 + 0.944365i
\(902\) 0.361001 0.160728i 0.0120200 0.00535165i
\(903\) 9.66950 29.7597i 0.321781 0.990340i
\(904\) −5.83056 10.0988i −0.193921 0.335882i
\(905\) 13.9391 24.1433i 0.463352 0.802549i
\(906\) 17.2208 + 19.1257i 0.572124 + 0.635409i
\(907\) −10.0023 30.7838i −0.332120 1.02216i −0.968123 0.250474i \(-0.919414\pi\)
0.636003 0.771686i \(-0.280586\pi\)
\(908\) 4.21071 4.67647i 0.139737 0.155194i
\(909\) −3.54760 1.57949i −0.117666 0.0523884i
\(910\) −1.73295 + 0.368350i −0.0574467 + 0.0122107i
\(911\) −2.82862 26.9125i −0.0937163 0.891651i −0.935854 0.352388i \(-0.885370\pi\)
0.842138 0.539263i \(-0.181297\pi\)
\(912\) 0.545896 5.19385i 0.0180764 0.171986i
\(913\) 0.303490 + 0.0645089i 0.0100441 + 0.00213493i
\(914\) 32.7638 + 23.8043i 1.08373 + 0.787376i
\(915\) −7.98474 5.80126i −0.263968 0.191784i
\(916\) 6.30875 + 1.34097i 0.208447 + 0.0443068i
\(917\) −2.98226 + 28.3743i −0.0984828 + 0.937001i
\(918\) −4.90709 46.6879i −0.161958 1.54093i
\(919\) −20.3112 + 4.31727i −0.670004 + 0.142414i −0.530340 0.847785i \(-0.677936\pi\)
−0.139664 + 0.990199i \(0.544602\pi\)
\(920\) 48.7604 + 21.7095i 1.60758 + 0.715741i
\(921\) −22.5736 + 25.0705i −0.743824 + 0.826100i
\(922\) −7.57365 23.3093i −0.249425 0.767651i
\(923\) −0.127922 0.142071i −0.00421060 0.00467634i
\(924\) −0.611117 + 1.05849i −0.0201043 + 0.0348216i
\(925\) −18.2789 31.6600i −0.601007 1.04097i
\(926\) −0.0162285 + 0.0499461i −0.000533301 + 0.00164133i
\(927\) −1.40534 + 0.625697i −0.0461574 + 0.0205506i
\(928\) 2.38262 1.73108i 0.0782134 0.0568254i
\(929\) 20.6589 0.677798 0.338899 0.940823i \(-0.389945\pi\)
0.338899 + 0.940823i \(0.389945\pi\)
\(930\) 0 0
\(931\) 2.54585 0.0834368
\(932\) −1.64009 + 1.19159i −0.0537229 + 0.0390320i
\(933\) −21.5269 + 9.58440i −0.704759 + 0.313779i
\(934\) 9.90570 30.4866i 0.324124 0.997552i
\(935\) 11.8793 + 20.5756i 0.388495 + 0.672893i
\(936\) 0.203272 0.352078i 0.00664416 0.0115080i
\(937\) 1.95426 + 2.17043i 0.0638430 + 0.0709048i 0.774220 0.632916i \(-0.218142\pi\)
−0.710377 + 0.703821i \(0.751476\pi\)
\(938\) 0.472945 + 1.45557i 0.0154422 + 0.0475262i
\(939\) 6.30618 7.00372i 0.205794 0.228558i
\(940\) 7.74655 + 3.44899i 0.252665 + 0.112494i
\(941\) 32.1322 6.82992i 1.04748 0.222649i 0.348144 0.937441i \(-0.386812\pi\)
0.699337 + 0.714792i \(0.253479\pi\)
\(942\) −2.95863 28.1495i −0.0963975 0.917161i
\(943\) −0.158788 + 1.51076i −0.00517084 + 0.0491972i
\(944\) −7.92028 1.68351i −0.257783 0.0547935i
\(945\) 37.9286 + 27.5567i 1.23382 + 0.896420i
\(946\) 9.38092 + 6.81564i 0.305000 + 0.221596i
\(947\) 38.2698 + 8.13449i 1.24360 + 0.264335i 0.782296 0.622907i \(-0.214048\pi\)
0.461304 + 0.887242i \(0.347382\pi\)
\(948\) 0.278884 2.65340i 0.00905772 0.0861785i
\(949\) 0.139245 + 1.32483i 0.00452008 + 0.0430057i
\(950\) 13.4865 2.86664i 0.437559 0.0930060i
\(951\) 20.7480 + 9.23760i 0.672800 + 0.299550i
\(952\) −29.2305 + 32.4637i −0.947365 + 1.05216i
\(953\) −1.86020 5.72512i −0.0602579 0.185455i 0.916396 0.400272i \(-0.131084\pi\)
−0.976654 + 0.214817i \(0.931084\pi\)
\(954\) −4.95203 5.49979i −0.160328 0.178062i
\(955\) 14.8645 25.7461i 0.481004 0.833123i
\(956\) −1.69527 2.93629i −0.0548288 0.0949663i
\(957\) 0.582832 1.79377i 0.0188403 0.0579844i
\(958\) −24.5781 + 10.9429i −0.794082 + 0.353548i
\(959\) −0.237835 + 0.172797i −0.00768008 + 0.00557991i
\(960\) 50.1729 1.61932
\(961\) 0 0
\(962\) −0.824543 −0.0265843
\(963\) 8.07564 5.86729i 0.260234 0.189071i
\(964\) −2.47516 + 1.10201i −0.0797197 + 0.0354935i
\(965\) 5.43907 16.7397i 0.175090 0.538871i
\(966\) 9.52401 + 16.4961i 0.306430 + 0.530753i
\(967\) 13.1552 22.7854i 0.423042 0.732730i −0.573194 0.819420i \(-0.694296\pi\)
0.996235 + 0.0866903i \(0.0276291\pi\)
\(968\) 20.4999 + 22.7675i 0.658892 + 0.731774i
\(969\) 3.47763 + 10.7030i 0.111718 + 0.343831i
\(970\) −49.9850 + 55.5140i −1.60492 + 1.78245i
\(971\) −4.32643 1.92625i −0.138842 0.0618164i 0.336140 0.941812i \(-0.390879\pi\)
−0.474981 + 0.879996i \(0.657545\pi\)
\(972\) −3.11156 + 0.661383i −0.0998034 + 0.0212139i
\(973\) 2.63762 + 25.0953i 0.0845584 + 0.804519i
\(974\) 3.54318 33.7111i 0.113531 1.08017i
\(975\) −2.30511 0.489966i −0.0738226 0.0156915i
\(976\) 4.32010 + 3.13874i 0.138283 + 0.100469i
\(977\) 13.9798 + 10.1569i 0.447255 + 0.324950i 0.788511 0.615021i \(-0.210852\pi\)
−0.341256 + 0.939970i \(0.610852\pi\)
\(978\) 31.3322 + 6.65987i 1.00189 + 0.212959i
\(979\) −1.46166 + 13.9068i −0.0467150 + 0.444464i
\(980\) 0.347141 + 3.30283i 0.0110890 + 0.105505i
\(981\) −7.99855 + 1.70014i −0.255374 + 0.0542814i
\(982\) 14.5406 + 6.47387i 0.464008 + 0.206589i
\(983\) 27.4120 30.4441i 0.874306 0.971015i −0.125472 0.992097i \(-0.540045\pi\)
0.999778 + 0.0210824i \(0.00671123\pi\)
\(984\) 0.456801 + 1.40589i 0.0145623 + 0.0448181i
\(985\) −56.9215 63.2177i −1.81367 2.01428i
\(986\) 5.56742 9.64305i 0.177303 0.307097i
\(987\) 9.16029 + 15.8661i 0.291575 + 0.505023i
\(988\) −0.0237038 + 0.0729528i −0.000754118 + 0.00232094i
\(989\) −40.7214 + 18.1303i −1.29486 + 0.576511i
\(990\) −2.94963 + 2.14303i −0.0937455 + 0.0681101i
\(991\) −14.1338 −0.448975 −0.224487 0.974477i \(-0.572071\pi\)
−0.224487 + 0.974477i \(0.572071\pi\)
\(992\) 0 0
\(993\) −13.3113 −0.422420
\(994\) −2.55034 + 1.85293i −0.0808918 + 0.0587713i
\(995\) −92.3620 + 41.1222i −2.92807 + 1.30366i
\(996\) −0.0592436 + 0.182333i −0.00187721 + 0.00577745i
\(997\) −7.72692 13.3834i −0.244714 0.423857i 0.717337 0.696726i \(-0.245361\pi\)
−0.962051 + 0.272869i \(0.912027\pi\)
\(998\) −14.5852 + 25.2622i −0.461685 + 0.799662i
\(999\) 14.6000 + 16.2149i 0.461922 + 0.513017i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.j.235.1 16
31.2 even 5 961.2.g.l.816.1 16
31.3 odd 30 961.2.g.t.844.2 16
31.4 even 5 961.2.g.n.846.2 16
31.5 even 3 961.2.d.n.388.2 16
31.6 odd 6 31.2.g.a.28.1 yes 16
31.7 even 15 961.2.g.m.448.2 16
31.8 even 5 961.2.c.i.439.6 16
31.9 even 15 961.2.a.j.1.6 8
31.10 even 15 961.2.d.n.374.2 16
31.11 odd 30 961.2.d.p.628.3 16
31.12 odd 30 961.2.g.k.732.1 16
31.13 odd 30 961.2.d.p.531.3 16
31.14 even 15 961.2.c.i.521.6 16
31.15 odd 10 961.2.g.s.547.2 16
31.16 even 5 961.2.g.m.547.2 16
31.17 odd 30 961.2.c.j.521.6 16
31.18 even 15 961.2.d.q.531.3 16
31.19 even 15 inner 961.2.g.j.732.1 16
31.20 even 15 961.2.d.q.628.3 16
31.21 odd 30 961.2.d.o.374.2 16
31.22 odd 30 961.2.a.i.1.6 8
31.23 odd 10 961.2.c.j.439.6 16
31.24 odd 30 961.2.g.s.448.2 16
31.25 even 3 961.2.g.l.338.1 16
31.26 odd 6 961.2.d.o.388.2 16
31.27 odd 10 961.2.g.t.846.2 16
31.28 even 15 961.2.g.n.844.2 16
31.29 odd 10 31.2.g.a.10.1 16
31.30 odd 2 961.2.g.k.235.1 16
93.29 even 10 279.2.y.c.10.2 16
93.53 even 30 8649.2.a.bf.1.3 8
93.68 even 6 279.2.y.c.28.2 16
93.71 odd 30 8649.2.a.be.1.3 8
124.91 even 10 496.2.bg.c.289.2 16
124.99 even 6 496.2.bg.c.369.2 16
155.29 odd 10 775.2.bl.a.351.2 16
155.37 even 12 775.2.ck.a.524.1 32
155.68 even 12 775.2.ck.a.524.4 32
155.99 odd 6 775.2.bl.a.276.2 16
155.122 even 20 775.2.ck.a.599.4 32
155.153 even 20 775.2.ck.a.599.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.10.1 16 31.29 odd 10
31.2.g.a.28.1 yes 16 31.6 odd 6
279.2.y.c.10.2 16 93.29 even 10
279.2.y.c.28.2 16 93.68 even 6
496.2.bg.c.289.2 16 124.91 even 10
496.2.bg.c.369.2 16 124.99 even 6
775.2.bl.a.276.2 16 155.99 odd 6
775.2.bl.a.351.2 16 155.29 odd 10
775.2.ck.a.524.1 32 155.37 even 12
775.2.ck.a.524.4 32 155.68 even 12
775.2.ck.a.599.1 32 155.153 even 20
775.2.ck.a.599.4 32 155.122 even 20
961.2.a.i.1.6 8 31.22 odd 30
961.2.a.j.1.6 8 31.9 even 15
961.2.c.i.439.6 16 31.8 even 5
961.2.c.i.521.6 16 31.14 even 15
961.2.c.j.439.6 16 31.23 odd 10
961.2.c.j.521.6 16 31.17 odd 30
961.2.d.n.374.2 16 31.10 even 15
961.2.d.n.388.2 16 31.5 even 3
961.2.d.o.374.2 16 31.21 odd 30
961.2.d.o.388.2 16 31.26 odd 6
961.2.d.p.531.3 16 31.13 odd 30
961.2.d.p.628.3 16 31.11 odd 30
961.2.d.q.531.3 16 31.18 even 15
961.2.d.q.628.3 16 31.20 even 15
961.2.g.j.235.1 16 1.1 even 1 trivial
961.2.g.j.732.1 16 31.19 even 15 inner
961.2.g.k.235.1 16 31.30 odd 2
961.2.g.k.732.1 16 31.12 odd 30
961.2.g.l.338.1 16 31.25 even 3
961.2.g.l.816.1 16 31.2 even 5
961.2.g.m.448.2 16 31.7 even 15
961.2.g.m.547.2 16 31.16 even 5
961.2.g.n.844.2 16 31.28 even 15
961.2.g.n.846.2 16 31.4 even 5
961.2.g.s.448.2 16 31.24 odd 30
961.2.g.s.547.2 16 31.15 odd 10
961.2.g.t.844.2 16 31.3 odd 30
961.2.g.t.846.2 16 31.27 odd 10
8649.2.a.be.1.3 8 93.71 odd 30
8649.2.a.bf.1.3 8 93.53 even 30