Properties

Label 31.2.g.a.10.1
Level 31
Weight 2
Character 31.10
Analytic conductor 0.248
Analytic rank 0
Dimension 16
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 31 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 31.g (of order \(15\) and degree \(8\))

Newform invariants

Self dual: No
Analytic conductor: \(0.247536246266\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 10.1
Root \(1.03739i\)
Character \(\chi\) = 31.10
Dual form 31.2.g.a.28.1

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(-1.02470 - 0.744490i) q^{2}\) \(+(-0.155153 - 1.47618i) q^{3}\) \(+(-0.122284 - 0.376353i) q^{4}\) \(+(1.90016 + 3.29117i) q^{5}\) \(+(-0.940018 + 1.62816i) q^{6}\) \(+(-2.14115 - 0.455117i) q^{7}\) \(+(-0.937688 + 2.88591i) q^{8}\) \(+(0.779397 - 0.165666i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(-1.02470 - 0.744490i) q^{2}\) \(+(-0.155153 - 1.47618i) q^{3}\) \(+(-0.122284 - 0.376353i) q^{4}\) \(+(1.90016 + 3.29117i) q^{5}\) \(+(-0.940018 + 1.62816i) q^{6}\) \(+(-2.14115 - 0.455117i) q^{7}\) \(+(-0.937688 + 2.88591i) q^{8}\) \(+(0.779397 - 0.165666i) q^{9}\) \(+(0.503147 - 4.78712i) q^{10}\) \(+(-0.636073 + 0.706430i) q^{11}\) \(+(-0.536593 + 0.238907i) q^{12}\) \(+(0.153606 + 0.0683897i) q^{13}\) \(+(1.85522 + 2.06043i) q^{14}\) \(+(4.56356 - 3.31562i) q^{15}\) \(+(2.46909 - 1.79390i) q^{16}\) \(+(-4.40064 - 4.88741i) q^{17}\) \(+(-0.921986 - 0.410495i) q^{18}\) \(+(-1.05317 + 0.468903i) q^{19}\) \(+(1.00628 - 1.11759i) q^{20}\) \(+(-0.339629 + 3.23135i) q^{21}\) \(+(1.17772 - 0.250331i) q^{22}\) \(+(-1.43029 + 4.40197i) q^{23}\) \(+(4.40562 + 0.936443i) q^{24}\) \(+(-4.72122 + 8.17739i) q^{25}\) \(+(-0.106485 - 0.184437i) q^{26}\) \(+(-1.74151 - 5.35983i) q^{27}\) \(+(0.0905455 + 0.861483i) q^{28}\) \(+(-1.08143 - 0.785701i) q^{29}\) \(-7.14474 q^{30}\) \(+(5.56350 - 0.217815i) q^{31}\) \(+2.20322 q^{32}\) \(+(1.14151 + 0.829355i) q^{33}\) \(+(0.870722 + 8.28437i) q^{34}\) \(+(-2.57067 - 7.91171i) q^{35}\) \(+(-0.157657 - 0.273070i) q^{36}\) \(+(1.93582 - 3.35295i) q^{37}\) \(+(1.42828 + 0.303591i) q^{38}\) \(+(0.0771233 - 0.237361i) q^{39}\) \(+(-11.2798 + 2.39759i) q^{40}\) \(+(-0.0343065 + 0.326405i) q^{41}\) \(+(2.75373 - 3.05832i) q^{42}\) \(+(8.79797 - 3.91711i) q^{43}\) \(+(0.343649 + 0.153002i) q^{44}\) \(+(2.02621 + 2.25034i) q^{45}\) \(+(4.74283 - 3.44587i) q^{46}\) \(+(-4.56170 + 3.31427i) q^{47}\) \(+(-3.03121 - 3.36650i) q^{48}\) \(+(-2.01741 - 0.898207i) q^{49}\) \(+(10.9258 - 4.86449i) q^{50}\) \(+(-6.53194 + 7.25445i) q^{51}\) \(+(0.00695505 - 0.0661729i) q^{52}\) \(+(7.17270 - 1.52460i) q^{53}\) \(+(-2.20581 + 6.78877i) q^{54}\) \(+(-3.53363 - 0.751095i) q^{55}\) \(+(3.32116 - 5.75242i) q^{56}\) \(+(0.855590 + 1.48193i) q^{57}\) \(+(0.523192 + 1.61022i) q^{58}\) \(+(0.277326 + 2.63859i) q^{59}\) \(+(-1.80590 - 1.31206i) q^{60}\) \(-1.74967 q^{61}\) \(+(-5.86309 - 3.91877i) q^{62}\) \(-1.74421 q^{63}\) \(+(-7.19583 - 5.22808i) q^{64}\) \(+(0.0667932 + 0.635495i) q^{65}\) \(+(-0.552261 - 1.69968i) q^{66}\) \(+(-0.276003 - 0.478052i) q^{67}\) \(+(-1.30126 + 2.25385i) q^{68}\) \(+(6.72002 + 1.42838i) q^{69}\) \(+(-3.25601 + 10.0210i) q^{70}\) \(+(-1.11214 + 0.236393i) q^{71}\) \(+(-0.252735 + 2.40461i) q^{72}\) \(+(-5.30125 + 5.88764i) q^{73}\) \(+(-4.47988 + 1.99457i) q^{74}\) \(+(12.8038 + 5.70064i) q^{75}\) \(+(0.305260 + 0.339025i) q^{76}\) \(+(1.68344 - 1.22309i) q^{77}\) \(+(-0.255741 + 0.185807i) q^{78}\) \(+(3.03938 + 3.37557i) q^{79}\) \(+(10.5957 + 4.71751i) q^{80}\) \(+(-5.45813 + 2.43012i) q^{81}\) \(+(0.278159 - 0.308927i) q^{82}\) \(+(-0.0341177 + 0.324608i) q^{83}\) \(+(1.25766 - 0.267324i) q^{84}\) \(+(7.72338 - 23.7701i) q^{85}\) \(+(-11.9315 - 2.53613i) q^{86}\) \(+(-0.992053 + 1.71829i) q^{87}\) \(+(-1.44225 - 2.49806i) q^{88}\) \(+(-4.54569 - 13.9902i) q^{89}\) \(+(-0.400912 - 3.81442i) q^{90}\) \(+(-0.297768 - 0.216341i) q^{91}\) \(+1.83159 q^{92}\) \(+(-1.18473 - 8.17896i) q^{93}\) \(+7.14183 q^{94}\) \(+(-3.54444 - 2.57519i) q^{95}\) \(+(-0.341837 - 3.25236i) q^{96}\) \(+(4.79569 + 14.7596i) q^{97}\) \(+(1.39853 + 2.42233i) q^{98}\) \(+(-0.378722 + 0.655965i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(16q \) \(\mathstrut -\mathstrut 6q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 3q^{5} \) \(\mathstrut +\mathstrut 11q^{6} \) \(\mathstrut +\mathstrut 2q^{7} \) \(\mathstrut +\mathstrut 17q^{8} \) \(\mathstrut -\mathstrut 10q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(16q \) \(\mathstrut -\mathstrut 6q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 3q^{5} \) \(\mathstrut +\mathstrut 11q^{6} \) \(\mathstrut +\mathstrut 2q^{7} \) \(\mathstrut +\mathstrut 17q^{8} \) \(\mathstrut -\mathstrut 10q^{9} \) \(\mathstrut -\mathstrut 2q^{10} \) \(\mathstrut -\mathstrut 7q^{11} \) \(\mathstrut +\mathstrut 5q^{12} \) \(\mathstrut -\mathstrut 7q^{13} \) \(\mathstrut -\mathstrut 6q^{14} \) \(\mathstrut +\mathstrut 14q^{15} \) \(\mathstrut -\mathstrut 2q^{16} \) \(\mathstrut -\mathstrut 6q^{17} \) \(\mathstrut -\mathstrut 3q^{18} \) \(\mathstrut +\mathstrut 16q^{19} \) \(\mathstrut +\mathstrut 37q^{20} \) \(\mathstrut +\mathstrut 9q^{21} \) \(\mathstrut +\mathstrut 9q^{22} \) \(\mathstrut +\mathstrut q^{23} \) \(\mathstrut -\mathstrut 20q^{24} \) \(\mathstrut -\mathstrut 13q^{25} \) \(\mathstrut +\mathstrut 9q^{26} \) \(\mathstrut +\mathstrut 9q^{27} \) \(\mathstrut -\mathstrut 30q^{28} \) \(\mathstrut -\mathstrut 14q^{29} \) \(\mathstrut -\mathstrut 22q^{30} \) \(\mathstrut +\mathstrut 15q^{31} \) \(\mathstrut -\mathstrut 42q^{32} \) \(\mathstrut -\mathstrut 13q^{33} \) \(\mathstrut -\mathstrut 32q^{34} \) \(\mathstrut -\mathstrut 9q^{35} \) \(\mathstrut +\mathstrut q^{36} \) \(\mathstrut -\mathstrut 8q^{37} \) \(\mathstrut +\mathstrut 8q^{38} \) \(\mathstrut -\mathstrut 3q^{39} \) \(\mathstrut -\mathstrut q^{40} \) \(\mathstrut -\mathstrut 8q^{41} \) \(\mathstrut +\mathstrut 69q^{42} \) \(\mathstrut +\mathstrut 23q^{43} \) \(\mathstrut +\mathstrut 39q^{44} \) \(\mathstrut +\mathstrut 65q^{45} \) \(\mathstrut +\mathstrut 34q^{46} \) \(\mathstrut +\mathstrut 14q^{47} \) \(\mathstrut +\mathstrut 34q^{48} \) \(\mathstrut +\mathstrut 2q^{49} \) \(\mathstrut +\mathstrut 3q^{50} \) \(\mathstrut -\mathstrut 42q^{51} \) \(\mathstrut +\mathstrut 29q^{52} \) \(\mathstrut +\mathstrut 6q^{53} \) \(\mathstrut -\mathstrut 46q^{54} \) \(\mathstrut -\mathstrut 7q^{55} \) \(\mathstrut -\mathstrut 30q^{56} \) \(\mathstrut -\mathstrut 17q^{57} \) \(\mathstrut -\mathstrut 15q^{58} \) \(\mathstrut +\mathstrut 4q^{59} \) \(\mathstrut -\mathstrut 75q^{60} \) \(\mathstrut -\mathstrut 60q^{61} \) \(\mathstrut -\mathstrut 25q^{62} \) \(\mathstrut -\mathstrut 46q^{63} \) \(\mathstrut +\mathstrut 23q^{64} \) \(\mathstrut -\mathstrut 12q^{65} \) \(\mathstrut -\mathstrut 30q^{66} \) \(\mathstrut +\mathstrut 13q^{67} \) \(\mathstrut +\mathstrut 30q^{68} \) \(\mathstrut +\mathstrut 38q^{69} \) \(\mathstrut +\mathstrut 12q^{70} \) \(\mathstrut -\mathstrut 14q^{71} \) \(\mathstrut +\mathstrut 37q^{72} \) \(\mathstrut +\mathstrut 2q^{73} \) \(\mathstrut +\mathstrut 13q^{74} \) \(\mathstrut +\mathstrut 13q^{75} \) \(\mathstrut -\mathstrut 12q^{76} \) \(\mathstrut +\mathstrut 18q^{77} \) \(\mathstrut -\mathstrut 15q^{78} \) \(\mathstrut +\mathstrut 18q^{79} \) \(\mathstrut +\mathstrut 36q^{80} \) \(\mathstrut +\mathstrut 23q^{81} \) \(\mathstrut +\mathstrut 14q^{82} \) \(\mathstrut -\mathstrut 16q^{83} \) \(\mathstrut +\mathstrut 8q^{84} \) \(\mathstrut +\mathstrut 37q^{85} \) \(\mathstrut -\mathstrut 26q^{86} \) \(\mathstrut +\mathstrut 15q^{87} \) \(\mathstrut -\mathstrut 17q^{88} \) \(\mathstrut +\mathstrut q^{89} \) \(\mathstrut -\mathstrut 23q^{90} \) \(\mathstrut +\mathstrut 8q^{91} \) \(\mathstrut -\mathstrut 64q^{92} \) \(\mathstrut +\mathstrut 17q^{93} \) \(\mathstrut +\mathstrut 44q^{94} \) \(\mathstrut -\mathstrut 22q^{95} \) \(\mathstrut +\mathstrut 8q^{96} \) \(\mathstrut +\mathstrut 3q^{97} \) \(\mathstrut -\mathstrut 10q^{98} \) \(\mathstrut +\mathstrut 6q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/31\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{7}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.02470 0.744490i −0.724574 0.526434i 0.163268 0.986582i \(-0.447796\pi\)
−0.887842 + 0.460148i \(0.847796\pi\)
\(3\) −0.155153 1.47618i −0.0895777 0.852275i −0.943388 0.331691i \(-0.892381\pi\)
0.853810 0.520584i \(-0.174286\pi\)
\(4\) −0.122284 0.376353i −0.0611422 0.188176i
\(5\) 1.90016 + 3.29117i 0.849778 + 1.47186i 0.881407 + 0.472358i \(0.156597\pi\)
−0.0316291 + 0.999500i \(0.510070\pi\)
\(6\) −0.940018 + 1.62816i −0.383761 + 0.664693i
\(7\) −2.14115 0.455117i −0.809280 0.172018i −0.215353 0.976536i \(-0.569090\pi\)
−0.593928 + 0.804518i \(0.702423\pi\)
\(8\) −0.937688 + 2.88591i −0.331523 + 1.02032i
\(9\) 0.779397 0.165666i 0.259799 0.0552220i
\(10\) 0.503147 4.78712i 0.159109 1.51382i
\(11\) −0.636073 + 0.706430i −0.191783 + 0.212997i −0.831366 0.555726i \(-0.812441\pi\)
0.639583 + 0.768722i \(0.279107\pi\)
\(12\) −0.536593 + 0.238907i −0.154901 + 0.0689664i
\(13\) 0.153606 + 0.0683897i 0.0426026 + 0.0189679i 0.427927 0.903813i \(-0.359244\pi\)
−0.385325 + 0.922781i \(0.625911\pi\)
\(14\) 1.85522 + 2.06043i 0.495827 + 0.550672i
\(15\) 4.56356 3.31562i 1.17831 0.856090i
\(16\) 2.46909 1.79390i 0.617273 0.448475i
\(17\) −4.40064 4.88741i −1.06731 1.18537i −0.981974 0.189018i \(-0.939469\pi\)
−0.0853387 0.996352i \(-0.527197\pi\)
\(18\) −0.921986 0.410495i −0.217314 0.0967546i
\(19\) −1.05317 + 0.468903i −0.241615 + 0.107574i −0.523972 0.851736i \(-0.675550\pi\)
0.282357 + 0.959309i \(0.408884\pi\)
\(20\) 1.00628 1.11759i 0.225012 0.249901i
\(21\) −0.339629 + 3.23135i −0.0741130 + 0.705139i
\(22\) 1.17772 0.250331i 0.251090 0.0533708i
\(23\) −1.43029 + 4.40197i −0.298235 + 0.917873i 0.683880 + 0.729594i \(0.260291\pi\)
−0.982116 + 0.188279i \(0.939709\pi\)
\(24\) 4.40562 + 0.936443i 0.899293 + 0.191151i
\(25\) −4.72122 + 8.17739i −0.944244 + 1.63548i
\(26\) −0.106485 0.184437i −0.0208834 0.0361711i
\(27\) −1.74151 5.35983i −0.335155 1.03150i
\(28\) 0.0905455 + 0.861483i 0.0171115 + 0.162805i
\(29\) −1.08143 0.785701i −0.200816 0.145901i 0.482833 0.875713i \(-0.339608\pi\)
−0.683649 + 0.729811i \(0.739608\pi\)
\(30\) −7.14474 −1.30444
\(31\) 5.56350 0.217815i 0.999234 0.0391208i
\(32\) 2.20322 0.389479
\(33\) 1.14151 + 0.829355i 0.198711 + 0.144372i
\(34\) 0.870722 + 8.28437i 0.149328 + 1.42076i
\(35\) −2.57067 7.91171i −0.434523 1.33732i
\(36\) −0.157657 0.273070i −0.0262762 0.0455116i
\(37\) 1.93582 3.35295i 0.318248 0.551221i −0.661875 0.749614i \(-0.730239\pi\)
0.980122 + 0.198393i \(0.0635723\pi\)
\(38\) 1.42828 + 0.303591i 0.231698 + 0.0492489i
\(39\) 0.0771233 0.237361i 0.0123496 0.0380082i
\(40\) −11.2798 + 2.39759i −1.78349 + 0.379093i
\(41\) −0.0343065 + 0.326405i −0.00535778 + 0.0509758i −0.996874 0.0790062i \(-0.974825\pi\)
0.991516 + 0.129982i \(0.0414920\pi\)
\(42\) 2.75373 3.05832i 0.424909 0.471909i
\(43\) 8.79797 3.91711i 1.34168 0.597353i 0.394746 0.918790i \(-0.370833\pi\)
0.946931 + 0.321437i \(0.104166\pi\)
\(44\) 0.343649 + 0.153002i 0.0518070 + 0.0230660i
\(45\) 2.02621 + 2.25034i 0.302050 + 0.335461i
\(46\) 4.74283 3.44587i 0.699293 0.508066i
\(47\) −4.56170 + 3.31427i −0.665393 + 0.483436i −0.868480 0.495725i \(-0.834903\pi\)
0.203087 + 0.979161i \(0.434903\pi\)
\(48\) −3.03121 3.36650i −0.437518 0.485913i
\(49\) −2.01741 0.898207i −0.288201 0.128315i
\(50\) 10.9258 4.86449i 1.54515 0.687943i
\(51\) −6.53194 + 7.25445i −0.914654 + 1.01583i
\(52\) 0.00695505 0.0661729i 0.000964493 0.00917653i
\(53\) 7.17270 1.52460i 0.985246 0.209421i 0.313004 0.949752i \(-0.398665\pi\)
0.672242 + 0.740331i \(0.265331\pi\)
\(54\) −2.20581 + 6.78877i −0.300172 + 0.923835i
\(55\) −3.53363 0.751095i −0.476474 0.101278i
\(56\) 3.32116 5.75242i 0.443809 0.768699i
\(57\) 0.855590 + 1.48193i 0.113326 + 0.196286i
\(58\) 0.523192 + 1.61022i 0.0686985 + 0.211432i
\(59\) 0.277326 + 2.63859i 0.0361048 + 0.343515i 0.997631 + 0.0687995i \(0.0219169\pi\)
−0.961526 + 0.274715i \(0.911416\pi\)
\(60\) −1.80590 1.31206i −0.233140 0.169386i
\(61\) −1.74967 −0.224023 −0.112011 0.993707i \(-0.535729\pi\)
−0.112011 + 0.993707i \(0.535729\pi\)
\(62\) −5.86309 3.91877i −0.744614 0.497685i
\(63\) −1.74421 −0.219749
\(64\) −7.19583 5.22808i −0.899479 0.653510i
\(65\) 0.0667932 + 0.635495i 0.00828467 + 0.0788234i
\(66\) −0.552261 1.69968i −0.0679786 0.209217i
\(67\) −0.276003 0.478052i −0.0337192 0.0584033i 0.848673 0.528917i \(-0.177402\pi\)
−0.882393 + 0.470514i \(0.844069\pi\)
\(68\) −1.30126 + 2.25385i −0.157801 + 0.273319i
\(69\) 6.72002 + 1.42838i 0.808996 + 0.171957i
\(70\) −3.25601 + 10.0210i −0.389168 + 1.19774i
\(71\) −1.11214 + 0.236393i −0.131987 + 0.0280547i −0.273431 0.961891i \(-0.588159\pi\)
0.141444 + 0.989946i \(0.454825\pi\)
\(72\) −0.252735 + 2.40461i −0.0297851 + 0.283386i
\(73\) −5.30125 + 5.88764i −0.620465 + 0.689096i −0.968678 0.248319i \(-0.920122\pi\)
0.348214 + 0.937415i \(0.386788\pi\)
\(74\) −4.47988 + 1.99457i −0.520775 + 0.231864i
\(75\) 12.8038 + 5.70064i 1.47846 + 0.658253i
\(76\) 0.305260 + 0.339025i 0.0350157 + 0.0388888i
\(77\) 1.68344 1.22309i 0.191846 0.139384i
\(78\) −0.255741 + 0.185807i −0.0289570 + 0.0210385i
\(79\) 3.03938 + 3.37557i 0.341957 + 0.379782i 0.889453 0.457027i \(-0.151086\pi\)
−0.547496 + 0.836808i \(0.684419\pi\)
\(80\) 10.5957 + 4.71751i 1.18464 + 0.527434i
\(81\) −5.45813 + 2.43012i −0.606459 + 0.270013i
\(82\) 0.278159 0.308927i 0.0307175 0.0341152i
\(83\) −0.0341177 + 0.324608i −0.00374490 + 0.0356303i −0.996235 0.0866965i \(-0.972369\pi\)
0.992490 + 0.122327i \(0.0390356\pi\)
\(84\) 1.25766 0.267324i 0.137222 0.0291674i
\(85\) 7.72338 23.7701i 0.837719 2.57823i
\(86\) −11.9315 2.53613i −1.28661 0.273478i
\(87\) −0.992053 + 1.71829i −0.106359 + 0.184220i
\(88\) −1.44225 2.49806i −0.153745 0.266294i
\(89\) −4.54569 13.9902i −0.481842 1.48296i −0.836503 0.547962i \(-0.815404\pi\)
0.354661 0.934995i \(-0.384596\pi\)
\(90\) −0.400912 3.81442i −0.0422598 0.402076i
\(91\) −0.297768 0.216341i −0.0312146 0.0226787i
\(92\) 1.83159 0.190957
\(93\) −1.18473 8.17896i −0.122851 0.848118i
\(94\) 7.14183 0.736623
\(95\) −3.54444 2.57519i −0.363652 0.264209i
\(96\) −0.341837 3.25236i −0.0348886 0.331943i
\(97\) 4.79569 + 14.7596i 0.486929 + 1.49861i 0.829168 + 0.559000i \(0.188815\pi\)
−0.342239 + 0.939613i \(0.611185\pi\)
\(98\) 1.39853 + 2.42233i 0.141273 + 0.244692i
\(99\) −0.378722 + 0.655965i −0.0380630 + 0.0659270i
\(100\) 3.65491 + 0.776876i 0.365491 + 0.0776876i
\(101\) 1.50602 4.63507i 0.149855 0.461206i −0.847748 0.530399i \(-0.822042\pi\)
0.997603 + 0.0691923i \(0.0220422\pi\)
\(102\) 12.0942 2.57069i 1.19750 0.254536i
\(103\) −0.201805 + 1.92004i −0.0198844 + 0.189187i −0.999955 0.00946083i \(-0.996988\pi\)
0.980071 + 0.198648i \(0.0636551\pi\)
\(104\) −0.341401 + 0.379164i −0.0334771 + 0.0371801i
\(105\) −11.2803 + 5.02231i −1.10084 + 0.490127i
\(106\) −8.48494 3.77774i −0.824130 0.366926i
\(107\) 8.38254 + 9.30976i 0.810371 + 0.900008i 0.996591 0.0824999i \(-0.0262904\pi\)
−0.186220 + 0.982508i \(0.559624\pi\)
\(108\) −1.80423 + 1.31085i −0.173612 + 0.126136i
\(109\) 8.30253 6.03214i 0.795238 0.577774i −0.114275 0.993449i \(-0.536455\pi\)
0.909513 + 0.415675i \(0.136455\pi\)
\(110\) 3.06173 + 3.40040i 0.291925 + 0.324215i
\(111\) −5.24991 2.33741i −0.498300 0.221857i
\(112\) −6.10314 + 2.71729i −0.576692 + 0.256760i
\(113\) −2.57143 + 2.85586i −0.241900 + 0.268657i −0.851854 0.523780i \(-0.824521\pi\)
0.609954 + 0.792437i \(0.291188\pi\)
\(114\) 0.226553 2.15551i 0.0212187 0.201882i
\(115\) −17.2054 + 3.65712i −1.60441 + 0.341028i
\(116\) −0.163459 + 0.503076i −0.0151768 + 0.0467095i
\(117\) 0.131050 + 0.0278555i 0.0121155 + 0.00257524i
\(118\) 1.68022 2.91023i 0.154677 0.267908i
\(119\) 7.19811 + 12.4675i 0.659850 + 1.14289i
\(120\) 5.28938 + 16.2790i 0.482852 + 1.48607i
\(121\) 1.05536 + 10.0411i 0.0959416 + 0.912824i
\(122\) 1.79289 + 1.30261i 0.162321 + 0.117933i
\(123\) 0.487156 0.0439254
\(124\) −0.762305 2.06720i −0.0684570 0.185640i
\(125\) −16.8827 −1.51003
\(126\) 1.78729 + 1.29854i 0.159225 + 0.115684i
\(127\) −0.767645 7.30366i −0.0681175 0.648095i −0.974307 0.225223i \(-0.927689\pi\)
0.906190 0.422871i \(-0.138978\pi\)
\(128\) 2.11967 + 6.52366i 0.187354 + 0.576616i
\(129\) −7.14740 12.3797i −0.629294 1.08997i
\(130\) 0.404676 0.700920i 0.0354924 0.0614747i
\(131\) −12.7489 2.70985i −1.11387 0.236761i −0.386017 0.922492i \(-0.626149\pi\)
−0.727855 + 0.685731i \(0.759483\pi\)
\(132\) 0.172541 0.531027i 0.0150178 0.0462200i
\(133\) 2.46841 0.524677i 0.214039 0.0454953i
\(134\) −0.0730834 + 0.695342i −0.00631345 + 0.0600684i
\(135\) 14.3310 15.9162i 1.23341 1.36985i
\(136\) 18.2310 8.11698i 1.56330 0.696025i
\(137\) −0.122689 0.0546244i −0.0104820 0.00466688i 0.401489 0.915864i \(-0.368493\pi\)
−0.411971 + 0.911197i \(0.635159\pi\)
\(138\) −5.82260 6.46666i −0.495653 0.550478i
\(139\) −9.32593 + 6.77569i −0.791015 + 0.574706i −0.908265 0.418396i \(-0.862592\pi\)
0.117249 + 0.993103i \(0.462592\pi\)
\(140\) −2.66324 + 1.93496i −0.225085 + 0.163534i
\(141\) 5.60024 + 6.21969i 0.471625 + 0.523793i
\(142\) 1.31561 + 0.585746i 0.110403 + 0.0491547i
\(143\) −0.146017 + 0.0650109i −0.0122106 + 0.00543649i
\(144\) 1.62721 1.80720i 0.135601 0.150600i
\(145\) 0.530999 5.05212i 0.0440971 0.419556i
\(146\) 9.81549 2.08635i 0.812336 0.172667i
\(147\) −1.01291 + 3.11742i −0.0835435 + 0.257120i
\(148\) −1.49861 0.318540i −0.123185 0.0261838i
\(149\) 2.72054 4.71211i 0.222875 0.386031i −0.732805 0.680439i \(-0.761789\pi\)
0.955680 + 0.294408i \(0.0951224\pi\)
\(150\) −8.87606 15.3738i −0.724727 1.25526i
\(151\) 4.23019 + 13.0192i 0.344248 + 1.05949i 0.961985 + 0.273102i \(0.0880496\pi\)
−0.617737 + 0.786385i \(0.711950\pi\)
\(152\) −0.365662 3.47905i −0.0296591 0.282188i
\(153\) −4.23952 3.08019i −0.342745 0.249019i
\(154\) −2.63560 −0.212383
\(155\) 11.2884 + 17.8966i 0.906707 + 1.43749i
\(156\) −0.0987625 −0.00790733
\(157\) 12.1800 + 8.84931i 0.972072 + 0.706252i 0.955923 0.293618i \(-0.0948593\pi\)
0.0161493 + 0.999870i \(0.494859\pi\)
\(158\) −0.601379 5.72174i −0.0478432 0.455197i
\(159\) −3.36346 10.3517i −0.266740 0.820942i
\(160\) 4.18648 + 7.25120i 0.330970 + 0.573257i
\(161\) 5.06587 8.77434i 0.399246 0.691515i
\(162\) 7.40215 + 1.57338i 0.581568 + 0.123616i
\(163\) 5.26506 16.2042i 0.412391 1.26921i −0.502172 0.864768i \(-0.667466\pi\)
0.914563 0.404443i \(-0.132534\pi\)
\(164\) 0.127038 0.0270028i 0.00992003 0.00210857i
\(165\) −0.560501 + 5.33281i −0.0436350 + 0.415159i
\(166\) 0.276628 0.307226i 0.0214705 0.0238454i
\(167\) −14.7978 + 6.58842i −1.14509 + 0.509827i −0.889490 0.456955i \(-0.848940\pi\)
−0.255601 + 0.966782i \(0.582273\pi\)
\(168\) −9.00692 4.01014i −0.694899 0.309389i
\(169\) −8.67978 9.63987i −0.667675 0.741529i
\(170\) −25.6108 + 18.6073i −1.96426 + 1.42712i
\(171\) −0.743159 + 0.539937i −0.0568308 + 0.0412900i
\(172\) −2.55007 2.83214i −0.194441 0.215948i
\(173\) −2.12967 0.948192i −0.161916 0.0720897i 0.324178 0.945996i \(-0.394912\pi\)
−0.486094 + 0.873906i \(0.661579\pi\)
\(174\) 2.29581 1.02216i 0.174045 0.0774896i
\(175\) 13.8305 15.3604i 1.04549 1.16113i
\(176\) −0.303256 + 2.88529i −0.0228588 + 0.217487i
\(177\) 3.85201 0.818770i 0.289535 0.0615425i
\(178\) −5.75758 + 17.7200i −0.431549 + 1.32817i
\(179\) 16.5998 + 3.52839i 1.24073 + 0.263724i 0.781110 0.624394i \(-0.214654\pi\)
0.459616 + 0.888118i \(0.347987\pi\)
\(180\) 0.599147 1.03775i 0.0446578 0.0773495i
\(181\) 3.66788 + 6.35296i 0.272631 + 0.472211i 0.969535 0.244954i \(-0.0787727\pi\)
−0.696903 + 0.717165i \(0.745439\pi\)
\(182\) 0.144060 + 0.443371i 0.0106784 + 0.0328648i
\(183\) 0.271467 + 2.58284i 0.0200674 + 0.190929i
\(184\) −11.3625 8.25534i −0.837655 0.608592i
\(185\) 14.7135 1.08176
\(186\) −4.87515 + 9.26301i −0.357464 + 0.679197i
\(187\) 6.25174 0.457173
\(188\) 1.80516 + 1.31153i 0.131655 + 0.0956528i
\(189\) 1.28951 + 12.2688i 0.0937977 + 0.892425i
\(190\) 1.71480 + 5.27760i 0.124404 + 0.382877i
\(191\) −3.91138 6.77471i −0.283018 0.490201i 0.689109 0.724658i \(-0.258002\pi\)
−0.972127 + 0.234457i \(0.924669\pi\)
\(192\) −6.60115 + 11.4335i −0.476397 + 0.825143i
\(193\) 4.53030 + 0.962944i 0.326098 + 0.0693142i 0.368052 0.929805i \(-0.380025\pi\)
−0.0419539 + 0.999120i \(0.513358\pi\)
\(194\) 6.07423 18.6946i 0.436104 1.34219i
\(195\) 0.927744 0.197198i 0.0664371 0.0141216i
\(196\) −0.0913453 + 0.869092i −0.00652466 + 0.0620780i
\(197\) −14.9781 + 16.6348i −1.06714 + 1.18518i −0.0851305 + 0.996370i \(0.527131\pi\)
−0.982013 + 0.188813i \(0.939536\pi\)
\(198\) 0.876436 0.390215i 0.0622856 0.0277313i
\(199\) −24.3037 10.8207i −1.72285 0.767061i −0.996845 0.0793670i \(-0.974710\pi\)
−0.726001 0.687694i \(-0.758623\pi\)
\(200\) −19.1722 21.2928i −1.35568 1.50563i
\(201\) −0.662869 + 0.481603i −0.0467552 + 0.0339696i
\(202\) −4.99399 + 3.62834i −0.351376 + 0.255289i
\(203\) 1.95791 + 2.17448i 0.137419 + 0.152619i
\(204\) 3.52899 + 1.57121i 0.247078 + 0.110006i
\(205\) −1.13944 + 0.507312i −0.0795821 + 0.0354322i
\(206\) 1.63624 1.81723i 0.114002 0.126612i
\(207\) −0.385504 + 3.66783i −0.0267944 + 0.254932i
\(208\) 0.501951 0.106693i 0.0348040 0.00739782i
\(209\) 0.338648 1.04225i 0.0234247 0.0720939i
\(210\) 15.2980 + 3.25169i 1.05566 + 0.224388i
\(211\) −0.663069 + 1.14847i −0.0456476 + 0.0790639i −0.887946 0.459947i \(-0.847868\pi\)
0.842299 + 0.539011i \(0.181202\pi\)
\(212\) −1.45090 2.51303i −0.0996481 0.172596i
\(213\) 0.521512 + 1.60505i 0.0357334 + 0.109976i
\(214\) −1.65859 15.7804i −0.113379 1.07873i
\(215\) 29.6094 + 21.5125i 2.01935 + 1.46714i
\(216\) 17.1010 1.16357
\(217\) −12.0115 2.06567i −0.815390 0.140227i
\(218\) −12.9985 −0.880368
\(219\) 9.51374 + 6.91214i 0.642879 + 0.467079i
\(220\) 0.149431 + 1.42174i 0.0100746 + 0.0958535i
\(221\) −0.341716 1.05169i −0.0229863 0.0707445i
\(222\) 3.63942 + 6.30366i 0.244262 + 0.423074i
\(223\) 6.05997 10.4962i 0.405806 0.702876i −0.588609 0.808418i \(-0.700324\pi\)
0.994415 + 0.105542i \(0.0336576\pi\)
\(224\) −4.71744 1.00272i −0.315198 0.0669973i
\(225\) −2.32499 + 7.15558i −0.154999 + 0.477039i
\(226\) 4.76111 1.01201i 0.316704 0.0673176i
\(227\) 1.66223 15.8150i 0.110326 1.04968i −0.789595 0.613628i \(-0.789709\pi\)
0.899921 0.436053i \(-0.143624\pi\)
\(228\) 0.453101 0.503220i 0.0300074 0.0333266i
\(229\) −14.8895 + 6.62924i −0.983927 + 0.438073i −0.834685 0.550728i \(-0.814350\pi\)
−0.149242 + 0.988801i \(0.547683\pi\)
\(230\) 20.3531 + 9.06179i 1.34204 + 0.597517i
\(231\) −2.06670 2.29530i −0.135979 0.151020i
\(232\) 3.28150 2.38415i 0.215441 0.156527i
\(233\) 4.14456 3.01120i 0.271519 0.197270i −0.443691 0.896180i \(-0.646331\pi\)
0.715210 + 0.698910i \(0.246331\pi\)
\(234\) −0.113549 0.126109i −0.00742292 0.00824399i
\(235\) −19.5758 8.71571i −1.27699 0.568550i
\(236\) 0.959126 0.427030i 0.0624338 0.0277973i
\(237\) 4.51140 5.01041i 0.293047 0.325461i
\(238\) 1.90600 18.1344i 0.123548 1.17548i
\(239\) −8.38077 + 1.78139i −0.542107 + 0.115228i −0.470823 0.882228i \(-0.656043\pi\)
−0.0712838 + 0.997456i \(0.522710\pi\)
\(240\) 5.31996 16.3731i 0.343402 1.05688i
\(241\) 6.69714 + 1.42352i 0.431401 + 0.0916971i 0.418494 0.908220i \(-0.362558\pi\)
0.0129071 + 0.999917i \(0.495891\pi\)
\(242\) 6.39404 11.0748i 0.411024 0.711915i
\(243\) −4.01935 6.96171i −0.257841 0.446594i
\(244\) 0.213958 + 0.658494i 0.0136972 + 0.0421558i
\(245\) −0.877239 8.34637i −0.0560447 0.533230i
\(246\) −0.499190 0.362683i −0.0318272 0.0231238i
\(247\) −0.193842 −0.0123338
\(248\) −4.58824 + 16.2600i −0.291353 + 1.03251i
\(249\) 0.484474 0.0307023
\(250\) 17.2997 + 12.5690i 1.09413 + 0.794933i
\(251\) −2.36925 22.5419i −0.149546 1.42283i −0.769726 0.638375i \(-0.779607\pi\)
0.620180 0.784460i \(-0.287060\pi\)
\(252\) 0.213289 + 0.656437i 0.0134360 + 0.0413516i
\(253\) −2.19992 3.81037i −0.138308 0.239556i
\(254\) −4.65089 + 8.05558i −0.291823 + 0.505452i
\(255\) −36.2874 7.71312i −2.27240 0.483015i
\(256\) −2.81235 + 8.65553i −0.175772 + 0.540971i
\(257\) 16.2943 3.46347i 1.01641 0.216045i 0.330560 0.943785i \(-0.392763\pi\)
0.685853 + 0.727740i \(0.259429\pi\)
\(258\) −1.89257 + 18.0066i −0.117826 + 1.12104i
\(259\) −5.67088 + 6.29815i −0.352371 + 0.391348i
\(260\) 0.231002 0.102849i 0.0143262 0.00637842i
\(261\) −0.973024 0.433218i −0.0602286 0.0268155i
\(262\) 11.0463 + 12.2682i 0.682444 + 0.757931i
\(263\) 19.8908 14.4515i 1.22652 0.891118i 0.229894 0.973216i \(-0.426162\pi\)
0.996624 + 0.0820979i \(0.0261620\pi\)
\(264\) −3.46382 + 2.51661i −0.213184 + 0.154887i
\(265\) 18.6470 + 20.7096i 1.14548 + 1.27218i
\(266\) −2.92000 1.30007i −0.179037 0.0797124i
\(267\) −19.9468 + 8.88089i −1.22073 + 0.543502i
\(268\) −0.146165 + 0.162333i −0.00892846 + 0.00991606i
\(269\) −1.30808 + 12.4456i −0.0797553 + 0.758821i 0.879427 + 0.476033i \(0.157926\pi\)
−0.959182 + 0.282788i \(0.908741\pi\)
\(270\) −26.5344 + 5.64006i −1.61483 + 0.343243i
\(271\) −8.39516 + 25.8376i −0.509969 + 1.56952i 0.282283 + 0.959331i \(0.408908\pi\)
−0.792252 + 0.610194i \(0.791092\pi\)
\(272\) −19.6331 4.17314i −1.19043 0.253034i
\(273\) −0.273160 + 0.473127i −0.0165324 + 0.0286349i
\(274\) 0.0850519 + 0.147314i 0.00513817 + 0.00889957i
\(275\) −2.77372 8.53663i −0.167261 0.514778i
\(276\) −0.284177 2.70377i −0.0171055 0.162748i
\(277\) 12.2625 + 8.90926i 0.736785 + 0.535305i 0.891703 0.452622i \(-0.149511\pi\)
−0.154918 + 0.987927i \(0.549511\pi\)
\(278\) 14.6007 0.875694
\(279\) 4.30009 1.09145i 0.257440 0.0653433i
\(280\) 25.2430 1.50855
\(281\) −24.4709 17.7792i −1.45981 1.06062i −0.983412 0.181387i \(-0.941941\pi\)
−0.476401 0.879228i \(-0.658059\pi\)
\(282\) −1.10808 10.5426i −0.0659850 0.627806i
\(283\) 0.971958 + 2.99138i 0.0577769 + 0.177819i 0.975780 0.218754i \(-0.0701993\pi\)
−0.918003 + 0.396573i \(0.870199\pi\)
\(284\) 0.224965 + 0.389651i 0.0133492 + 0.0231215i
\(285\) −3.25152 + 5.63179i −0.192603 + 0.333599i
\(286\) 0.198024 + 0.0420913i 0.0117094 + 0.00248891i
\(287\) 0.222008 0.683269i 0.0131047 0.0403321i
\(288\) 1.71719 0.364999i 0.101186 0.0215078i
\(289\) −2.74412 + 26.1086i −0.161419 + 1.53580i
\(290\) −4.30537 + 4.78159i −0.252820 + 0.280785i
\(291\) 21.0438 9.36932i 1.23361 0.549239i
\(292\) 2.86409 + 1.27517i 0.167608 + 0.0746239i
\(293\) 1.27140 + 1.41204i 0.0742761 + 0.0824920i 0.779137 0.626853i \(-0.215657\pi\)
−0.704861 + 0.709345i \(0.748991\pi\)
\(294\) 3.35882 2.44033i 0.195890 0.142323i
\(295\) −8.15708 + 5.92647i −0.474924 + 0.345052i
\(296\) 7.86109 + 8.73063i 0.456917 + 0.507458i
\(297\) 4.89408 + 2.17898i 0.283983 + 0.126437i
\(298\) −6.29586 + 2.80310i −0.364709 + 0.162379i
\(299\) −0.520749 + 0.578350i −0.0301157 + 0.0334469i
\(300\) 0.579740 5.51586i 0.0334713 0.318458i
\(301\) −20.6205 + 4.38303i −1.18855 + 0.252634i
\(302\) 5.35797 16.4901i 0.308316 0.948900i
\(303\) −7.07588 1.50402i −0.406498 0.0864039i
\(304\) −1.75922 + 3.04705i −0.100898 + 0.174760i
\(305\) −3.32466 5.75848i −0.190370 0.329730i
\(306\) 2.05108 + 6.31256i 0.117252 + 0.360865i
\(307\) −2.37573 22.6036i −0.135590 1.29005i −0.824772 0.565466i \(-0.808696\pi\)
0.689181 0.724589i \(-0.257970\pi\)
\(308\) −0.666171 0.484002i −0.0379586 0.0275786i
\(309\) 2.86565 0.163021
\(310\) 1.75655 26.7428i 0.0997654 1.51889i
\(311\) 15.8754 0.900213 0.450106 0.892975i \(-0.351386\pi\)
0.450106 + 0.892975i \(0.351386\pi\)
\(312\) 0.612685 + 0.445142i 0.0346865 + 0.0252012i
\(313\) −0.663688 6.31457i −0.0375138 0.356920i −0.997136 0.0756284i \(-0.975904\pi\)
0.959622 0.281292i \(-0.0907629\pi\)
\(314\) −5.89268 18.1358i −0.332543 1.02346i
\(315\) −3.31427 5.74049i −0.186738 0.323440i
\(316\) 0.898737 1.55666i 0.0505579 0.0875689i
\(317\) 14.9666 + 3.18126i 0.840610 + 0.178677i 0.608044 0.793903i \(-0.291954\pi\)
0.232566 + 0.972581i \(0.425288\pi\)
\(318\) −4.26017 + 13.1115i −0.238898 + 0.735254i
\(319\) 1.24291 0.264188i 0.0695895 0.0147917i
\(320\) 3.53328 33.6169i 0.197516 1.87924i
\(321\) 12.4423 13.8186i 0.694463 0.771280i
\(322\) −11.7234 + 5.21960i −0.653320 + 0.290877i
\(323\) 6.92636 + 3.08381i 0.385393 + 0.171588i
\(324\) 1.58202 + 1.75702i 0.0878903 + 0.0976120i
\(325\) −1.28446 + 0.933212i −0.0712488 + 0.0517653i
\(326\) −17.4590 + 12.6847i −0.966963 + 0.702540i
\(327\) −10.1927 11.3201i −0.563658 0.626006i
\(328\) −0.909805 0.405071i −0.0502356 0.0223663i
\(329\) 11.2757 5.02026i 0.621649 0.276776i
\(330\) 4.54457 5.04726i 0.250170 0.277842i
\(331\) 0.937407 8.91883i 0.0515245 0.490223i −0.938081 0.346416i \(-0.887399\pi\)
0.989606 0.143808i \(-0.0459346\pi\)
\(332\) 0.126339 0.0268542i 0.00693376 0.00147382i
\(333\) 0.953307 2.93398i 0.0522409 0.160781i
\(334\) 20.0684 + 4.26566i 1.09809 + 0.233407i
\(335\) 1.04890 1.81675i 0.0573076 0.0992597i
\(336\) 4.95814 + 8.58776i 0.270489 + 0.468501i
\(337\) −1.35002 4.15495i −0.0735405 0.226334i 0.907529 0.419989i \(-0.137966\pi\)
−0.981070 + 0.193654i \(0.937966\pi\)
\(338\) 1.71740 + 16.3400i 0.0934144 + 0.888779i
\(339\) 4.61474 + 3.35281i 0.250638 + 0.182100i
\(340\) −9.89040 −0.536382
\(341\) −3.38492 + 4.06877i −0.183304 + 0.220336i
\(342\) 1.16349 0.0629145
\(343\) 16.3073 + 11.8479i 0.880511 + 0.639729i
\(344\) 3.05466 + 29.0631i 0.164696 + 1.56698i
\(345\) 8.06806 + 24.8309i 0.434370 + 1.33685i
\(346\) 1.47636 + 2.55713i 0.0793697 + 0.137472i
\(347\) −12.2026 + 21.1356i −0.655073 + 1.13462i 0.326803 + 0.945092i \(0.394029\pi\)
−0.981876 + 0.189526i \(0.939305\pi\)
\(348\) 0.767994 + 0.163242i 0.0411688 + 0.00875070i
\(349\) 4.03079 12.4055i 0.215763 0.664051i −0.783335 0.621599i \(-0.786483\pi\)
0.999099 0.0424515i \(-0.0135168\pi\)
\(350\) −25.6078 + 5.44311i −1.36879 + 0.290946i
\(351\) 0.0990505 0.942403i 0.00528692 0.0503017i
\(352\) −1.40141 + 1.55642i −0.0746955 + 0.0829577i
\(353\) 9.88896 4.40285i 0.526336 0.234340i −0.126326 0.991989i \(-0.540319\pi\)
0.652662 + 0.757649i \(0.273652\pi\)
\(354\) −4.55673 2.02879i −0.242187 0.107829i
\(355\) −2.89126 3.21107i −0.153452 0.170426i
\(356\) −4.70938 + 3.42156i −0.249597 + 0.181343i
\(357\) 17.2875 12.5601i 0.914952 0.664752i
\(358\) −14.3830 15.9739i −0.760164 0.844248i
\(359\) 30.8627 + 13.7409i 1.62887 + 0.725220i 0.998687 0.0512273i \(-0.0163133\pi\)
0.630183 + 0.776447i \(0.282980\pi\)
\(360\) −8.39423 + 3.73735i −0.442415 + 0.196976i
\(361\) −11.8242 + 13.1321i −0.622325 + 0.691162i
\(362\) 0.971225 9.24059i 0.0510464 0.485674i
\(363\) 14.6587 3.11580i 0.769382 0.163537i
\(364\) −0.0450082 + 0.138521i −0.00235907 + 0.00726048i
\(365\) −29.4505 6.25989i −1.54151 0.327658i
\(366\) 1.64472 2.84875i 0.0859711 0.148906i
\(367\) −11.3157 19.5993i −0.590673 1.02308i −0.994142 0.108082i \(-0.965529\pi\)
0.403469 0.914993i \(-0.367804\pi\)
\(368\) 4.36518 + 13.4346i 0.227551 + 0.700329i
\(369\) 0.0273357 + 0.260082i 0.00142304 + 0.0135393i
\(370\) −15.0770 10.9541i −0.783814 0.569474i
\(371\) −16.0517 −0.833365
\(372\) −2.93330 + 1.44604i −0.152084 + 0.0749734i
\(373\) −32.9720 −1.70723 −0.853613 0.520908i \(-0.825593\pi\)
−0.853613 + 0.520908i \(0.825593\pi\)
\(374\) −6.40617 4.65436i −0.331255 0.240671i
\(375\) 2.61940 + 24.9219i 0.135265 + 1.28696i
\(376\) −5.28723 16.2724i −0.272668 0.839185i
\(377\) −0.112379 0.194647i −0.00578783 0.0100248i
\(378\) 7.81265 13.5319i 0.401840 0.696006i
\(379\) 31.7818 + 6.75544i 1.63252 + 0.347004i 0.930824 0.365469i \(-0.119091\pi\)
0.701700 + 0.712472i \(0.252425\pi\)
\(380\) −0.535748 + 1.64886i −0.0274833 + 0.0845850i
\(381\) −10.6624 + 2.26637i −0.546253 + 0.116110i
\(382\) −1.03570 + 9.85404i −0.0529911 + 0.504177i
\(383\) −17.9196 + 19.9017i −0.915649 + 1.01693i 0.0841414 + 0.996454i \(0.473185\pi\)
−0.999790 + 0.0204773i \(0.993481\pi\)
\(384\) 9.30125 4.14118i 0.474652 0.211329i
\(385\) 7.22420 + 3.21642i 0.368179 + 0.163924i
\(386\) −3.92530 4.35949i −0.199793 0.221892i
\(387\) 6.20818 4.51050i 0.315579 0.229282i
\(388\) 4.96838 3.60974i 0.252232 0.183257i
\(389\) −11.8687 13.1815i −0.601767 0.668330i 0.362892 0.931831i \(-0.381789\pi\)
−0.964659 + 0.263501i \(0.915123\pi\)
\(390\) −1.09747 0.488626i −0.0555727 0.0247426i
\(391\) 27.8084 12.3811i 1.40633 0.626138i
\(392\) 4.48384 4.97981i 0.226468 0.251518i
\(393\) −2.02222 + 19.2401i −0.102007 + 0.970534i
\(394\) 27.7325 5.89473i 1.39714 0.296972i
\(395\) −5.33429 + 16.4173i −0.268397 + 0.826042i
\(396\) 0.293186 + 0.0623186i 0.0147332 + 0.00313163i
\(397\) −4.97476 + 8.61654i −0.249676 + 0.432452i −0.963436 0.267939i \(-0.913658\pi\)
0.713760 + 0.700391i \(0.246991\pi\)
\(398\) 16.8482 + 29.1819i 0.844523 + 1.46276i
\(399\) −1.15750 3.56243i −0.0579476 0.178344i
\(400\) 3.01230 + 28.6601i 0.150615 + 1.43301i
\(401\) −16.0959 11.6943i −0.803789 0.583987i 0.108234 0.994125i \(-0.465480\pi\)
−0.912023 + 0.410138i \(0.865480\pi\)
\(402\) 1.03779 0.0517604
\(403\) 0.869482 + 0.347028i 0.0433120 + 0.0172867i
\(404\) −1.92858 −0.0959506
\(405\) −18.3693 13.3460i −0.912776 0.663170i
\(406\) −0.387398 3.68584i −0.0192262 0.182925i
\(407\) 1.13730 + 3.50024i 0.0563738 + 0.173501i
\(408\) −14.8108 25.6530i −0.733242 1.27001i
\(409\) 12.1628 21.0665i 0.601410 1.04167i −0.391198 0.920306i \(-0.627939\pi\)
0.992608 0.121365i \(-0.0387273\pi\)
\(410\) 1.54528 + 0.328459i 0.0763158 + 0.0162214i
\(411\) −0.0616002 + 0.189586i −0.00303851 + 0.00935159i
\(412\) 0.747291 0.158842i 0.0368164 0.00782556i
\(413\) 0.607065 5.77584i 0.0298717 0.284210i
\(414\) 3.12569 3.47143i 0.153619 0.170611i
\(415\) −1.13317 + 0.504520i −0.0556251 + 0.0247659i
\(416\) 0.338428 + 0.150678i 0.0165928 + 0.00738759i
\(417\) 11.4491 + 12.7155i 0.560665 + 0.622682i
\(418\) −1.12296 + 0.815876i −0.0549256 + 0.0399058i
\(419\) 3.56513 2.59022i 0.174168 0.126541i −0.497286 0.867587i \(-0.665670\pi\)
0.671454 + 0.741046i \(0.265670\pi\)
\(420\) 3.26956 + 3.63122i 0.159538 + 0.177185i
\(421\) −11.3496 5.05316i −0.553145 0.246276i 0.111076 0.993812i \(-0.464570\pi\)
−0.664222 + 0.747536i \(0.731237\pi\)
\(422\) 1.53447 0.683191i 0.0746969 0.0332572i
\(423\) −3.00632 + 3.33885i −0.146172 + 0.162341i
\(424\) −2.32589 + 22.1294i −0.112955 + 1.07470i
\(425\) 60.7426 12.9112i 2.94645 0.626287i
\(426\) 0.660548 2.03296i 0.0320037 0.0984972i
\(427\) 3.74632 + 0.796305i 0.181297 + 0.0385359i
\(428\) 2.47870 4.29323i 0.119812 0.207521i
\(429\) 0.118623 + 0.205461i 0.00572718 + 0.00991976i
\(430\) −14.3250 44.0878i −0.690813 2.12610i
\(431\) 1.94060 + 18.4636i 0.0934755 + 0.889360i 0.936307 + 0.351183i \(0.114220\pi\)
−0.842831 + 0.538178i \(0.819113\pi\)
\(432\) −13.9150 10.1098i −0.669484 0.486408i
\(433\) −36.1204 −1.73584 −0.867918 0.496708i \(-0.834542\pi\)
−0.867918 + 0.496708i \(0.834542\pi\)
\(434\) 10.7703 + 11.0591i 0.516991 + 0.530853i
\(435\) −7.54024 −0.361527
\(436\) −3.28548 2.38704i −0.157346 0.114319i
\(437\) −0.557756 5.30670i −0.0266811 0.253854i
\(438\) −4.60274 14.1658i −0.219927 0.676866i
\(439\) 9.50469 + 16.4626i 0.453634 + 0.785718i 0.998609 0.0527352i \(-0.0167939\pi\)
−0.544974 + 0.838453i \(0.683461\pi\)
\(440\) 5.48103 9.49342i 0.261298 0.452581i
\(441\) −1.72116 0.365844i −0.0819601 0.0174212i
\(442\) −0.432817 + 1.33208i −0.0205870 + 0.0633603i
\(443\) −12.1819 + 2.58934i −0.578779 + 0.123023i −0.487993 0.872847i \(-0.662271\pi\)
−0.0907852 + 0.995870i \(0.528938\pi\)
\(444\) −0.237709 + 2.26165i −0.0112812 + 0.107333i
\(445\) 37.4066 41.5443i 1.77324 1.96939i
\(446\) −14.0240 + 6.24387i −0.664054 + 0.295656i
\(447\) −7.37804 3.28492i −0.348969 0.155371i
\(448\) 13.0280 + 14.4691i 0.615515 + 0.683599i
\(449\) −20.5786 + 14.9513i −0.971166 + 0.705593i −0.955717 0.294287i \(-0.904918\pi\)
−0.0154490 + 0.999881i \(0.504918\pi\)
\(450\) 7.70968 5.60141i 0.363438 0.264053i
\(451\) −0.208761 0.231852i −0.00983016 0.0109175i
\(452\) 1.38926 + 0.618537i 0.0653452 + 0.0290935i
\(453\) 18.5624 8.26451i 0.872137 0.388300i
\(454\) −13.4774 + 14.9682i −0.632527 + 0.702492i
\(455\) 0.146210 1.39109i 0.00685441 0.0652154i
\(456\) −5.07898 + 1.07957i −0.237845 + 0.0505555i
\(457\) 9.88049 30.4090i 0.462190 1.42247i −0.400292 0.916388i \(-0.631091\pi\)
0.862482 0.506087i \(-0.168909\pi\)
\(458\) 20.1927 + 4.29210i 0.943544 + 0.200556i
\(459\) −18.5319 + 32.0982i −0.864995 + 1.49822i
\(460\) 3.48032 + 6.02809i 0.162271 + 0.281061i
\(461\) 5.97950 + 18.4030i 0.278493 + 0.857114i 0.988274 + 0.152691i \(0.0487940\pi\)
−0.709781 + 0.704423i \(0.751206\pi\)
\(462\) 0.408922 + 3.89063i 0.0190248 + 0.181008i
\(463\) −0.0335439 0.0243710i −0.00155892 0.00113262i 0.587006 0.809583i \(-0.300307\pi\)
−0.588564 + 0.808450i \(0.700307\pi\)
\(464\) −4.07961 −0.189391
\(465\) 24.6672 19.4405i 1.14391 0.901531i
\(466\) −6.48875 −0.300586
\(467\) −20.4748 14.8758i −0.947462 0.688372i 0.00274297 0.999996i \(-0.499127\pi\)
−0.950205 + 0.311625i \(0.899127\pi\)
\(468\) −0.00554185 0.0527272i −0.000256172 0.00243732i
\(469\) 0.373397 + 1.14920i 0.0172419 + 0.0530650i
\(470\) 13.5706 + 23.5050i 0.625966 + 1.08420i
\(471\) 11.1734 19.3530i 0.514845 0.891737i
\(472\) −7.87476 1.67383i −0.362465 0.0770444i
\(473\) −2.82898 + 8.70671i −0.130077 + 0.400335i
\(474\) −8.35304 + 1.77549i −0.383668 + 0.0815511i
\(475\) 1.13786 10.8260i 0.0522085 0.496731i
\(476\) 3.81196 4.23361i 0.174721 0.194047i
\(477\) 5.33781 2.37655i 0.244401 0.108815i
\(478\) 9.91401 + 4.41400i 0.453456 + 0.201892i
\(479\) −14.2131 15.7852i −0.649413 0.721246i 0.325074 0.945689i \(-0.394611\pi\)
−0.974487 + 0.224442i \(0.927944\pi\)
\(480\) 10.0546 7.30506i 0.458925 0.333429i
\(481\) 0.526661 0.382641i 0.0240137 0.0174469i
\(482\) −5.80278 6.44464i −0.264309 0.293545i
\(483\) −13.7385 6.11679i −0.625125 0.278323i
\(484\) 3.64993 1.62505i 0.165906 0.0738660i
\(485\) −39.4639 + 43.8291i −1.79196 + 1.99018i
\(486\) −1.06429 + 10.1260i −0.0482772 + 0.459327i
\(487\) −26.1772 + 5.56413i −1.18620 + 0.252135i −0.758431 0.651753i \(-0.774034\pi\)
−0.427769 + 0.903888i \(0.640700\pi\)
\(488\) 1.64065 5.04940i 0.0742687 0.228575i
\(489\) −24.7373 5.25807i −1.11866 0.237778i
\(490\) −5.31488 + 9.20564i −0.240102 + 0.415868i
\(491\) 6.28320 + 10.8828i 0.283557 + 0.491135i 0.972258 0.233910i \(-0.0751522\pi\)
−0.688701 + 0.725045i \(0.741819\pi\)
\(492\) −0.0595716 0.183342i −0.00268569 0.00826572i
\(493\) 0.918922 + 8.74296i 0.0413861 + 0.393763i
\(494\) 0.198630 + 0.144313i 0.00893678 + 0.00649295i
\(495\) −2.87853 −0.129380
\(496\) 13.3461 10.5182i 0.599255 0.472280i
\(497\) 2.48886 0.111640
\(498\) −0.496442 0.360686i −0.0222461 0.0161627i
\(499\) 2.40733 + 22.9042i 0.107767 + 1.02533i 0.906085 + 0.423097i \(0.139057\pi\)
−0.798318 + 0.602236i \(0.794276\pi\)
\(500\) 2.06449 + 6.35384i 0.0923268 + 0.284153i
\(501\) 12.0216 + 20.8221i 0.537087 + 0.930263i
\(502\) −14.3545 + 24.8626i −0.640671 + 1.10967i
\(503\) −0.647121 0.137550i −0.0288537 0.00613305i 0.193462 0.981108i \(-0.438028\pi\)
−0.222316 + 0.974975i \(0.571362\pi\)
\(504\) 1.63552 5.03362i 0.0728520 0.224215i
\(505\) 18.1165 3.85078i 0.806174 0.171358i
\(506\) −0.582520 + 5.54231i −0.0258962 + 0.246386i
\(507\) −12.8835 + 14.3086i −0.572178 + 0.635468i
\(508\) −2.65488 + 1.18203i −0.117791 + 0.0524440i
\(509\) −10.6587 4.74556i −0.472439 0.210343i 0.156685 0.987649i \(-0.449919\pi\)
−0.629124 + 0.777305i \(0.716586\pi\)
\(510\) 31.4414 + 34.9192i 1.39225 + 1.54625i
\(511\) 14.0304 10.1937i 0.620667 0.450941i
\(512\) 20.4245 14.8393i 0.902644 0.655809i
\(513\) 4.34736 + 4.82823i 0.191941 + 0.213172i
\(514\) −19.2754 8.58194i −0.850200 0.378533i
\(515\) −6.70266 + 2.98422i −0.295354 + 0.131500i
\(516\) −3.78510 + 4.20378i −0.166630 + 0.185061i
\(517\) 0.560273 5.33064i 0.0246408 0.234441i
\(518\) 10.4999 2.23182i 0.461338 0.0980604i
\(519\) −1.06928 + 3.29090i −0.0469362 + 0.144455i
\(520\) −1.89661 0.403137i −0.0831719 0.0176787i
\(521\) 15.9592 27.6422i 0.699186 1.21103i −0.269563 0.962983i \(-0.586879\pi\)
0.968749 0.248043i \(-0.0797874\pi\)
\(522\) 0.674533 + 1.16833i 0.0295235 + 0.0511362i
\(523\) −0.00128254 0.00394726i −5.60817e−5 0.000172602i 0.951028 0.309103i \(-0.100029\pi\)
−0.951085 + 0.308931i \(0.900029\pi\)
\(524\) 0.539126 + 5.12944i 0.0235518 + 0.224081i
\(525\) −24.8206 18.0332i −1.08326 0.787033i
\(526\) −31.1411 −1.35782
\(527\) −25.5475 26.2326i −1.11287 1.14271i
\(528\) 4.30627 0.187406
\(529\) 1.27581 + 0.926929i 0.0554699 + 0.0403013i
\(530\) −3.68955 35.1037i −0.160264 1.52481i
\(531\) 0.653271 + 2.01056i 0.0283496 + 0.0872510i
\(532\) −0.499312 0.864834i −0.0216479 0.0374953i
\(533\) −0.0275924 + 0.0477914i −0.00119516 + 0.00207008i
\(534\) 27.0513 + 5.74993i 1.17062 + 0.248824i
\(535\) −14.7119 + 45.2784i −0.636049 + 1.95756i
\(536\) 1.63842 0.348257i 0.0707689 0.0150424i
\(537\) 2.63305 25.0518i 0.113624 1.08106i
\(538\) 10.6060 11.7792i 0.457258 0.507836i
\(539\) 1.91774 0.853831i 0.0826028 0.0367771i
\(540\) −7.74255 3.44720i −0.333186 0.148344i
\(541\) 19.5888 + 21.7556i 0.842189 + 0.935346i 0.998629 0.0523416i \(-0.0166685\pi\)
−0.156440 + 0.987687i \(0.550002\pi\)
\(542\) 27.8384 20.2258i 1.19576 0.868771i
\(543\) 8.80905 6.40015i 0.378032 0.274657i
\(544\) −9.69560 10.7681i −0.415695 0.461677i
\(545\) 35.6290 + 15.8630i 1.52618 + 0.679498i
\(546\) 0.632146 0.281449i 0.0270533 0.0120449i
\(547\) 27.5450 30.5918i 1.17774 1.30801i 0.235964 0.971762i \(-0.424175\pi\)
0.941773 0.336248i \(-0.109158\pi\)
\(548\) −0.00555517 + 0.0528539i −0.000237305 + 0.00225781i
\(549\) −1.36369 + 0.289861i −0.0582009 + 0.0123710i
\(550\) −3.51320 + 10.8125i −0.149803 + 0.461047i
\(551\) 1.50735 + 0.320396i 0.0642151 + 0.0136493i
\(552\) −10.4235 + 18.0540i −0.443653 + 0.768429i
\(553\) −4.97150 8.61089i −0.211410 0.366172i
\(554\) −5.93260 18.2587i −0.252052 0.775737i
\(555\) −2.28285 21.7198i −0.0969015 0.921956i
\(556\) 3.69046 + 2.68128i 0.156511 + 0.113712i
\(557\) −5.73810 −0.243131 −0.121566 0.992583i \(-0.538791\pi\)
−0.121566 + 0.992583i \(0.538791\pi\)
\(558\) −5.21889 2.08297i −0.220933 0.0881790i
\(559\) 1.61931 0.0684894
\(560\) −20.5400 14.9232i −0.867975 0.630620i
\(561\) −0.969977 9.22872i −0.0409525 0.389637i
\(562\) 11.8390 + 36.4367i 0.499398 + 1.53699i
\(563\) 7.14710 + 12.3791i 0.301214 + 0.521718i 0.976411 0.215919i \(-0.0692748\pi\)
−0.675197 + 0.737637i \(0.735941\pi\)
\(564\) 1.65598 2.86823i 0.0697292 0.120774i
\(565\) −14.2853 3.03643i −0.600986 0.127744i
\(566\) 1.23108 3.78889i 0.0517463 0.159259i
\(567\) 12.7927 2.71917i 0.537242 0.114194i
\(568\) 0.360634 3.43121i 0.0151319 0.143970i
\(569\) 9.60991 10.6729i 0.402869 0.447431i −0.507237 0.861806i \(-0.669333\pi\)
0.910106 + 0.414375i \(0.136000\pi\)
\(570\) 7.52465 3.35019i 0.315173 0.140324i
\(571\) 30.4932 + 13.5765i 1.27610 + 0.568157i 0.929142 0.369722i \(-0.120547\pi\)
0.346960 + 0.937880i \(0.387214\pi\)
\(572\) 0.0423226 + 0.0470040i 0.00176960 + 0.00196534i
\(573\) −9.39385 + 6.82503i −0.392434 + 0.285120i
\(574\) −0.736179 + 0.534865i −0.0307275 + 0.0223248i
\(575\) −29.2439 32.4786i −1.21955 1.35445i
\(576\) −6.47452 2.88264i −0.269772 0.120110i
\(577\) −20.5361 + 9.14328i −0.854931 + 0.380640i −0.786928 0.617045i \(-0.788330\pi\)
−0.0680033 + 0.997685i \(0.521663\pi\)
\(578\) 22.2495 24.7105i 0.925456 1.02782i
\(579\) 0.718593 6.83695i 0.0298637 0.284134i
\(580\) −1.96631 + 0.417952i −0.0816466 + 0.0173545i
\(581\) 0.220786 0.679508i 0.00915973 0.0281908i
\(582\) −28.5390 6.06616i −1.18298 0.251450i
\(583\) −3.48533 + 6.03677i −0.144348 + 0.250018i
\(584\) −12.0203 20.8197i −0.497402 0.861525i
\(585\) 0.157338 + 0.484237i 0.00650514 + 0.0200207i
\(586\) −0.251563 2.39346i −0.0103920 0.0988730i
\(587\) 5.19079 + 3.77133i 0.214247 + 0.155659i 0.689733 0.724064i \(-0.257728\pi\)
−0.475486 + 0.879723i \(0.657728\pi\)
\(588\) 1.29711 0.0534920
\(589\) −5.75720 + 2.83814i −0.237221 + 0.116944i
\(590\) 12.7708 0.525764
\(591\) 26.8800 + 19.5294i 1.10569 + 0.803334i
\(592\) −1.23512 11.7514i −0.0507632 0.482980i
\(593\) −6.44614 19.8392i −0.264711 0.814697i −0.991760 0.128111i \(-0.959109\pi\)
0.727049 0.686586i \(-0.240891\pi\)
\(594\) −3.39274 5.87640i −0.139206 0.241112i
\(595\) −27.3551 + 47.3805i −1.12145 + 1.94241i
\(596\) −2.10610 0.447664i −0.0862690 0.0183370i
\(597\) −12.2026 + 37.5557i −0.499418 + 1.53705i
\(598\) 0.964189 0.204945i 0.0394286 0.00838081i
\(599\) 1.20818 11.4951i 0.0493649 0.469676i −0.941715 0.336410i \(-0.890787\pi\)
0.991080 0.133265i \(-0.0425463\pi\)
\(600\) −28.4575 + 31.6053i −1.16177 + 1.29028i
\(601\) 3.94416 1.75605i 0.160885 0.0716308i −0.324714 0.945812i \(-0.605268\pi\)
0.485599 + 0.874181i \(0.338601\pi\)
\(602\) 24.3930 + 10.8605i 0.994186 + 0.442640i
\(603\) −0.294313 0.326868i −0.0119854 0.0133111i
\(604\) 4.38252 3.18409i 0.178322 0.129559i
\(605\) −31.0415 + 22.5530i −1.26202 + 0.916909i
\(606\) 6.13093 + 6.80909i 0.249052 + 0.276600i
\(607\) 41.0266 + 18.2662i 1.66522 + 0.741404i 0.999986 0.00523163i \(-0.00166529\pi\)
0.665234 + 0.746635i \(0.268332\pi\)
\(608\) −2.32038 + 1.03310i −0.0941037 + 0.0418977i
\(609\) 2.90616 3.22762i 0.117764 0.130790i
\(610\) −0.880343 + 8.37590i −0.0356440 + 0.339130i
\(611\) −0.927366 + 0.197118i −0.0375172 + 0.00797453i
\(612\) −0.640812 + 1.97222i −0.0259033 + 0.0797221i
\(613\) 2.54823 + 0.541644i 0.102922 + 0.0218768i 0.259085 0.965855i \(-0.416579\pi\)
−0.156163 + 0.987731i \(0.549912\pi\)
\(614\) −14.3937 + 24.9306i −0.580883 + 1.00612i
\(615\) 0.925674 + 1.60332i 0.0373268 + 0.0646519i
\(616\) 1.95118 + 6.00512i 0.0786154 + 0.241953i
\(617\) 2.61183 + 24.8499i 0.105148 + 1.00042i 0.912146 + 0.409865i \(0.134424\pi\)
−0.806998 + 0.590555i \(0.798909\pi\)
\(618\) −2.93643 2.13344i −0.118121 0.0858197i
\(619\) 31.9083 1.28250 0.641252 0.767330i \(-0.278415\pi\)
0.641252 + 0.767330i \(0.278415\pi\)
\(620\) 5.35503 6.43690i 0.215063 0.258512i
\(621\) 26.0847 1.04674
\(622\) −16.2676 11.8191i −0.652271 0.473902i
\(623\) 3.36586 + 32.0240i 0.134850 + 1.28301i
\(624\) −0.235378 0.724418i −0.00942264 0.0289999i
\(625\) −8.47372 14.6769i −0.338949 0.587077i
\(626\) −4.02105 + 6.96466i −0.160713 + 0.278364i
\(627\) −1.59109 0.338198i −0.0635422 0.0135063i
\(628\) 1.84103 5.66612i 0.0734652 0.226103i
\(629\) −24.9061 + 5.29395i −0.993071 + 0.211084i
\(630\) −0.877592 + 8.34973i −0.0349641 + 0.332661i
\(631\) −0.240720 + 0.267347i −0.00958293 + 0.0106429i −0.747917 0.663792i \(-0.768946\pi\)
0.738334 + 0.674435i \(0.235613\pi\)
\(632\) −12.5916 + 5.60613i −0.500866 + 0.223000i
\(633\) 1.79823 + 0.800623i 0.0714732 + 0.0318219i
\(634\) −12.9679 14.4024i −0.515022 0.571990i
\(635\) 22.5790 16.4046i 0.896019 0.650996i
\(636\) −3.48458 + 2.53170i −0.138173 + 0.100388i
\(637\) −0.248457 0.275939i −0.00984422 0.0109331i
\(638\) −1.47030 0.654618i −0.0582096 0.0259166i
\(639\) −0.827639 + 0.368488i −0.0327409 + 0.0145772i
\(640\) −17.4428 + 19.3722i −0.689487 + 0.765753i
\(641\) 3.22020 30.6382i 0.127190 1.21013i −0.725688 0.688024i \(-0.758478\pi\)
0.852878 0.522110i \(-0.174855\pi\)
\(642\) −23.0375 + 4.89677i −0.909218 + 0.193260i
\(643\) −0.541347 + 1.66609i −0.0213486 + 0.0657044i −0.961163 0.275980i \(-0.910998\pi\)
0.939815 + 0.341685i \(0.110998\pi\)
\(644\) −3.92172 0.833588i −0.154538 0.0328480i
\(645\) 27.1624 47.0467i 1.06952 1.85246i
\(646\) −4.80159 8.31659i −0.188916 0.327212i
\(647\) −7.61739 23.4439i −0.299470 0.921675i −0.981683 0.190521i \(-0.938982\pi\)
0.682213 0.731154i \(-0.261018\pi\)
\(648\) −1.89507 18.0304i −0.0744452 0.708299i
\(649\) −2.04038 1.48242i −0.0800918 0.0581901i
\(650\) 2.01095 0.0788760
\(651\) −1.18569 + 18.0516i −0.0464707 + 0.707498i
\(652\) −6.74233 −0.264050
\(653\) 0.231107 + 0.167909i 0.00904393 + 0.00657080i 0.592298 0.805719i \(-0.298221\pi\)
−0.583254 + 0.812290i \(0.698221\pi\)
\(654\) 2.01676 + 19.1881i 0.0788614 + 0.750316i
\(655\) −15.3063 47.1079i −0.598065 1.84066i
\(656\) 0.500831 + 0.867465i 0.0195542 + 0.0338688i
\(657\) −3.15640 + 5.46704i −0.123143 + 0.213290i
\(658\) −15.2918 3.25036i −0.596135 0.126712i
\(659\) 11.5649 35.5930i 0.450503 1.38651i −0.425832 0.904802i \(-0.640018\pi\)
0.876335 0.481703i \(-0.159982\pi\)
\(660\) 2.07556 0.441174i 0.0807910 0.0171727i
\(661\) −0.438139 + 4.16861i −0.0170416 + 0.162140i −0.999733 0.0231105i \(-0.992643\pi\)
0.982691 + 0.185251i \(0.0593097\pi\)
\(662\) −7.60054 + 8.44125i −0.295403 + 0.328079i
\(663\) −1.49947 + 0.667608i −0.0582347 + 0.0259278i
\(664\) −0.904797 0.402841i −0.0351129 0.0156333i
\(665\) 6.41718 + 7.12701i 0.248848 + 0.276373i
\(666\) −3.16117 + 2.29673i −0.122493 + 0.0889963i
\(667\) 5.00538 3.63662i 0.193809 0.140810i
\(668\) 4.28911 + 4.76354i 0.165951 + 0.184307i
\(669\) −16.4345 7.31712i −0.635395 0.282896i
\(670\) −2.42736 + 1.08073i −0.0937772 + 0.0417523i
\(671\) 1.11292 1.23602i 0.0429638 0.0477161i
\(672\) −0.748278 + 7.11939i −0.0288655 + 0.274636i
\(673\) −9.75474 + 2.07343i −0.376018 + 0.0799250i −0.392044 0.919947i \(-0.628232\pi\)
0.0160261 + 0.999872i \(0.494899\pi\)
\(674\) −1.70994 + 5.26266i −0.0658645 + 0.202710i
\(675\) 52.0515 + 11.0639i 2.00346 + 0.425849i
\(676\) −2.56659 + 4.44546i −0.0987150 + 0.170979i
\(677\) 23.8788 + 41.3594i 0.917738 + 1.58957i 0.802842 + 0.596192i \(0.203320\pi\)
0.114896 + 0.993377i \(0.463346\pi\)
\(678\) −2.23261 6.87126i −0.0857428 0.263889i
\(679\) −3.55097 33.7852i −0.136274 1.29656i
\(680\) 61.3563 + 44.5780i 2.35291 + 1.70949i
\(681\) −23.6038 −0.904500
\(682\) 6.49769 1.64924i 0.248810 0.0631527i
\(683\) 27.7600 1.06221 0.531104 0.847307i \(-0.321777\pi\)
0.531104 + 0.847307i \(0.321777\pi\)
\(684\) 0.294083 + 0.213664i 0.0112446 + 0.00816965i
\(685\) −0.0533493 0.507585i −0.00203837 0.0193938i
\(686\) −7.88945 24.2812i −0.301221 0.927062i
\(687\) 12.0961 + 20.9511i 0.461496 + 0.799335i
\(688\) 14.6961 25.4544i 0.560283 0.970438i
\(689\) 1.20604 + 0.256351i 0.0459463 + 0.00976619i
\(690\) 10.2190 31.4509i 0.389031 1.19731i
\(691\) −37.1999 + 7.90708i −1.41515 + 0.300800i −0.851127 0.524959i \(-0.824081\pi\)
−0.564023 + 0.825759i \(0.690747\pi\)
\(692\) −0.0964286 + 0.917457i −0.00366567 + 0.0348765i
\(693\) 1.10944 1.23216i 0.0421442 0.0468059i
\(694\) 28.2393 12.5730i 1.07195 0.477263i
\(695\) −40.0207 17.8184i −1.51807 0.675890i
\(696\) −4.02858 4.47419i −0.152703 0.169594i
\(697\) 1.74624 1.26872i 0.0661437 0.0480562i
\(698\) −13.3661 + 9.71106i −0.505915 + 0.367569i
\(699\) −5.08813 5.65094i −0.192451 0.213738i
\(700\) −7.47217 3.32682i −0.282421 0.125742i
\(701\) 37.5067 16.6991i 1.41661 0.630716i 0.451431 0.892306i \(-0.350914\pi\)
0.965179 + 0.261590i \(0.0842469\pi\)
\(702\) −0.803106 + 0.891940i −0.0303113 + 0.0336641i
\(703\) −0.466552 + 4.43895i −0.0175963 + 0.167418i
\(704\) 8.27034 1.75792i 0.311700 0.0662539i
\(705\) −9.82874 + 30.2498i −0.370172 + 1.13927i
\(706\) −13.4111 2.85062i −0.504734 0.107284i
\(707\) −5.33413 + 9.23898i −0.200611 + 0.347468i
\(708\) −0.779187 1.34959i −0.0292836 0.0507207i
\(709\) 12.9990 + 40.0069i 0.488188 + 1.50249i 0.827309 + 0.561747i \(0.189870\pi\)
−0.339121 + 0.940743i \(0.610130\pi\)
\(710\) 0.572072 + 5.44291i 0.0214695 + 0.204269i
\(711\) 2.92810 + 2.12739i 0.109812 + 0.0797833i
\(712\) 44.6368 1.67284
\(713\) −6.99858 + 24.8019i −0.262099 + 0.928838i
\(714\) −27.0654 −1.01290
\(715\) −0.491418 0.357036i −0.0183780 0.0133524i
\(716\) −0.701974 6.67884i −0.0262340 0.249600i
\(717\) 3.92996 + 12.0952i 0.146767 + 0.451702i
\(718\) −21.3951 37.0573i −0.798456 1.38297i
\(719\) 16.6345 28.8118i 0.620362 1.07450i −0.369056 0.929407i \(-0.620319\pi\)
0.989418 0.145092i \(-0.0463477\pi\)
\(720\) 9.03979 + 1.92147i 0.336893 + 0.0716088i
\(721\) 1.30594 4.01926i 0.0486357 0.149685i
\(722\) 21.8930 4.65349i 0.814772 0.173185i
\(723\) 1.06230 10.1071i 0.0395072 0.375886i
\(724\) 1.94243 2.15728i 0.0721897 0.0801748i
\(725\) 11.5306 5.13377i 0.428237 0.190663i
\(726\) −17.3405 7.72048i −0.643566 0.286534i
\(727\) −21.8959 24.3179i −0.812074 0.901899i 0.184648 0.982805i \(-0.440885\pi\)
−0.996722 + 0.0809055i \(0.974219\pi\)
\(728\) 0.903555 0.656471i 0.0334880 0.0243305i
\(729\) −24.1540 + 17.5489i −0.894592 + 0.649959i
\(730\) 25.5175 + 28.3401i 0.944446 + 1.04891i
\(731\) −57.8612 25.7615i −2.14007 0.952822i
\(732\) 0.938862 0.418008i 0.0347014 0.0154500i
\(733\) −6.66715 + 7.40463i −0.246257 + 0.273496i −0.853583 0.520956i \(-0.825575\pi\)
0.607326 + 0.794452i \(0.292242\pi\)
\(734\) −2.99629 + 28.5078i −0.110595 + 1.05224i
\(735\) −12.1847 + 2.58993i −0.449438 + 0.0955310i
\(736\) −3.15124 + 9.69852i −0.116156 + 0.357492i
\(737\) 0.513268 + 0.109099i 0.0189065 + 0.00401870i
\(738\) 0.165618 0.286858i 0.00609647 0.0105594i
\(739\) −15.4792 26.8108i −0.569412 0.986251i −0.996624 0.0820995i \(-0.973837\pi\)
0.427212 0.904152i \(-0.359496\pi\)
\(740\) −1.79923 5.53747i −0.0661411 0.203561i
\(741\) 0.0300751 + 0.286146i 0.00110484 + 0.0105118i
\(742\) 16.4483 + 11.9504i 0.603834 + 0.438711i
\(743\) 1.11003 0.0407231 0.0203615 0.999793i \(-0.493518\pi\)
0.0203615 + 0.999793i \(0.493518\pi\)
\(744\) 24.7146 + 4.25029i 0.906082 + 0.155823i
\(745\) 20.6778 0.757578
\(746\) 33.7865 + 24.5473i 1.23701 + 0.898741i
\(747\) 0.0271853 + 0.258651i 0.000994657 + 0.00946353i
\(748\) −0.764490 2.35286i −0.0279525 0.0860290i
\(749\) −13.7113 23.7487i −0.501000 0.867757i
\(750\) 15.8700 27.4877i 0.579491 1.00371i
\(751\) −27.5400 5.85382i −1.00495 0.213609i −0.324093 0.946025i \(-0.605059\pi\)
−0.680857 + 0.732416i \(0.738393\pi\)
\(752\) −5.31779 + 16.3665i −0.193920 + 0.596824i
\(753\) −32.9084 + 6.99490i −1.19925 + 0.254908i
\(754\) −0.0297571 + 0.283120i −0.00108369 + 0.0103106i
\(755\) −34.8104 + 38.6608i −1.26688 + 1.40701i
\(756\) 4.45972 1.98559i 0.162198 0.0722154i
\(757\) 35.3746 + 15.7498i 1.28571 + 0.572436i 0.931844 0.362860i \(-0.118200\pi\)
0.353868 + 0.935295i \(0.384866\pi\)
\(758\) −27.5376 30.5836i −1.00021 1.11085i
\(759\) −5.28348 + 3.83867i −0.191778 + 0.139335i
\(760\) 10.7553 7.81420i 0.390137 0.283451i
\(761\) 29.0649 + 32.2799i 1.05360 + 1.17014i 0.985010 + 0.172500i \(0.0551845\pi\)
0.0685936 + 0.997645i \(0.478149\pi\)
\(762\) 12.6131