Properties

Label 961.2.d.p.531.3
Level $961$
Weight $2$
Character 961.531
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(374,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.374"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,4,-6,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 5^{2} \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 531.3
Root \(1.03739i\) of defining polynomial
Character \(\chi\) \(=\) 961.531
Dual form 961.2.d.p.628.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.391401 + 1.20461i) q^{2} +(0.458679 - 1.41167i) q^{3} +(0.320145 - 0.232599i) q^{4} -3.80032 q^{5} +1.88004 q^{6} +(-1.77093 + 1.28666i) q^{7} +(2.45490 + 1.78359i) q^{8} +(0.644632 + 0.468353i) q^{9} +(-1.48745 - 4.57790i) q^{10} +(0.769048 - 0.558746i) q^{11} +(-0.181509 - 0.558626i) q^{12} +(0.0519589 - 0.159913i) q^{13} +(-2.24306 - 1.62968i) q^{14} +(-1.74313 + 5.36479i) q^{15} +(-0.943109 + 2.90259i) q^{16} +(5.32063 + 3.86566i) q^{17} +(-0.311872 + 0.959844i) q^{18} +(-0.356248 - 1.09642i) q^{19} +(-1.21665 + 0.883950i) q^{20} +(1.00404 + 3.09013i) q^{21} +(0.974077 + 0.707709i) q^{22} +(3.74454 + 2.72056i) q^{23} +(3.64384 - 2.64741i) q^{24} +9.44244 q^{25} +0.212969 q^{26} +(4.55935 - 3.31256i) q^{27} +(-0.267679 + 0.823832i) q^{28} +(0.413068 + 1.27129i) q^{29} -7.14474 q^{30} +2.20322 q^{32} +(-0.436018 - 1.34192i) q^{33} +(-2.57411 + 7.92230i) q^{34} +(6.73010 - 4.88970i) q^{35} +0.315314 q^{36} -3.87165 q^{37} +(1.18132 - 0.858279i) q^{38} +(-0.201911 - 0.146697i) q^{39} +(-9.32941 - 6.77821i) q^{40} +(0.101420 + 0.312139i) q^{41} +(-3.32941 + 2.41896i) q^{42} +(2.97601 + 9.15922i) q^{43} +(0.116243 - 0.357759i) q^{44} +(-2.44981 - 1.77989i) q^{45} +(-1.81160 + 5.57554i) q^{46} +(1.74242 - 5.36260i) q^{47} +(3.66491 + 2.66271i) q^{48} +(-0.682410 + 2.10024i) q^{49} +(3.69578 + 11.3745i) q^{50} +(7.89748 - 5.73786i) q^{51} +(-0.0205612 - 0.0632808i) q^{52} +(5.93248 + 4.31020i) q^{53} +(5.77487 + 4.19569i) q^{54} +(-2.92263 + 2.12341i) q^{55} -6.64232 q^{56} -1.71118 q^{57} +(-1.36973 + 0.995171i) q^{58} +(-0.819859 + 2.52327i) q^{59} +(0.689791 + 2.12296i) q^{60} -1.74967 q^{61} -1.74421 q^{63} +(2.74856 + 8.45921i) q^{64} +(-0.197460 + 0.607720i) q^{65} +(1.44584 - 1.05046i) q^{66} +0.552007 q^{67} +2.60252 q^{68} +(5.55807 - 4.03817i) q^{69} +(8.52436 + 6.19331i) q^{70} +(-0.919843 - 0.668305i) q^{71} +(0.747159 + 2.29952i) q^{72} +(6.40952 - 4.65679i) q^{73} +(-1.51537 - 4.66383i) q^{74} +(4.33104 - 13.3296i) q^{75} +(-0.369076 - 0.268150i) q^{76} +(-0.643016 + 1.97900i) q^{77} +(0.0976845 - 0.300642i) q^{78} +(-3.67478 - 2.66989i) q^{79} +(3.58412 - 11.0308i) q^{80} +(-1.84627 - 5.68225i) q^{81} +(-0.336310 + 0.244343i) q^{82} +(0.100862 + 0.310421i) q^{83} +(1.04020 + 0.755748i) q^{84} +(-20.2201 - 14.6908i) q^{85} +(-9.86847 + 7.16986i) q^{86} +1.98411 q^{87} +2.88451 q^{88} +(11.9008 - 8.64641i) q^{89} +(1.18521 - 3.64772i) q^{90} +(0.113737 + 0.350048i) q^{91} +1.83159 q^{92} +7.14183 q^{94} +(1.35386 + 4.16674i) q^{95} +(1.01057 - 3.11022i) q^{96} +(-12.5553 + 9.12195i) q^{97} -2.79707 q^{98} +0.757443 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} - 6 q^{3} + 6 q^{4} + 6 q^{5} - 22 q^{6} - 9 q^{7} - 8 q^{8} - 10 q^{9} - 6 q^{10} + 4 q^{11} - 5 q^{12} + 9 q^{13} - 18 q^{14} + 4 q^{15} - 2 q^{16} + 17 q^{17} - 14 q^{18} - 7 q^{19} + 36 q^{20}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.391401 + 1.20461i 0.276763 + 0.851788i 0.988748 + 0.149593i \(0.0477964\pi\)
−0.711985 + 0.702195i \(0.752204\pi\)
\(3\) 0.458679 1.41167i 0.264818 0.815027i −0.726917 0.686725i \(-0.759048\pi\)
0.991735 0.128301i \(-0.0409524\pi\)
\(4\) 0.320145 0.232599i 0.160072 0.116299i
\(5\) −3.80032 −1.69956 −0.849778 0.527141i \(-0.823264\pi\)
−0.849778 + 0.527141i \(0.823264\pi\)
\(6\) 1.88004 0.767521
\(7\) −1.77093 + 1.28666i −0.669349 + 0.486310i −0.869807 0.493392i \(-0.835757\pi\)
0.200459 + 0.979702i \(0.435757\pi\)
\(8\) 2.45490 + 1.78359i 0.867938 + 0.630594i
\(9\) 0.644632 + 0.468353i 0.214877 + 0.156118i
\(10\) −1.48745 4.57790i −0.470373 1.44766i
\(11\) 0.769048 0.558746i 0.231877 0.168468i −0.465780 0.884901i \(-0.654226\pi\)
0.697657 + 0.716432i \(0.254226\pi\)
\(12\) −0.181509 0.558626i −0.0523970 0.161261i
\(13\) 0.0519589 0.159913i 0.0144108 0.0443519i −0.943593 0.331109i \(-0.892577\pi\)
0.958003 + 0.286757i \(0.0925772\pi\)
\(14\) −2.24306 1.62968i −0.599484 0.435550i
\(15\) −1.74313 + 5.36479i −0.450073 + 1.38518i
\(16\) −0.943109 + 2.90259i −0.235777 + 0.725648i
\(17\) 5.32063 + 3.86566i 1.29044 + 0.937560i 0.999814 0.0192759i \(-0.00613610\pi\)
0.290627 + 0.956836i \(0.406136\pi\)
\(18\) −0.311872 + 0.959844i −0.0735090 + 0.226237i
\(19\) −0.356248 1.09642i −0.0817288 0.251535i 0.901840 0.432071i \(-0.142217\pi\)
−0.983568 + 0.180535i \(0.942217\pi\)
\(20\) −1.21665 + 0.883950i −0.272052 + 0.197657i
\(21\) 1.00404 + 3.09013i 0.219100 + 0.674321i
\(22\) 0.974077 + 0.707709i 0.207674 + 0.150884i
\(23\) 3.74454 + 2.72056i 0.780790 + 0.567277i 0.905216 0.424952i \(-0.139709\pi\)
−0.124426 + 0.992229i \(0.539709\pi\)
\(24\) 3.64384 2.64741i 0.743797 0.540400i
\(25\) 9.44244 1.88849
\(26\) 0.212969 0.0417667
\(27\) 4.55935 3.31256i 0.877446 0.637502i
\(28\) −0.267679 + 0.823832i −0.0505866 + 0.155690i
\(29\) 0.413068 + 1.27129i 0.0767047 + 0.236073i 0.982056 0.188591i \(-0.0603921\pi\)
−0.905351 + 0.424664i \(0.860392\pi\)
\(30\) −7.14474 −1.30444
\(31\) 0 0
\(32\) 2.20322 0.389479
\(33\) −0.436018 1.34192i −0.0759010 0.233599i
\(34\) −2.57411 + 7.92230i −0.441457 + 1.35866i
\(35\) 6.73010 4.88970i 1.13759 0.826511i
\(36\) 0.315314 0.0525523
\(37\) −3.87165 −0.636495 −0.318248 0.948008i \(-0.603094\pi\)
−0.318248 + 0.948008i \(0.603094\pi\)
\(38\) 1.18132 0.858279i 0.191635 0.139231i
\(39\) −0.201911 0.146697i −0.0323317 0.0234904i
\(40\) −9.32941 6.77821i −1.47511 1.07173i
\(41\) 0.101420 + 0.312139i 0.0158392 + 0.0487480i 0.958664 0.284542i \(-0.0918414\pi\)
−0.942825 + 0.333289i \(0.891841\pi\)
\(42\) −3.32941 + 2.41896i −0.513739 + 0.373253i
\(43\) 2.97601 + 9.15922i 0.453837 + 1.39677i 0.872495 + 0.488624i \(0.162501\pi\)
−0.418657 + 0.908144i \(0.637499\pi\)
\(44\) 0.116243 0.357759i 0.0175243 0.0539342i
\(45\) −2.44981 1.77989i −0.365196 0.265330i
\(46\) −1.81160 + 5.57554i −0.267106 + 0.822068i
\(47\) 1.74242 5.36260i 0.254157 0.782216i −0.739837 0.672786i \(-0.765097\pi\)
0.993994 0.109430i \(-0.0349026\pi\)
\(48\) 3.66491 + 2.66271i 0.528984 + 0.384329i
\(49\) −0.682410 + 2.10024i −0.0974871 + 0.300035i
\(50\) 3.69578 + 11.3745i 0.522663 + 1.60859i
\(51\) 7.89748 5.73786i 1.10587 0.803461i
\(52\) −0.0205612 0.0632808i −0.00285132 0.00877547i
\(53\) 5.93248 + 4.31020i 0.814888 + 0.592051i 0.915244 0.402901i \(-0.131998\pi\)
−0.100355 + 0.994952i \(0.531998\pi\)
\(54\) 5.77487 + 4.19569i 0.785861 + 0.570961i
\(55\) −2.92263 + 2.12341i −0.394087 + 0.286321i
\(56\) −6.64232 −0.887617
\(57\) −1.71118 −0.226651
\(58\) −1.36973 + 0.995171i −0.179855 + 0.130672i
\(59\) −0.819859 + 2.52327i −0.106737 + 0.328501i −0.990134 0.140123i \(-0.955250\pi\)
0.883398 + 0.468624i \(0.155250\pi\)
\(60\) 0.689791 + 2.12296i 0.0890516 + 0.274073i
\(61\) −1.74967 −0.224023 −0.112011 0.993707i \(-0.535729\pi\)
−0.112011 + 0.993707i \(0.535729\pi\)
\(62\) 0 0
\(63\) −1.74421 −0.219749
\(64\) 2.74856 + 8.45921i 0.343570 + 1.05740i
\(65\) −0.197460 + 0.607720i −0.0244919 + 0.0753784i
\(66\) 1.44584 1.05046i 0.177970 0.129303i
\(67\) 0.552007 0.0674383 0.0337192 0.999431i \(-0.489265\pi\)
0.0337192 + 0.999431i \(0.489265\pi\)
\(68\) 2.60252 0.315602
\(69\) 5.55807 4.03817i 0.669113 0.486139i
\(70\) 8.52436 + 6.19331i 1.01886 + 0.740242i
\(71\) −0.919843 0.668305i −0.109165 0.0793132i 0.531863 0.846830i \(-0.321492\pi\)
−0.641029 + 0.767517i \(0.721492\pi\)
\(72\) 0.747159 + 2.29952i 0.0880535 + 0.271001i
\(73\) 6.40952 4.65679i 0.750177 0.545036i −0.145705 0.989328i \(-0.546545\pi\)
0.895882 + 0.444293i \(0.146545\pi\)
\(74\) −1.51537 4.66383i −0.176158 0.542159i
\(75\) 4.33104 13.3296i 0.500106 1.53917i
\(76\) −0.369076 0.268150i −0.0423359 0.0307589i
\(77\) −0.643016 + 1.97900i −0.0732785 + 0.225528i
\(78\) 0.0976845 0.300642i 0.0110606 0.0340410i
\(79\) −3.67478 2.66989i −0.413445 0.300386i 0.361550 0.932353i \(-0.382248\pi\)
−0.774995 + 0.631967i \(0.782248\pi\)
\(80\) 3.58412 11.0308i 0.400716 1.23328i
\(81\) −1.84627 5.68225i −0.205142 0.631361i
\(82\) −0.336310 + 0.244343i −0.0371392 + 0.0269832i
\(83\) 0.100862 + 0.310421i 0.0110710 + 0.0340731i 0.956439 0.291931i \(-0.0942977\pi\)
−0.945368 + 0.326004i \(0.894298\pi\)
\(84\) 1.04020 + 0.755748i 0.113495 + 0.0824589i
\(85\) −20.2201 14.6908i −2.19318 1.59344i
\(86\) −9.86847 + 7.16986i −1.06414 + 0.773146i
\(87\) 1.98411 0.212719
\(88\) 2.88451 0.307490
\(89\) 11.9008 8.64641i 1.26148 0.916518i 0.262649 0.964891i \(-0.415404\pi\)
0.998829 + 0.0483734i \(0.0154037\pi\)
\(90\) 1.18521 3.64772i 0.124933 0.384503i
\(91\) 0.113737 + 0.350048i 0.0119229 + 0.0366950i
\(92\) 1.83159 0.190957
\(93\) 0 0
\(94\) 7.14183 0.736623
\(95\) 1.35386 + 4.16674i 0.138903 + 0.427498i
\(96\) 1.01057 3.11022i 0.103141 0.317436i
\(97\) −12.5553 + 9.12195i −1.27480 + 0.926193i −0.999383 0.0351325i \(-0.988815\pi\)
−0.275413 + 0.961326i \(0.588815\pi\)
\(98\) −2.79707 −0.282546
\(99\) 0.757443 0.0761259
\(100\) 3.02295 2.19630i 0.302295 0.219630i
\(101\) −3.94282 2.86463i −0.392326 0.285041i 0.374082 0.927396i \(-0.377958\pi\)
−0.766408 + 0.642354i \(0.777958\pi\)
\(102\) 10.0030 + 7.26758i 0.990441 + 0.719598i
\(103\) 0.596594 + 1.83613i 0.0587842 + 0.180919i 0.976137 0.217156i \(-0.0696782\pi\)
−0.917353 + 0.398076i \(0.869678\pi\)
\(104\) 0.412773 0.299897i 0.0404757 0.0294073i
\(105\) −3.81568 11.7435i −0.372373 1.14604i
\(106\) −2.87012 + 8.83334i −0.278771 + 0.857969i
\(107\) −10.1350 7.36349i −0.979785 0.711855i −0.0221241 0.999755i \(-0.507043\pi\)
−0.957660 + 0.287900i \(0.907043\pi\)
\(108\) 0.689153 2.12100i 0.0663138 0.204093i
\(109\) −3.17128 + 9.76021i −0.303754 + 0.934858i 0.676385 + 0.736548i \(0.263545\pi\)
−0.980139 + 0.198310i \(0.936455\pi\)
\(110\) −3.70181 2.68952i −0.352953 0.256436i
\(111\) −1.77584 + 5.46548i −0.168555 + 0.518760i
\(112\) −2.06446 6.35374i −0.195073 0.600372i
\(113\) 3.10901 2.25882i 0.292471 0.212492i −0.431868 0.901937i \(-0.642145\pi\)
0.724338 + 0.689445i \(0.242145\pi\)
\(114\) −0.669758 2.06130i −0.0627286 0.193059i
\(115\) −14.2304 10.3390i −1.32699 0.964118i
\(116\) 0.427942 + 0.310918i 0.0397334 + 0.0288680i
\(117\) 0.108390 0.0787500i 0.0100207 0.00728044i
\(118\) −3.36045 −0.309354
\(119\) −14.3962 −1.31970
\(120\) −13.8478 + 10.0610i −1.26412 + 0.918439i
\(121\) −3.11995 + 9.60222i −0.283632 + 0.872929i
\(122\) −0.684825 2.10767i −0.0620011 0.190820i
\(123\) 0.487156 0.0439254
\(124\) 0 0
\(125\) −16.8827 −1.51003
\(126\) −0.682685 2.10109i −0.0608184 0.187180i
\(127\) 2.26939 6.98445i 0.201375 0.619770i −0.798467 0.602038i \(-0.794356\pi\)
0.999843 0.0177317i \(-0.00564447\pi\)
\(128\) −5.54936 + 4.03184i −0.490499 + 0.356368i
\(129\) 14.2948 1.25859
\(130\) −0.809352 −0.0709849
\(131\) −10.5445 + 7.66100i −0.921274 + 0.669345i −0.943841 0.330401i \(-0.892816\pi\)
0.0225669 + 0.999745i \(0.492816\pi\)
\(132\) −0.451719 0.328193i −0.0393171 0.0285655i
\(133\) 2.04160 + 1.48331i 0.177029 + 0.128619i
\(134\) 0.216056 + 0.664953i 0.0186644 + 0.0574431i
\(135\) −17.3270 + 12.5888i −1.49127 + 1.08347i
\(136\) 6.16685 + 18.9796i 0.528803 + 1.62749i
\(137\) −0.0415008 + 0.127726i −0.00354565 + 0.0109124i −0.952814 0.303556i \(-0.901826\pi\)
0.949268 + 0.314468i \(0.101826\pi\)
\(138\) 7.03986 + 5.11476i 0.599273 + 0.435397i
\(139\) 3.56219 10.9633i 0.302141 0.929894i −0.678588 0.734519i \(-0.737408\pi\)
0.980729 0.195375i \(-0.0625924\pi\)
\(140\) 1.01727 3.13083i 0.0859748 0.264603i
\(141\) −6.77100 4.91942i −0.570221 0.414290i
\(142\) 0.445019 1.36963i 0.0373452 0.114937i
\(143\) −0.0493919 0.152013i −0.00413036 0.0127119i
\(144\) −1.96739 + 1.42940i −0.163950 + 0.119116i
\(145\) −1.56979 4.83132i −0.130364 0.401219i
\(146\) 8.11830 + 5.89829i 0.671876 + 0.488146i
\(147\) 2.65184 + 1.92667i 0.218720 + 0.158909i
\(148\) −1.23949 + 0.900541i −0.101885 + 0.0740240i
\(149\) −5.44108 −0.445751 −0.222875 0.974847i \(-0.571544\pi\)
−0.222875 + 0.974847i \(0.571544\pi\)
\(150\) 17.7521 1.44945
\(151\) −11.0748 + 8.04630i −0.901253 + 0.654799i −0.938788 0.344497i \(-0.888050\pi\)
0.0375344 + 0.999295i \(0.488050\pi\)
\(152\) 1.08101 3.32700i 0.0876812 0.269855i
\(153\) 1.61935 + 4.98386i 0.130917 + 0.402921i
\(154\) −2.63560 −0.212383
\(155\) 0 0
\(156\) −0.0987625 −0.00790733
\(157\) −4.65236 14.3185i −0.371299 1.14274i −0.945942 0.324336i \(-0.894859\pi\)
0.574644 0.818404i \(-0.305141\pi\)
\(158\) 1.77785 5.47167i 0.141439 0.435303i
\(159\) 8.80566 6.39769i 0.698335 0.507370i
\(160\) −8.37296 −0.661941
\(161\) −10.1317 −0.798493
\(162\) 6.12225 4.44808i 0.481010 0.349474i
\(163\) −13.7841 10.0147i −1.07965 0.784415i −0.102032 0.994781i \(-0.532534\pi\)
−0.977623 + 0.210366i \(0.932534\pi\)
\(164\) 0.105072 + 0.0763395i 0.00820477 + 0.00596111i
\(165\) 1.65701 + 5.09975i 0.128998 + 0.397015i
\(166\) −0.334459 + 0.242998i −0.0259590 + 0.0188603i
\(167\) −5.00553 15.4054i −0.387340 1.19211i −0.934769 0.355257i \(-0.884393\pi\)
0.547429 0.836852i \(-0.315607\pi\)
\(168\) −3.04669 + 9.37675i −0.235057 + 0.723432i
\(169\) 10.4943 + 7.62459i 0.807258 + 0.586507i
\(170\) 9.78245 30.1073i 0.750280 2.30912i
\(171\) 0.283861 0.873636i 0.0217074 0.0668086i
\(172\) 3.08318 + 2.24006i 0.235090 + 0.170803i
\(173\) −0.720386 + 2.21712i −0.0547699 + 0.168564i −0.974700 0.223519i \(-0.928246\pi\)
0.919930 + 0.392083i \(0.128246\pi\)
\(174\) 0.776582 + 2.39007i 0.0588725 + 0.181191i
\(175\) −16.7219 + 12.1492i −1.26406 + 0.918391i
\(176\) 0.896515 + 2.75919i 0.0675774 + 0.207982i
\(177\) 3.18596 + 2.31474i 0.239472 + 0.173986i
\(178\) 15.0735 + 10.9516i 1.12981 + 0.820854i
\(179\) 13.7295 9.97508i 1.02619 0.745573i 0.0586497 0.998279i \(-0.481321\pi\)
0.967543 + 0.252706i \(0.0813205\pi\)
\(180\) −1.19829 −0.0893155
\(181\) −7.33576 −0.545263 −0.272631 0.962119i \(-0.587894\pi\)
−0.272631 + 0.962119i \(0.587894\pi\)
\(182\) −0.377154 + 0.274018i −0.0279565 + 0.0203116i
\(183\) −0.802538 + 2.46996i −0.0593253 + 0.182584i
\(184\) 4.34009 + 13.3574i 0.319956 + 0.984723i
\(185\) 14.7135 1.08176
\(186\) 0 0
\(187\) 6.25174 0.457173
\(188\) −0.689510 2.12209i −0.0502877 0.154770i
\(189\) −3.81216 + 11.7326i −0.277294 + 0.853422i
\(190\) −4.48939 + 3.26173i −0.325695 + 0.236631i
\(191\) 7.82276 0.566035 0.283018 0.959115i \(-0.408665\pi\)
0.283018 + 0.959115i \(0.408665\pi\)
\(192\) 13.2023 0.952793
\(193\) 3.74697 2.72233i 0.269713 0.195958i −0.444705 0.895677i \(-0.646692\pi\)
0.714418 + 0.699719i \(0.246692\pi\)
\(194\) −15.9025 11.5539i −1.14174 0.829520i
\(195\) 0.767328 + 0.557497i 0.0549495 + 0.0399232i
\(196\) 0.270044 + 0.831109i 0.0192888 + 0.0593649i
\(197\) 18.1093 13.1572i 1.29024 0.937412i 0.290427 0.956897i \(-0.406203\pi\)
0.999810 + 0.0194848i \(0.00620261\pi\)
\(198\) 0.296464 + 0.912424i 0.0210688 + 0.0648431i
\(199\) −8.22101 + 25.3017i −0.582772 + 1.79359i 0.0252665 + 0.999681i \(0.491957\pi\)
−0.608039 + 0.793907i \(0.708043\pi\)
\(200\) 23.1802 + 16.8414i 1.63909 + 1.19087i
\(201\) 0.253194 0.779250i 0.0178589 0.0549640i
\(202\) 1.90753 5.87078i 0.134214 0.413067i
\(203\) −2.36723 1.71989i −0.166147 0.120713i
\(204\) 1.19372 3.67389i 0.0835771 0.257224i
\(205\) −0.385429 1.18623i −0.0269195 0.0828498i
\(206\) −1.97831 + 1.43733i −0.137835 + 0.100143i
\(207\) 1.13966 + 3.50753i 0.0792122 + 0.243790i
\(208\) 0.415159 + 0.301631i 0.0287861 + 0.0209143i
\(209\) −0.886591 0.644146i −0.0613268 0.0445565i
\(210\) 12.6528 9.19282i 0.873128 0.634365i
\(211\) 1.32614 0.0912951 0.0456476 0.998958i \(-0.485465\pi\)
0.0456476 + 0.998958i \(0.485465\pi\)
\(212\) 2.90180 0.199296
\(213\) −1.36534 + 0.991975i −0.0935514 + 0.0679690i
\(214\) 4.90329 15.0908i 0.335182 1.03158i
\(215\) −11.3098 34.8080i −0.771322 2.37388i
\(216\) 17.1010 1.16357
\(217\) 0 0
\(218\) −12.9985 −0.880368
\(219\) −3.63393 11.1841i −0.245558 0.755750i
\(220\) −0.441761 + 1.35960i −0.0297835 + 0.0916642i
\(221\) 0.894623 0.649982i 0.0601788 0.0437225i
\(222\) −7.27884 −0.488524
\(223\) −12.1199 −0.811612 −0.405806 0.913959i \(-0.633009\pi\)
−0.405806 + 0.913959i \(0.633009\pi\)
\(224\) −3.90176 + 2.83479i −0.260697 + 0.189407i
\(225\) 6.08690 + 4.42239i 0.405793 + 0.294826i
\(226\) 3.93787 + 2.86103i 0.261943 + 0.190313i
\(227\) −4.91404 15.1238i −0.326156 1.00381i −0.970916 0.239420i \(-0.923043\pi\)
0.644760 0.764385i \(-0.276957\pi\)
\(228\) −0.547825 + 0.398018i −0.0362806 + 0.0263594i
\(229\) −5.03655 15.5009i −0.332824 1.02433i −0.967784 0.251783i \(-0.918983\pi\)
0.634959 0.772545i \(-0.281017\pi\)
\(230\) 6.88467 21.1888i 0.453961 1.39715i
\(231\) 2.49875 + 1.81545i 0.164406 + 0.119448i
\(232\) −1.25342 + 3.85764i −0.0822912 + 0.253266i
\(233\) −1.58308 + 4.87223i −0.103711 + 0.319190i −0.989426 0.145040i \(-0.953669\pi\)
0.885715 + 0.464230i \(0.153669\pi\)
\(234\) 0.137287 + 0.0997448i 0.00897473 + 0.00652052i
\(235\) −6.62174 + 20.3796i −0.431955 + 1.32942i
\(236\) 0.324435 + 0.998509i 0.0211189 + 0.0649974i
\(237\) −5.45453 + 3.96295i −0.354310 + 0.257421i
\(238\) −5.63470 17.3418i −0.365244 1.12410i
\(239\) −6.93166 5.03614i −0.448372 0.325761i 0.340581 0.940215i \(-0.389376\pi\)
−0.788952 + 0.614454i \(0.789376\pi\)
\(240\) −13.9278 10.1192i −0.899037 0.653189i
\(241\) 5.53915 4.02443i 0.356808 0.259236i −0.394912 0.918719i \(-0.629225\pi\)
0.751719 + 0.659483i \(0.229225\pi\)
\(242\) −12.7881 −0.822049
\(243\) 8.03869 0.515682
\(244\) −0.560149 + 0.406972i −0.0358598 + 0.0260537i
\(245\) 2.59338 7.98159i 0.165685 0.509925i
\(246\) 0.190674 + 0.586833i 0.0121569 + 0.0374151i
\(247\) −0.193842 −0.0123338
\(248\) 0 0
\(249\) 0.484474 0.0307023
\(250\) −6.60791 20.3370i −0.417921 1.28623i
\(251\) 7.00421 21.5567i 0.442102 1.36065i −0.443529 0.896260i \(-0.646274\pi\)
0.885631 0.464389i \(-0.153726\pi\)
\(252\) −0.558399 + 0.405700i −0.0351758 + 0.0255567i
\(253\) 4.39983 0.276615
\(254\) 9.30178 0.583645
\(255\) −30.0130 + 21.8057i −1.87949 + 1.36553i
\(256\) 7.36284 + 5.34941i 0.460177 + 0.334338i
\(257\) 13.4769 + 9.79154i 0.840666 + 0.610779i 0.922557 0.385862i \(-0.126096\pi\)
−0.0818908 + 0.996641i \(0.526096\pi\)
\(258\) 5.59501 + 17.2197i 0.348330 + 1.07205i
\(259\) 6.85642 4.98148i 0.426037 0.309534i
\(260\) 0.0781391 + 0.240488i 0.00484598 + 0.0149144i
\(261\) −0.329136 + 1.01298i −0.0203730 + 0.0627017i
\(262\) −13.3556 9.70343i −0.825114 0.599480i
\(263\) −7.59760 + 23.3830i −0.468488 + 1.44186i 0.386054 + 0.922476i \(0.373838\pi\)
−0.854542 + 0.519382i \(0.826162\pi\)
\(264\) 1.32306 4.07197i 0.0814289 0.250612i
\(265\) −22.5453 16.3801i −1.38495 1.00622i
\(266\) −0.987724 + 3.03990i −0.0605613 + 0.186388i
\(267\) −6.74723 20.7658i −0.412924 1.27085i
\(268\) 0.176722 0.128396i 0.0107950 0.00784304i
\(269\) 3.86708 + 11.9017i 0.235780 + 0.725657i 0.997017 + 0.0771830i \(0.0245926\pi\)
−0.761237 + 0.648474i \(0.775407\pi\)
\(270\) −21.9464 15.9450i −1.33561 0.970380i
\(271\) 21.9788 + 15.9685i 1.33512 + 0.970020i 0.999608 + 0.0279826i \(0.00890831\pi\)
0.335509 + 0.942037i \(0.391092\pi\)
\(272\) −16.2384 + 11.7979i −0.984595 + 0.715350i
\(273\) 0.546320 0.0330648
\(274\) −0.170104 −0.0102763
\(275\) 7.26169 5.27593i 0.437896 0.318150i
\(276\) 0.840112 2.58560i 0.0505688 0.155635i
\(277\) −4.68387 14.4155i −0.281427 0.866142i −0.987447 0.157951i \(-0.949511\pi\)
0.706020 0.708192i \(-0.250489\pi\)
\(278\) 14.6007 0.875694
\(279\) 0 0
\(280\) 25.2430 1.50855
\(281\) 9.34706 + 28.7673i 0.557599 + 1.71611i 0.688980 + 0.724780i \(0.258059\pi\)
−0.131381 + 0.991332i \(0.541941\pi\)
\(282\) 3.27580 10.0819i 0.195071 0.600368i
\(283\) −2.54462 + 1.84877i −0.151262 + 0.109898i −0.660842 0.750525i \(-0.729801\pi\)
0.509580 + 0.860423i \(0.329801\pi\)
\(284\) −0.449930 −0.0266984
\(285\) 6.50303 0.385206
\(286\) 0.163784 0.118996i 0.00968474 0.00703637i
\(287\) −0.581224 0.422284i −0.0343086 0.0249266i
\(288\) 1.42027 + 1.03189i 0.0836902 + 0.0608045i
\(289\) 8.11244 + 24.9675i 0.477202 + 1.46868i
\(290\) 5.20543 3.78197i 0.305673 0.222085i
\(291\) 7.11832 + 21.9079i 0.417283 + 1.28427i
\(292\) 0.968810 2.98169i 0.0566953 0.174490i
\(293\) −1.53720 1.11684i −0.0898041 0.0652465i 0.541977 0.840393i \(-0.317676\pi\)
−0.631781 + 0.775147i \(0.717676\pi\)
\(294\) −1.28295 + 3.94853i −0.0748234 + 0.230283i
\(295\) 3.11573 9.58922i 0.181405 0.558306i
\(296\) −9.50451 6.90543i −0.552438 0.401370i
\(297\) 1.65548 5.09503i 0.0960605 0.295644i
\(298\) −2.12965 6.55438i −0.123367 0.379685i
\(299\) 0.629615 0.457442i 0.0364116 0.0264546i
\(300\) −1.71388 5.27479i −0.0989511 0.304540i
\(301\) −17.0551 12.3912i −0.983038 0.714219i
\(302\) −14.0273 10.1915i −0.807183 0.586453i
\(303\) −5.85239 + 4.25201i −0.336211 + 0.244272i
\(304\) 3.51843 0.201796
\(305\) 6.64932 0.380739
\(306\) −5.36979 + 3.90138i −0.306970 + 0.223027i
\(307\) 7.02337 21.6157i 0.400845 1.23367i −0.523471 0.852044i \(-0.675363\pi\)
0.924315 0.381629i \(-0.124637\pi\)
\(308\) 0.254455 + 0.783131i 0.0144989 + 0.0446230i
\(309\) 2.86565 0.163021
\(310\) 0 0
\(311\) 15.8754 0.900213 0.450106 0.892975i \(-0.351386\pi\)
0.450106 + 0.892975i \(0.351386\pi\)
\(312\) −0.234025 0.720254i −0.0132490 0.0407764i
\(313\) 1.96206 6.03859i 0.110902 0.341321i −0.880168 0.474662i \(-0.842570\pi\)
0.991070 + 0.133341i \(0.0425704\pi\)
\(314\) 15.4272 11.2085i 0.870610 0.632535i
\(315\) 6.62855 0.373476
\(316\) −1.79747 −0.101116
\(317\) 12.3788 8.99370i 0.695261 0.505137i −0.183124 0.983090i \(-0.558621\pi\)
0.878385 + 0.477953i \(0.158621\pi\)
\(318\) 11.1533 + 8.10332i 0.625444 + 0.454412i
\(319\) 1.02800 + 0.746884i 0.0575568 + 0.0418175i
\(320\) −10.4454 32.1477i −0.583917 1.79711i
\(321\) −15.0435 + 10.9297i −0.839646 + 0.610038i
\(322\) −3.96558 12.2048i −0.220993 0.680146i
\(323\) 2.34292 7.21076i 0.130363 0.401217i
\(324\) −1.91276 1.38970i −0.106264 0.0772056i
\(325\) 0.490618 1.50997i 0.0272146 0.0837580i
\(326\) 6.66873 20.5243i 0.369347 1.13673i
\(327\) 12.3236 + 8.95359i 0.681495 + 0.495135i
\(328\) −0.307752 + 0.947162i −0.0169927 + 0.0522983i
\(329\) 3.81413 + 11.7387i 0.210280 + 0.647175i
\(330\) −5.49465 + 3.99209i −0.302470 + 0.219758i
\(331\) −2.77125 8.52903i −0.152322 0.468798i 0.845558 0.533884i \(-0.179268\pi\)
−0.997880 + 0.0650856i \(0.979268\pi\)
\(332\) 0.104494 + 0.0759193i 0.00573485 + 0.00416661i
\(333\) −2.49579 1.81330i −0.136768 0.0993681i
\(334\) 16.5984 12.0594i 0.908222 0.659862i
\(335\) −2.09780 −0.114615
\(336\) −9.91629 −0.540978
\(337\) 3.53441 2.56790i 0.192532 0.139882i −0.487343 0.873210i \(-0.662034\pi\)
0.679875 + 0.733328i \(0.262034\pi\)
\(338\) −5.07715 + 15.6259i −0.276161 + 0.849935i
\(339\) −1.76268 5.42496i −0.0957354 0.294643i
\(340\) −9.89040 −0.536382
\(341\) 0 0
\(342\) 1.16349 0.0629145
\(343\) −6.22883 19.1704i −0.336325 1.03510i
\(344\) −9.03048 + 27.7929i −0.486891 + 1.49850i
\(345\) −21.1224 + 15.3464i −1.13719 + 0.826220i
\(346\) −2.95272 −0.158739
\(347\) 24.4053 1.31015 0.655073 0.755566i \(-0.272638\pi\)
0.655073 + 0.755566i \(0.272638\pi\)
\(348\) 0.635201 0.461501i 0.0340504 0.0247390i
\(349\) −10.5527 7.66702i −0.564875 0.410406i 0.268365 0.963317i \(-0.413517\pi\)
−0.833240 + 0.552911i \(0.813517\pi\)
\(350\) −21.1800 15.3882i −1.13212 0.822531i
\(351\) −0.292823 0.901215i −0.0156297 0.0481033i
\(352\) 1.69439 1.23104i 0.0903111 0.0656148i
\(353\) 3.34505 + 10.2950i 0.178039 + 0.547948i 0.999759 0.0219433i \(-0.00698534\pi\)
−0.821720 + 0.569891i \(0.806985\pi\)
\(354\) −1.54136 + 4.74383i −0.0819226 + 0.252132i
\(355\) 3.49570 + 2.53977i 0.185532 + 0.134797i
\(356\) 1.79882 5.53621i 0.0953374 0.293418i
\(357\) −6.60324 + 20.3227i −0.349481 + 1.07559i
\(358\) 17.3898 + 12.6345i 0.919081 + 0.667752i
\(359\) 10.4396 32.1299i 0.550983 1.69575i −0.155338 0.987861i \(-0.549647\pi\)
0.706321 0.707891i \(-0.250353\pi\)
\(360\) −2.83944 8.73891i −0.149652 0.460581i
\(361\) 14.2961 10.3867i 0.752427 0.546670i
\(362\) −2.87123 8.83673i −0.150908 0.464448i
\(363\) 12.1241 + 8.80866i 0.636349 + 0.462335i
\(364\) 0.117833 + 0.0856108i 0.00617613 + 0.00448722i
\(365\) −24.3582 + 17.6973i −1.27497 + 0.926318i
\(366\) −3.28945 −0.171942
\(367\) 22.6313 1.18135 0.590673 0.806911i \(-0.298862\pi\)
0.590673 + 0.806911i \(0.298862\pi\)
\(368\) −11.4282 + 8.30306i −0.595735 + 0.432827i
\(369\) −0.0808125 + 0.248715i −0.00420693 + 0.0129476i
\(370\) 5.75889 + 17.7240i 0.299390 + 0.921429i
\(371\) −16.0517 −0.833365
\(372\) 0 0
\(373\) −32.9720 −1.70723 −0.853613 0.520908i \(-0.825593\pi\)
−0.853613 + 0.520908i \(0.825593\pi\)
\(374\) 2.44694 + 7.53091i 0.126528 + 0.389414i
\(375\) −7.74373 + 23.8327i −0.399884 + 1.23072i
\(376\) 13.8421 10.0569i 0.713854 0.518645i
\(377\) 0.224759 0.0115757
\(378\) −15.6253 −0.803679
\(379\) 26.2865 19.0982i 1.35025 0.981011i 0.351246 0.936283i \(-0.385758\pi\)
0.998999 0.0447276i \(-0.0142420\pi\)
\(380\) 1.40261 + 1.01905i 0.0719523 + 0.0522764i
\(381\) −8.81880 6.40724i −0.451801 0.328253i
\(382\) 3.06184 + 9.42337i 0.156657 + 0.482142i
\(383\) 21.6658 15.7411i 1.10707 0.804335i 0.124872 0.992173i \(-0.460148\pi\)
0.982200 + 0.187838i \(0.0601481\pi\)
\(384\) 3.14625 + 9.68317i 0.160556 + 0.494142i
\(385\) 2.44367 7.52084i 0.124541 0.383297i
\(386\) 4.74591 + 3.44811i 0.241561 + 0.175504i
\(387\) −2.37131 + 7.29815i −0.120541 + 0.370986i
\(388\) −1.89775 + 5.84069i −0.0963439 + 0.296516i
\(389\) 14.3499 + 10.4258i 0.727571 + 0.528611i 0.888794 0.458307i \(-0.151544\pi\)
−0.161223 + 0.986918i \(0.551544\pi\)
\(390\) −0.371232 + 1.14254i −0.0187981 + 0.0578546i
\(391\) 9.40649 + 28.9502i 0.475707 + 1.46407i
\(392\) −5.42122 + 3.93874i −0.273813 + 0.198937i
\(393\) 5.97827 + 18.3992i 0.301564 + 0.928117i
\(394\) 22.9373 + 16.6649i 1.15557 + 0.839568i
\(395\) 13.9653 + 10.1464i 0.702673 + 0.510522i
\(396\) 0.242491 0.176180i 0.0121857 0.00885340i
\(397\) 9.94953 0.499352 0.249676 0.968329i \(-0.419676\pi\)
0.249676 + 0.968329i \(0.419676\pi\)
\(398\) −33.6964 −1.68905
\(399\) 3.03038 2.20170i 0.151709 0.110223i
\(400\) −8.90525 + 27.4075i −0.445262 + 1.37038i
\(401\) 6.14807 + 18.9218i 0.307020 + 0.944911i 0.978916 + 0.204265i \(0.0654804\pi\)
−0.671896 + 0.740646i \(0.734520\pi\)
\(402\) 1.03779 0.0517604
\(403\) 0 0
\(404\) −1.92858 −0.0959506
\(405\) 7.01643 + 21.5944i 0.348649 + 1.07303i
\(406\) 1.14526 3.52475i 0.0568384 0.174931i
\(407\) −2.97748 + 2.16327i −0.147588 + 0.107229i
\(408\) 29.6215 1.46648
\(409\) −24.3255 −1.20282 −0.601410 0.798941i \(-0.705394\pi\)
−0.601410 + 0.798941i \(0.705394\pi\)
\(410\) 1.27809 0.928583i 0.0631201 0.0458595i
\(411\) 0.161271 + 0.117171i 0.00795493 + 0.00577960i
\(412\) 0.618077 + 0.449060i 0.0304505 + 0.0221236i
\(413\) −1.79466 5.52340i −0.0883096 0.271789i
\(414\) −3.77913 + 2.74570i −0.185734 + 0.134944i
\(415\) −0.383308 1.17970i −0.0188158 0.0579092i
\(416\) 0.114477 0.352324i 0.00561270 0.0172741i
\(417\) −13.8426 10.0573i −0.677876 0.492506i
\(418\) 0.428931 1.32012i 0.0209797 0.0645689i
\(419\) −1.36176 + 4.19106i −0.0665263 + 0.204747i −0.978794 0.204848i \(-0.934330\pi\)
0.912267 + 0.409595i \(0.134330\pi\)
\(420\) −3.95309 2.87209i −0.192891 0.140143i
\(421\) −3.83913 + 11.8156i −0.187108 + 0.575858i −0.999978 0.00658617i \(-0.997904\pi\)
0.812871 + 0.582444i \(0.197904\pi\)
\(422\) 0.519052 + 1.59748i 0.0252671 + 0.0777641i
\(423\) 3.63481 2.64084i 0.176730 0.128402i
\(424\) 6.87602 + 21.1622i 0.333929 + 1.02773i
\(425\) 50.2397 + 36.5013i 2.43698 + 1.77057i
\(426\) −1.72934 1.25644i −0.0837867 0.0608746i
\(427\) 3.09855 2.25123i 0.149949 0.108945i
\(428\) −4.95739 −0.239625
\(429\) −0.237246 −0.0114544
\(430\) 37.5033 27.2478i 1.80857 1.31400i
\(431\) −5.73699 + 17.6566i −0.276341 + 0.850491i 0.712520 + 0.701652i \(0.247554\pi\)
−0.988861 + 0.148839i \(0.952446\pi\)
\(432\) 5.31504 + 16.3580i 0.255720 + 0.787025i
\(433\) −36.1204 −1.73584 −0.867918 0.496708i \(-0.834542\pi\)
−0.867918 + 0.496708i \(0.834542\pi\)
\(434\) 0 0
\(435\) −7.54024 −0.361527
\(436\) 1.25494 + 3.86231i 0.0601008 + 0.184971i
\(437\) 1.64889 5.07477i 0.0788772 0.242759i
\(438\) 12.0501 8.75492i 0.575777 0.418326i
\(439\) −19.0094 −0.907268 −0.453634 0.891188i \(-0.649873\pi\)
−0.453634 + 0.891188i \(0.649873\pi\)
\(440\) −10.9621 −0.522596
\(441\) −1.42356 + 1.03427i −0.0677884 + 0.0492512i
\(442\) 1.13313 + 0.823268i 0.0538975 + 0.0391588i
\(443\) −10.0755 7.32030i −0.478703 0.347798i 0.322121 0.946699i \(-0.395604\pi\)
−0.800823 + 0.598901i \(0.795604\pi\)
\(444\) 0.702737 + 2.16280i 0.0333504 + 0.102642i
\(445\) −45.2267 + 32.8591i −2.14395 + 1.55767i
\(446\) −4.74376 14.5998i −0.224624 0.691321i
\(447\) −2.49571 + 7.68099i −0.118043 + 0.363299i
\(448\) −15.7516 11.4442i −0.744193 0.540688i
\(449\) 7.86034 24.1916i 0.370952 1.14167i −0.575217 0.818001i \(-0.695082\pi\)
0.946169 0.323673i \(-0.104918\pi\)
\(450\) −2.94483 + 9.06327i −0.138821 + 0.427247i
\(451\) 0.252404 + 0.183382i 0.0118852 + 0.00863512i
\(452\) 0.469932 1.44630i 0.0221037 0.0680283i
\(453\) 6.27894 + 19.3246i 0.295010 + 0.907948i
\(454\) 16.2950 11.8390i 0.764761 0.555631i
\(455\) −0.432239 1.33029i −0.0202637 0.0623651i
\(456\) −4.20078 3.05204i −0.196719 0.142925i
\(457\) −25.8675 18.7938i −1.21003 0.879138i −0.214796 0.976659i \(-0.568909\pi\)
−0.995233 + 0.0975213i \(0.968909\pi\)
\(458\) 16.7012 12.1341i 0.780397 0.566991i
\(459\) 37.0638 1.72999
\(460\) −6.96064 −0.324542
\(461\) −15.6545 + 11.3737i −0.729105 + 0.529726i −0.889280 0.457363i \(-0.848794\pi\)
0.160175 + 0.987089i \(0.448794\pi\)
\(462\) −1.20889 + 3.72059i −0.0562428 + 0.173098i
\(463\) 0.0128126 + 0.0394332i 0.000595453 + 0.00183262i 0.951354 0.308101i \(-0.0996933\pi\)
−0.950758 + 0.309933i \(0.899693\pi\)
\(464\) −4.07961 −0.189391
\(465\) 0 0
\(466\) −6.48875 −0.300586
\(467\) 7.82069 + 24.0696i 0.361898 + 1.11381i 0.951901 + 0.306407i \(0.0991269\pi\)
−0.590002 + 0.807402i \(0.700873\pi\)
\(468\) 0.0163833 0.0504228i 0.000757321 0.00233079i
\(469\) −0.977565 + 0.710243i −0.0451398 + 0.0327960i
\(470\) −27.1412 −1.25193
\(471\) −22.3469 −1.02969
\(472\) −6.51314 + 4.73208i −0.299792 + 0.217811i
\(473\) 7.40637 + 5.38105i 0.340545 + 0.247421i
\(474\) −6.90872 5.01948i −0.317328 0.230552i
\(475\) −3.36385 10.3529i −0.154344 0.475022i
\(476\) −4.60888 + 3.34854i −0.211248 + 0.153480i
\(477\) 1.80557 + 5.55698i 0.0826715 + 0.254437i
\(478\) 3.35353 10.3211i 0.153387 0.472076i
\(479\) 17.1845 + 12.4852i 0.785178 + 0.570465i 0.906528 0.422145i \(-0.138723\pi\)
−0.121351 + 0.992610i \(0.538723\pi\)
\(480\) −3.84050 + 11.8198i −0.175294 + 0.539499i
\(481\) −0.201166 + 0.619127i −0.00917240 + 0.0282298i
\(482\) 7.01589 + 5.09734i 0.319565 + 0.232178i
\(483\) −4.64721 + 14.3026i −0.211455 + 0.650793i
\(484\) 1.23463 + 3.79979i 0.0561195 + 0.172718i
\(485\) 47.7141 34.6663i 2.16659 1.57412i
\(486\) 3.14636 + 9.68349i 0.142722 + 0.439252i
\(487\) −21.6509 15.7303i −0.981095 0.712807i −0.0231422 0.999732i \(-0.507367\pi\)
−0.957953 + 0.286925i \(0.907367\pi\)
\(488\) −4.29527 3.12070i −0.194438 0.141267i
\(489\) −20.4600 + 14.8650i −0.925231 + 0.672220i
\(490\) 10.6298 0.480203
\(491\) −12.5664 −0.567113 −0.283557 0.958955i \(-0.591514\pi\)
−0.283557 + 0.958955i \(0.591514\pi\)
\(492\) 0.155960 0.113312i 0.00703124 0.00510849i
\(493\) −2.71660 + 8.36085i −0.122350 + 0.376554i
\(494\) −0.0758699 0.233503i −0.00341355 0.0105058i
\(495\) −2.87853 −0.129380
\(496\) 0 0
\(497\) 2.48886 0.111640
\(498\) 0.189624 + 0.583602i 0.00849725 + 0.0261518i
\(499\) −7.11678 + 21.9032i −0.318591 + 0.980521i 0.655661 + 0.755056i \(0.272390\pi\)
−0.974251 + 0.225465i \(0.927610\pi\)
\(500\) −5.40490 + 3.92689i −0.241715 + 0.175616i
\(501\) −24.0433 −1.07417
\(502\) 28.7089 1.28134
\(503\) −0.535228 + 0.388866i −0.0238646 + 0.0173387i −0.599654 0.800260i \(-0.704695\pi\)
0.575789 + 0.817598i \(0.304695\pi\)
\(504\) −4.28185 3.11095i −0.190729 0.138573i
\(505\) 14.9840 + 10.8865i 0.666779 + 0.484443i
\(506\) 1.72210 + 5.30008i 0.0765567 + 0.235617i
\(507\) 15.5769 11.3173i 0.691795 0.502619i
\(508\) −0.898043 2.76389i −0.0398442 0.122628i
\(509\) −3.60543 + 11.0964i −0.159808 + 0.491838i −0.998616 0.0525889i \(-0.983253\pi\)
0.838808 + 0.544427i \(0.183253\pi\)
\(510\) −38.0145 27.6191i −1.68331 1.22300i
\(511\) −5.35912 + 16.4937i −0.237074 + 0.729638i
\(512\) −7.80146 + 24.0104i −0.344779 + 1.06112i
\(513\) −5.25620 3.81886i −0.232067 0.168607i
\(514\) −6.52011 + 20.0668i −0.287590 + 0.885110i
\(515\) −2.26725 6.97788i −0.0999069 0.307482i
\(516\) 4.57641 3.32495i 0.201465 0.146373i
\(517\) −1.65633 5.09767i −0.0728454 0.224195i
\(518\) 8.68435 + 6.30955i 0.381568 + 0.277226i
\(519\) 2.79941 + 2.03389i 0.122880 + 0.0892779i
\(520\) −1.56867 + 1.13970i −0.0687907 + 0.0499794i
\(521\) −31.9184 −1.39837 −0.699186 0.714940i \(-0.746454\pi\)
−0.699186 + 0.714940i \(0.746454\pi\)
\(522\) −1.34907 −0.0590470
\(523\) 0.00335774 0.00243954i 0.000146824 0.000106674i −0.587712 0.809070i \(-0.699971\pi\)
0.587859 + 0.808964i \(0.299971\pi\)
\(524\) −1.59381 + 4.90526i −0.0696261 + 0.214287i
\(525\) 9.48061 + 29.1783i 0.413768 + 1.27345i
\(526\) −31.1411 −1.35782
\(527\) 0 0
\(528\) 4.30627 0.187406
\(529\) −0.487316 1.49980i −0.0211876 0.0652088i
\(530\) 10.9074 33.5695i 0.473787 1.45817i
\(531\) −1.71029 + 1.24260i −0.0742201 + 0.0539241i
\(532\) 0.998624 0.0432958
\(533\) 0.0551848 0.00239032
\(534\) 22.3739 16.2556i 0.968212 0.703447i
\(535\) 38.5161 + 27.9836i 1.66520 + 1.20984i
\(536\) 1.35512 + 0.984553i 0.0585323 + 0.0425262i
\(537\) −7.78406 23.9569i −0.335907 1.03382i
\(538\) −12.8233 + 9.31665i −0.552851 + 0.401669i
\(539\) 0.648696 + 1.99648i 0.0279413 + 0.0859945i
\(540\) −2.61900 + 8.06046i −0.112704 + 0.346867i
\(541\) −23.6840 17.2074i −1.01825 0.739805i −0.0523303 0.998630i \(-0.516665\pi\)
−0.965924 + 0.258825i \(0.916665\pi\)
\(542\) −10.6333 + 32.7260i −0.456740 + 1.40570i
\(543\) −3.36476 + 10.3557i −0.144395 + 0.444404i
\(544\) 11.7225 + 8.51692i 0.502599 + 0.365160i
\(545\) 12.0519 37.0919i 0.516246 1.58884i
\(546\) 0.213830 + 0.658102i 0.00915110 + 0.0281642i
\(547\) −33.3034 + 24.1964i −1.42395 + 1.03456i −0.432848 + 0.901467i \(0.642491\pi\)
−0.991103 + 0.133094i \(0.957509\pi\)
\(548\) 0.0164227 + 0.0505439i 0.000701543 + 0.00215913i
\(549\) −1.12790 0.819464i −0.0481374 0.0349739i
\(550\) 9.19767 + 6.68250i 0.392190 + 0.284943i
\(551\) 1.24671 0.905789i 0.0531117 0.0385879i
\(552\) 20.8469 0.887305
\(553\) 9.94300 0.422820
\(554\) 15.5318 11.2845i 0.659881 0.479432i
\(555\) 6.74877 20.7706i 0.286469 0.881662i
\(556\) −1.40963 4.33840i −0.0597817 0.183989i
\(557\) −5.73810 −0.243131 −0.121566 0.992583i \(-0.538791\pi\)
−0.121566 + 0.992583i \(0.538791\pi\)
\(558\) 0 0
\(559\) 1.61931 0.0684894
\(560\) 7.84559 + 24.1462i 0.331537 + 1.02037i
\(561\) 2.86754 8.82538i 0.121068 0.372608i
\(562\) −30.9949 + 22.5191i −1.30744 + 0.949911i
\(563\) −14.2942 −0.602428 −0.301214 0.953557i \(-0.597392\pi\)
−0.301214 + 0.953557i \(0.597392\pi\)
\(564\) −3.31195 −0.139458
\(565\) −11.8152 + 8.58426i −0.497070 + 0.361142i
\(566\) −3.22302 2.34166i −0.135474 0.0984273i
\(567\) 10.5807 + 7.68734i 0.444348 + 0.322838i
\(568\) −1.06614 3.28125i −0.0447343 0.137678i
\(569\) −11.6189 + 8.44165i −0.487091 + 0.353892i −0.804065 0.594542i \(-0.797333\pi\)
0.316974 + 0.948434i \(0.397333\pi\)
\(570\) 2.54530 + 7.83362i 0.106611 + 0.328114i
\(571\) 10.3147 31.7453i 0.431656 1.32850i −0.464819 0.885406i \(-0.653881\pi\)
0.896475 0.443095i \(-0.146119\pi\)
\(572\) −0.0511705 0.0371775i −0.00213955 0.00155447i
\(573\) 3.58813 11.0431i 0.149896 0.461334i
\(574\) 0.281195 0.865430i 0.0117369 0.0361224i
\(575\) 35.3575 + 25.6888i 1.47451 + 1.07130i
\(576\) −2.19008 + 6.74037i −0.0912533 + 0.280849i
\(577\) −6.94658 21.3794i −0.289190 0.890035i −0.985111 0.171917i \(-0.945004\pi\)
0.695921 0.718118i \(-0.254996\pi\)
\(578\) −26.9009 + 19.5446i −1.11893 + 0.812950i
\(579\) −2.12437 6.53815i −0.0882859 0.271716i
\(580\) −1.62632 1.18159i −0.0675292 0.0490628i
\(581\) −0.578024 0.419959i −0.0239805 0.0174228i
\(582\) −23.6044 + 17.1496i −0.978433 + 0.710873i
\(583\) 6.97067 0.288695
\(584\) 24.0405 0.994804
\(585\) −0.411917 + 0.299275i −0.0170307 + 0.0123735i
\(586\) 0.743695 2.28886i 0.0307217 0.0945518i
\(587\) −1.98271 6.10214i −0.0818350 0.251862i 0.901765 0.432227i \(-0.142272\pi\)
−0.983600 + 0.180365i \(0.942272\pi\)
\(588\) 1.29711 0.0534920
\(589\) 0 0
\(590\) 12.7708 0.525764
\(591\) −10.2672 31.5993i −0.422338 1.29982i
\(592\) 3.65139 11.2378i 0.150071 0.461871i
\(593\) 16.8762 12.2613i 0.693023 0.503510i −0.184630 0.982808i \(-0.559109\pi\)
0.877652 + 0.479298i \(0.159109\pi\)
\(594\) 6.78548 0.278412
\(595\) 54.7103 2.24290
\(596\) −1.74193 + 1.26559i −0.0713523 + 0.0518405i
\(597\) 31.9467 + 23.2107i 1.30749 + 0.949950i
\(598\) 0.797472 + 0.579397i 0.0326110 + 0.0236933i
\(599\) −3.57174 10.9927i −0.145937 0.449149i 0.851193 0.524853i \(-0.175880\pi\)
−0.997130 + 0.0757040i \(0.975880\pi\)
\(600\) 34.4068 24.9980i 1.40465 1.02054i
\(601\) 1.33416 + 4.10611i 0.0544213 + 0.167492i 0.974573 0.224071i \(-0.0719347\pi\)
−0.920152 + 0.391562i \(0.871935\pi\)
\(602\) 8.25122 25.3946i 0.336295 1.03501i
\(603\) 0.355841 + 0.258534i 0.0144910 + 0.0105283i
\(604\) −1.67397 + 5.15196i −0.0681130 + 0.209630i
\(605\) 11.8568 36.4915i 0.482048 1.48359i
\(606\) −7.41265 5.38560i −0.301118 0.218775i
\(607\) 13.8777 42.7112i 0.563279 1.73360i −0.109730 0.993961i \(-0.534999\pi\)
0.673009 0.739634i \(-0.265001\pi\)
\(608\) −0.784894 2.41565i −0.0318316 0.0979677i
\(609\) −3.51371 + 2.55286i −0.142383 + 0.103447i
\(610\) 2.60255 + 8.00984i 0.105374 + 0.324309i
\(611\) −0.767016 0.557270i −0.0310301 0.0225447i
\(612\) 1.67767 + 1.21890i 0.0678157 + 0.0492710i
\(613\) 2.10762 1.53128i 0.0851260 0.0618477i −0.544408 0.838820i \(-0.683246\pi\)
0.629534 + 0.776973i \(0.283246\pi\)
\(614\) 28.7874 1.16177
\(615\) −1.85135 −0.0746536
\(616\) −5.10826 + 3.71137i −0.205818 + 0.149535i
\(617\) −7.72134 + 23.7639i −0.310850 + 0.956697i 0.666580 + 0.745434i \(0.267758\pi\)
−0.977429 + 0.211263i \(0.932242\pi\)
\(618\) 1.12162 + 3.45199i 0.0451181 + 0.138859i
\(619\) 31.9083 1.28250 0.641252 0.767330i \(-0.278415\pi\)
0.641252 + 0.767330i \(0.278415\pi\)
\(620\) 0 0
\(621\) 26.0847 1.04674
\(622\) 6.21366 + 19.1237i 0.249145 + 0.766790i
\(623\) −9.95046 + 30.6244i −0.398657 + 1.22694i
\(624\) 0.616227 0.447715i 0.0246688 0.0179229i
\(625\) 16.9474 0.677898
\(626\) 8.04209 0.321427
\(627\) −1.31598 + 0.956115i −0.0525552 + 0.0381836i
\(628\) −4.81989 3.50185i −0.192335 0.139739i
\(629\) −20.5996 14.9665i −0.821360 0.596753i
\(630\) 2.59442 + 7.98481i 0.103364 + 0.318122i
\(631\) 0.291045 0.211456i 0.0115863 0.00841795i −0.581977 0.813205i \(-0.697721\pi\)
0.593563 + 0.804787i \(0.297721\pi\)
\(632\) −4.25924 13.1086i −0.169424 0.521432i
\(633\) 0.608271 1.87207i 0.0241766 0.0744080i
\(634\) 15.6790 + 11.3914i 0.622691 + 0.452412i
\(635\) −8.62439 + 26.5432i −0.342249 + 1.05333i
\(636\) 1.33099 4.09637i 0.0527773 0.162432i
\(637\) 0.300399 + 0.218252i 0.0119022 + 0.00864747i
\(638\) −0.497344 + 1.53067i −0.0196900 + 0.0605997i
\(639\) −0.279958 0.861622i −0.0110750 0.0340852i
\(640\) 21.0893 15.3223i 0.833629 0.605667i
\(641\) −9.51986 29.2991i −0.376012 1.15725i −0.942793 0.333378i \(-0.891812\pi\)
0.566781 0.823868i \(-0.308188\pi\)
\(642\) −19.0541 13.8436i −0.752006 0.546364i
\(643\) 1.41726 + 1.02970i 0.0558915 + 0.0406075i 0.615380 0.788230i \(-0.289002\pi\)
−0.559489 + 0.828838i \(0.689002\pi\)
\(644\) −3.24362 + 2.35663i −0.127817 + 0.0928642i
\(645\) −54.3248 −2.13904
\(646\) 9.60317 0.377832
\(647\) 19.9426 14.4891i 0.784024 0.569626i −0.122160 0.992510i \(-0.538982\pi\)
0.906184 + 0.422884i \(0.138982\pi\)
\(648\) 5.60238 17.2423i 0.220082 0.677343i
\(649\) 0.779354 + 2.39861i 0.0305923 + 0.0941535i
\(650\) 2.01095 0.0788760
\(651\) 0 0
\(652\) −6.74233 −0.264050
\(653\) −0.0882751 0.271683i −0.00345447 0.0106318i 0.949314 0.314328i \(-0.101779\pi\)
−0.952769 + 0.303696i \(0.901779\pi\)
\(654\) −5.96212 + 18.3495i −0.233138 + 0.717524i
\(655\) 40.0723 29.1143i 1.56576 1.13759i
\(656\) −1.00166 −0.0391083
\(657\) 6.31280 0.246286
\(658\) −12.6477 + 9.18907i −0.493058 + 0.358227i
\(659\) −30.2772 21.9977i −1.17943 0.856908i −0.187325 0.982298i \(-0.559982\pi\)
−0.992107 + 0.125391i \(0.959982\pi\)
\(660\) 1.71668 + 1.24724i 0.0668215 + 0.0485487i
\(661\) 1.29527 + 3.98642i 0.0503801 + 0.155054i 0.973081 0.230462i \(-0.0740236\pi\)
−0.922701 + 0.385516i \(0.874024\pi\)
\(662\) 9.18948 6.67655i 0.357159 0.259491i
\(663\) −0.507213 1.56104i −0.0196985 0.0606259i
\(664\) −0.306058 + 0.941949i −0.0118773 + 0.0365547i
\(665\) −7.75874 5.63706i −0.300871 0.218596i
\(666\) 1.20746 3.71618i 0.0467881 0.143999i
\(667\) −1.91188 + 5.88417i −0.0740284 + 0.227836i
\(668\) −5.18578 3.76769i −0.200644 0.145776i
\(669\) −5.55916 + 17.1093i −0.214929 + 0.661485i
\(670\) −0.821083 2.52703i −0.0317212 0.0976278i
\(671\) −1.34558 + 0.977623i −0.0519457 + 0.0377407i
\(672\) 2.21213 + 6.80824i 0.0853348 + 0.262634i
\(673\) −8.06806 5.86179i −0.311001 0.225955i 0.421325 0.906910i \(-0.361565\pi\)
−0.732326 + 0.680954i \(0.761565\pi\)
\(674\) 4.47669 + 3.25250i 0.172436 + 0.125282i
\(675\) 43.0513 31.2786i 1.65705 1.20391i
\(676\) 5.13318 0.197430
\(677\) −47.7577 −1.83548 −0.917738 0.397186i \(-0.869987\pi\)
−0.917738 + 0.397186i \(0.869987\pi\)
\(678\) 5.84504 4.24667i 0.224477 0.163092i
\(679\) 10.4977 32.3087i 0.402865 1.23989i
\(680\) −23.4360 72.1287i −0.898730 2.76601i
\(681\) −23.6038 −0.904500
\(682\) 0 0
\(683\) 27.7600 1.06221 0.531104 0.847307i \(-0.321777\pi\)
0.531104 + 0.847307i \(0.321777\pi\)
\(684\) −0.112330 0.345716i −0.00429504 0.0132188i
\(685\) 0.157716 0.485401i 0.00602603 0.0185462i
\(686\) 20.6548 15.0066i 0.788606 0.572956i
\(687\) −24.1923 −0.922993
\(688\) −29.3922 −1.12057
\(689\) 0.997501 0.724727i 0.0380018 0.0276099i
\(690\) −26.7537 19.4377i −1.01850 0.739981i
\(691\) −30.7677 22.3540i −1.17046 0.850388i −0.179394 0.983777i \(-0.557414\pi\)
−0.991064 + 0.133390i \(0.957414\pi\)
\(692\) 0.285072 + 0.877360i 0.0108368 + 0.0333522i
\(693\) −1.34138 + 0.974569i −0.0509548 + 0.0370208i
\(694\) 9.55227 + 29.3989i 0.362599 + 1.11597i
\(695\) −13.5375 + 41.6640i −0.513505 + 1.58041i
\(696\) 4.87078 + 3.53883i 0.184627 + 0.134139i
\(697\) −0.667006 + 2.05283i −0.0252646 + 0.0777566i
\(698\) 5.10540 15.7128i 0.193242 0.594739i
\(699\) 6.15184 + 4.46957i 0.232684 + 0.169055i
\(700\) −2.52754 + 7.77898i −0.0955322 + 0.294018i
\(701\) 12.6871 + 39.0468i 0.479184 + 1.47478i 0.840230 + 0.542230i \(0.182420\pi\)
−0.361046 + 0.932548i \(0.617580\pi\)
\(702\) 0.971001 0.705474i 0.0366481 0.0266264i
\(703\) 1.37927 + 4.24494i 0.0520200 + 0.160101i
\(704\) 6.84033 + 4.96979i 0.257804 + 0.187306i
\(705\) 25.7320 + 18.6954i 0.969123 + 0.704109i
\(706\) −11.0922 + 8.05896i −0.417461 + 0.303303i
\(707\) 10.6683 0.401221
\(708\) 1.55837 0.0585673
\(709\) −34.0319 + 24.7256i −1.27809 + 0.928590i −0.999494 0.0318175i \(-0.989870\pi\)
−0.278600 + 0.960407i \(0.589870\pi\)
\(710\) −1.69121 + 5.20502i −0.0634702 + 0.195341i
\(711\) −1.11843 3.44219i −0.0419446 0.129092i
\(712\) 44.6368 1.67284
\(713\) 0 0
\(714\) −27.0654 −1.01290
\(715\) 0.187705 + 0.577696i 0.00701977 + 0.0216046i
\(716\) 2.07524 6.38694i 0.0775555 0.238691i
\(717\) −10.2888 + 7.47522i −0.384241 + 0.279167i
\(718\) 42.7901 1.59691
\(719\) −33.2690 −1.24072 −0.620362 0.784316i \(-0.713014\pi\)
−0.620362 + 0.784316i \(0.713014\pi\)
\(720\) 7.47673 5.43216i 0.278641 0.202445i
\(721\) −3.41899 2.48404i −0.127330 0.0925106i
\(722\) 18.1075 + 13.1558i 0.673890 + 0.489610i
\(723\) −3.14046 9.66535i −0.116795 0.359458i
\(724\) −2.34850 + 1.70629i −0.0872815 + 0.0634137i
\(725\) 3.90037 + 12.0041i 0.144856 + 0.445821i
\(726\) −5.86562 + 18.0525i −0.217693 + 0.669991i
\(727\) 26.4734 + 19.2340i 0.981843 + 0.713351i 0.958120 0.286368i \(-0.0924479\pi\)
0.0237235 + 0.999719i \(0.492448\pi\)
\(728\) −0.345127 + 1.06219i −0.0127913 + 0.0393675i
\(729\) 9.22600 28.3947i 0.341704 1.05166i
\(730\) −30.8522 22.4154i −1.14189 0.829631i
\(731\) −19.5722 + 60.2370i −0.723904 + 2.22795i
\(732\) 0.317581 + 0.977413i 0.0117381 + 0.0361262i
\(733\) 8.06097 5.85664i 0.297739 0.216320i −0.428879 0.903362i \(-0.641091\pi\)
0.726618 + 0.687042i \(0.241091\pi\)
\(734\) 8.85793 + 27.2619i 0.326952 + 1.00626i
\(735\) −10.0778 7.32197i −0.371726 0.270075i
\(736\) 8.25005 + 5.99401i 0.304101 + 0.220942i
\(737\) 0.424520 0.308432i 0.0156374 0.0113612i
\(738\) −0.331235 −0.0121929
\(739\) 30.9584 1.13882 0.569412 0.822052i \(-0.307171\pi\)
0.569412 + 0.822052i \(0.307171\pi\)
\(740\) 4.71045 3.42234i 0.173160 0.125808i
\(741\) −0.0889110 + 0.273640i −0.00326623 + 0.0100524i
\(742\) −6.28267 19.3361i −0.230644 0.709850i
\(743\) 1.11003 0.0407231 0.0203615 0.999793i \(-0.493518\pi\)
0.0203615 + 0.999793i \(0.493518\pi\)
\(744\) 0 0
\(745\) 20.6778 0.757578
\(746\) −12.9053 39.7184i −0.472496 1.45419i
\(747\) −0.0803677 + 0.247346i −0.00294050 + 0.00904993i
\(748\) 2.00146 1.45415i 0.0731807 0.0531689i
\(749\) 27.4226 1.00200
\(750\) −31.7401 −1.15898
\(751\) −22.7781 + 16.5493i −0.831185 + 0.603892i −0.919894 0.392166i \(-0.871726\pi\)
0.0887090 + 0.996058i \(0.471726\pi\)
\(752\) 13.9222 + 10.1150i 0.507689 + 0.368857i
\(753\) −27.2183 19.7752i −0.991889 0.720649i
\(754\) 0.0879708 + 0.270746i 0.00320371 + 0.00986000i
\(755\) 42.0877 30.5785i 1.53173 1.11287i
\(756\) 1.50855 + 4.64284i 0.0548654 + 0.168858i
\(757\) 11.9659 36.8271i 0.434906 1.33850i −0.458276 0.888810i \(-0.651533\pi\)
0.893183 0.449694i \(-0.148467\pi\)
\(758\) 33.2945 + 24.1899i 1.20931 + 0.878615i
\(759\) 2.01811 6.21110i 0.0732527 0.225449i
\(760\) −4.10817 + 12.6436i −0.149019 + 0.458633i
\(761\) −35.1412 25.5315i −1.27387 0.925518i −0.274517 0.961582i \(-0.588518\pi\)
−0.999349 + 0.0360644i \(0.988518\pi\)
\(762\) 4.26653 13.1310i 0.154560 0.475687i
\(763\) −6.94191 21.3650i −0.251314 0.773465i
\(764\) 2.50442 1.81956i 0.0906066 0.0658295i
\(765\) −6.15406 18.9403i −0.222501 0.684787i
\(766\) 27.4420 + 19.9378i 0.991518 + 0.720380i
\(767\) 0.360904 + 0.262212i 0.0130315 + 0.00946793i
\(768\) 10.9288 7.94021i 0.394358 0.286518i
\(769\) −3.11019 −0.112156 −0.0560781 0.998426i \(-0.517860\pi\)
−0.0560781 + 0.998426i \(0.517860\pi\)
\(770\) 10.0161 0.360956
\(771\) 20.0040 14.5337i 0.720425 0.523419i
\(772\) 0.566361 1.74308i 0.0203838 0.0627348i
\(773\) 6.68718 + 20.5810i 0.240521 + 0.740248i 0.996341 + 0.0854684i \(0.0272387\pi\)
−0.755820 + 0.654780i \(0.772761\pi\)
\(774\) −9.71956 −0.349362
\(775\) 0 0
\(776\) −47.0918 −1.69050
\(777\) −3.88730 11.9639i −0.139456 0.429202i
\(778\) −6.94248 + 21.3668i −0.248900 + 0.766036i
\(779\) 0.306104 0.222398i 0.0109673 0.00796823i
\(780\) 0.375329 0.0134389
\(781\) −1.08082 −0.0386747
\(782\) −31.1920 + 22.6623i −1.11542 + 0.810402i
\(783\) 6.09455 + 4.42795i 0.217801 + 0.158242i
\(784\) −5.45255 3.96151i −0.194734 0.141483i
\(785\) 17.6805 + 54.4148i 0.631042 + 1.94215i
\(786\) −19.8240 + 14.4030i −0.707097 + 0.513736i
\(787\) −2.43398 7.49103i −0.0867621 0.267026i 0.898257 0.439470i \(-0.144834\pi\)
−0.985019 + 0.172444i \(0.944834\pi\)
\(788\) 2.73726 8.42442i 0.0975109 0.300108i
\(789\) 29.5242 + 21.4506i 1.05109 + 0.763661i
\(790\) −6.75642 + 20.7941i −0.240383 + 0.739822i
\(791\) −2.59950 + 8.00044i −0.0924276 + 0.284463i
\(792\) 1.85945 + 1.35097i 0.0660726 + 0.0480046i
\(793\) −0.0909111 + 0.279795i −0.00322835 + 0.00993583i
\(794\) 3.89426 + 11.9853i 0.138202 + 0.425342i
\(795\) −33.4643 + 24.3133i −1.18686 + 0.862303i
\(796\) 3.25322 + 10.0124i 0.115307 + 0.354880i
\(797\) −23.8807 17.3503i −0.845897 0.614580i 0.0781144 0.996944i \(-0.475110\pi\)
−0.924012 + 0.382364i \(0.875110\pi\)
\(798\) 3.83828 + 2.78868i 0.135874 + 0.0987181i
\(799\) 30.0007 21.7968i 1.06135 0.771116i
\(800\) 20.8038 0.735526
\(801\) 11.7212 0.414148
\(802\) −20.3870 + 14.8121i −0.719892 + 0.523032i
\(803\) 2.32726 7.16258i 0.0821274 0.252762i
\(804\) −0.100194 0.308365i −0.00353357 0.0108752i
\(805\) 38.5039 1.35708
\(806\) 0 0
\(807\) 18.5749 0.653869
\(808\) −4.56992 14.0648i −0.160769 0.494796i
\(809\) −0.657442 + 2.02340i −0.0231144 + 0.0711389i −0.961948 0.273231i \(-0.911908\pi\)
0.938834 + 0.344370i \(0.111908\pi\)
\(810\) −23.2665 + 16.9041i −0.817503 + 0.593950i
\(811\) 7.20504 0.253003 0.126502 0.991966i \(-0.459625\pi\)
0.126502 + 0.991966i \(0.459625\pi\)
\(812\) −1.15790 −0.0406343
\(813\) 32.6235 23.7023i 1.14416 0.831277i
\(814\) −3.77129 2.74000i −0.132183 0.0960369i
\(815\) 52.3840 + 38.0592i 1.83493 + 1.33316i
\(816\) 9.20646 + 28.3346i 0.322291 + 0.991909i
\(817\) 8.98213 6.52590i 0.314245 0.228312i
\(818\) −9.52104 29.3027i −0.332895 1.02455i
\(819\) −0.0906270 + 0.278921i −0.00316676 + 0.00974630i
\(820\) −0.399308 0.290115i −0.0139445 0.0101312i
\(821\) 12.9972 40.0012i 0.453604 1.39605i −0.419161 0.907912i \(-0.637676\pi\)
0.872766 0.488139i \(-0.162324\pi\)
\(822\) −0.0780229 + 0.240130i −0.00272136 + 0.00837549i
\(823\) 24.4104 + 17.7352i 0.850895 + 0.618211i 0.925393 0.379010i \(-0.123735\pi\)
−0.0744980 + 0.997221i \(0.523735\pi\)
\(824\) −1.81032 + 5.57159i −0.0630655 + 0.194096i
\(825\) −4.11707 12.6710i −0.143338 0.441149i
\(826\) 5.95111 4.32374i 0.207066 0.150442i
\(827\) −1.19604 3.68102i −0.0415903 0.128002i 0.928105 0.372317i \(-0.121437\pi\)
−0.969696 + 0.244316i \(0.921437\pi\)
\(828\) 1.18070 + 0.857832i 0.0410323 + 0.0298117i
\(829\) −10.6561 7.74208i −0.370100 0.268894i 0.387152 0.922016i \(-0.373459\pi\)
−0.757253 + 0.653122i \(0.773459\pi\)
\(830\) 1.27105 0.923472i 0.0441188 0.0320542i
\(831\) −22.4983 −0.780456
\(832\) 1.49555 0.0518488
\(833\) −11.7497 + 8.53663i −0.407102 + 0.295777i
\(834\) 6.69704 20.6114i 0.231900 0.713714i
\(835\) 19.0226 + 58.5456i 0.658305 + 2.02605i
\(836\) −0.433665 −0.0149986
\(837\) 0 0
\(838\) −5.58159 −0.192813
\(839\) −10.5835 32.5727i −0.365384 1.12454i −0.949740 0.313039i \(-0.898653\pi\)
0.584356 0.811497i \(-0.301347\pi\)
\(840\) 11.5784 35.6346i 0.399493 1.22951i
\(841\) 22.0159 15.9955i 0.759170 0.551569i
\(842\) −15.7358 −0.542293
\(843\) 44.8971 1.54634
\(844\) 0.424556 0.308458i 0.0146138 0.0106176i
\(845\) −39.8819 28.9759i −1.37198 0.996801i
\(846\) 4.60385 + 3.34489i 0.158284 + 0.115000i
\(847\) −6.82954 21.0192i −0.234666 0.722227i
\(848\) −18.1057 + 13.1546i −0.621753 + 0.451730i
\(849\) 1.44269 + 4.44015i 0.0495131 + 0.152386i
\(850\) −24.3059 + 74.8058i −0.833685 + 2.56582i
\(851\) −14.4975 10.5331i −0.496969 0.361069i
\(852\) −0.206373 + 0.635151i −0.00707023 + 0.0217599i
\(853\) −4.46464 + 13.7407i −0.152866 + 0.470474i −0.997938 0.0641782i \(-0.979557\pi\)
0.845072 + 0.534652i \(0.179557\pi\)
\(854\) 3.92463 + 2.85141i 0.134298 + 0.0975732i
\(855\) −1.07876 + 3.32010i −0.0368930 + 0.113545i
\(856\) −11.7469 36.1533i −0.401501 1.23569i
\(857\) −22.5174 + 16.3599i −0.769180 + 0.558842i −0.901712 0.432337i \(-0.857689\pi\)
0.132532 + 0.991179i \(0.457689\pi\)
\(858\) −0.0928585 0.285789i −0.00317014 0.00975668i
\(859\) 38.2828 + 27.8141i 1.30619 + 0.949005i 0.999996 0.00296341i \(-0.000943285\pi\)
0.306197 + 0.951968i \(0.400943\pi\)
\(860\) −11.7171 8.51294i −0.399548 0.290289i
\(861\) −0.862719 + 0.626802i −0.0294014 + 0.0213614i
\(862\) −23.5148 −0.800919
\(863\) 26.0534 0.886867 0.443434 0.896307i \(-0.353760\pi\)
0.443434 + 0.896307i \(0.353760\pi\)
\(864\) 10.0453 7.29831i 0.341747 0.248294i
\(865\) 2.73770 8.42577i 0.0930845 0.286485i
\(866\) −14.1376 43.5110i −0.480414 1.47856i
\(867\) 38.9668 1.32338
\(868\) 0 0
\(869\) −4.31787 −0.146474
\(870\) −2.95126 9.08305i −0.100057 0.307944i
\(871\) 0.0286816 0.0882730i 0.000971840 0.00299102i
\(872\) −25.1934 + 18.3041i −0.853156 + 0.619854i
\(873\) −12.3658 −0.418520
\(874\) 6.75849 0.228609
\(875\) 29.8981 21.7222i 1.01074 0.734345i
\(876\) −3.76478 2.73527i −0.127200 0.0924164i
\(877\) 27.7667 + 20.1737i 0.937613 + 0.681216i 0.947845 0.318732i \(-0.103257\pi\)
−0.0102317 + 0.999948i \(0.503257\pi\)
\(878\) −7.44030 22.8989i −0.251098 0.772800i
\(879\) −2.28169 + 1.65774i −0.0769594 + 0.0559143i
\(880\) −3.40704 10.4858i −0.114851 0.353476i
\(881\) −1.12318 + 3.45678i −0.0378408 + 0.116462i −0.968193 0.250206i \(-0.919502\pi\)
0.930352 + 0.366668i \(0.119502\pi\)
\(882\) −1.80308 1.31001i −0.0607129 0.0441105i
\(883\) 12.1930 37.5262i 0.410327 1.26286i −0.506037 0.862512i \(-0.668890\pi\)
0.916364 0.400345i \(-0.131110\pi\)
\(884\) 0.135224 0.416176i 0.00454807 0.0139975i
\(885\) −12.1077 8.79674i −0.406995 0.295699i
\(886\) 4.87453 15.0022i 0.163763 0.504010i
\(887\) −13.0723 40.2323i −0.438924 1.35087i −0.889012 0.457884i \(-0.848607\pi\)
0.450088 0.892984i \(-0.351393\pi\)
\(888\) −14.1077 + 10.2498i −0.473423 + 0.343962i
\(889\) 4.96766 + 15.2889i 0.166610 + 0.512773i
\(890\) −57.2842 41.6194i −1.92017 1.39509i
\(891\) −4.59481 3.33832i −0.153932 0.111838i
\(892\) −3.88014 + 2.81908i −0.129917 + 0.0943899i
\(893\) −6.50038 −0.217527
\(894\) −10.2294 −0.342123
\(895\) −52.1766 + 37.9085i −1.74407 + 1.26714i
\(896\) 4.63993 14.2802i 0.155009 0.477069i
\(897\) −0.356965 1.09863i −0.0119187 0.0366821i
\(898\) 32.2180 1.07513
\(899\) 0 0
\(900\) 2.97733 0.0992444
\(901\) 14.9027 + 45.8659i 0.496482 + 1.52801i
\(902\) −0.122113 + 0.375824i −0.00406590 + 0.0125136i
\(903\) −25.3151 + 18.3925i −0.842433 + 0.612064i
\(904\) 11.6611 0.387843
\(905\) 27.8782 0.926704
\(906\) −20.8210 + 15.1273i −0.691731 + 0.502572i
\(907\) 26.1863 + 19.0254i 0.869501 + 0.631730i 0.930453 0.366411i \(-0.119414\pi\)
−0.0609518 + 0.998141i \(0.519414\pi\)
\(908\) −5.09099 3.69882i −0.168950 0.122750i
\(909\) −1.20001 3.69326i −0.0398020 0.122498i
\(910\) 1.43331 1.04136i 0.0475136 0.0345207i
\(911\) −8.36223 25.7363i −0.277053 0.852682i −0.988669 0.150113i \(-0.952036\pi\)
0.711616 0.702569i \(-0.247964\pi\)
\(912\) 1.61383 4.96685i 0.0534392 0.164469i
\(913\) 0.251014 + 0.182372i 0.00830736 + 0.00603565i
\(914\) 12.5146 38.5161i 0.413948 1.27400i
\(915\) 3.04990 9.38663i 0.100827 0.310312i
\(916\) −5.21791 3.79104i −0.172405 0.125259i
\(917\) 8.81643 27.1342i 0.291144 0.896050i
\(918\) 14.5068 + 44.6474i 0.478796 + 1.47358i
\(919\) −16.7992 + 12.2053i −0.554154 + 0.402617i −0.829315 0.558782i \(-0.811269\pi\)
0.275161 + 0.961398i \(0.411269\pi\)
\(920\) −16.4937 50.7625i −0.543782 1.67359i
\(921\) −27.2927 19.8293i −0.899325 0.653398i
\(922\) −19.8281 14.4059i −0.653003 0.474434i
\(923\) −0.154665 + 0.112370i −0.00509085 + 0.00369872i
\(924\) 1.22223 0.0402085
\(925\) −36.5578 −1.20201
\(926\) −0.0424867 + 0.0308684i −0.00139620 + 0.00101440i
\(927\) −0.475372 + 1.46304i −0.0156133 + 0.0480527i
\(928\) 0.910081 + 2.80094i 0.0298749 + 0.0919454i
\(929\) −20.6589 −0.677798 −0.338899 0.940823i \(-0.610055\pi\)
−0.338899 + 0.940823i \(0.610055\pi\)
\(930\) 0 0
\(931\) 2.54585 0.0834368
\(932\) 0.626458 + 1.92804i 0.0205203 + 0.0631551i
\(933\) 7.28172 22.4108i 0.238393 0.733697i
\(934\) −25.9335 + 18.8418i −0.848569 + 0.616521i
\(935\) −23.7586 −0.776990
\(936\) 0.406544 0.0132883
\(937\) −2.36282 + 1.71669i −0.0771898 + 0.0560817i −0.625711 0.780055i \(-0.715191\pi\)
0.548521 + 0.836137i \(0.315191\pi\)
\(938\) −1.23819 0.899594i −0.0404282 0.0293728i
\(939\) −7.62453 5.53954i −0.248817 0.180776i
\(940\) 2.62036 + 8.06463i 0.0854667 + 0.263039i
\(941\) −26.5763 + 19.3088i −0.866362 + 0.629449i −0.929608 0.368549i \(-0.879855\pi\)
0.0632463 + 0.997998i \(0.479855\pi\)
\(942\) −8.74660 26.9193i −0.284980 0.877077i
\(943\) −0.469423 + 1.44474i −0.0152865 + 0.0470471i
\(944\) −6.55079 4.75943i −0.213210 0.154906i
\(945\) 14.4874 44.5877i 0.471276 1.45044i
\(946\) −3.58319 + 11.0279i −0.116500 + 0.358549i
\(947\) −31.6526 22.9969i −1.02857 0.747300i −0.0605485 0.998165i \(-0.519285\pi\)
−0.968022 + 0.250865i \(0.919285\pi\)
\(948\) −0.824463 + 2.53744i −0.0267773 + 0.0824121i
\(949\) −0.411649 1.26693i −0.0133627 0.0411262i
\(950\) 11.1545 8.10424i 0.361901 0.262936i
\(951\) −7.01824 21.5999i −0.227582 0.700426i
\(952\) −35.3413 25.6770i −1.14542 0.832195i
\(953\) −4.87008 3.53832i −0.157757 0.114617i 0.506106 0.862471i \(-0.331084\pi\)
−0.663863 + 0.747854i \(0.731084\pi\)
\(954\) −5.98729 + 4.35002i −0.193846 + 0.140837i
\(955\) −29.7290 −0.962008
\(956\) −3.39053 −0.109658
\(957\) 1.52587 1.10861i 0.0493245 0.0358363i
\(958\) −8.31382 + 25.5873i −0.268607 + 0.826688i
\(959\) −0.0908447 0.279591i −0.00293353 0.00902848i
\(960\) −50.1729 −1.61932
\(961\) 0 0
\(962\) −0.824543 −0.0265843
\(963\) −3.08462 9.49348i −0.0994005 0.305923i
\(964\) 0.837252 2.57680i 0.0269661 0.0829931i
\(965\) −14.2397 + 10.3457i −0.458391 + 0.333041i
\(966\) −19.0480 −0.612860
\(967\) 26.3103 0.846083 0.423042 0.906110i \(-0.360962\pi\)
0.423042 + 0.906110i \(0.360962\pi\)
\(968\) −24.7856 + 18.0078i −0.796639 + 0.578792i
\(969\) −9.10455 6.61484i −0.292480 0.212499i
\(970\) 60.4348 + 43.9084i 1.94044 + 1.40981i
\(971\) −1.46346 4.50408i −0.0469648 0.144543i 0.924824 0.380395i \(-0.124212\pi\)
−0.971789 + 0.235852i \(0.924212\pi\)
\(972\) 2.57355 1.86979i 0.0825465 0.0599735i
\(973\) 7.79760 + 23.9985i 0.249979 + 0.769358i
\(974\) 10.4747 32.2377i 0.335630 1.03296i
\(975\) −1.90654 1.38518i −0.0610580 0.0443613i
\(976\) 1.65013 5.07859i 0.0528195 0.162562i
\(977\) −5.33982 + 16.4343i −0.170836 + 0.525780i −0.999419 0.0340871i \(-0.989148\pi\)
0.828583 + 0.559867i \(0.189148\pi\)
\(978\) −25.9146 18.8281i −0.828658 0.602055i
\(979\) 4.32111 13.2990i 0.138103 0.425038i
\(980\) −1.02625 3.15848i −0.0327824 0.100894i
\(981\) −6.61553 + 4.80646i −0.211218 + 0.153459i
\(982\) −4.91850 15.1376i −0.156956 0.483060i
\(983\) 33.1426 + 24.0795i 1.05709 + 0.768017i 0.973547 0.228487i \(-0.0733779\pi\)
0.0835383 + 0.996505i \(0.473378\pi\)
\(984\) 1.19592 + 0.868886i 0.0381245 + 0.0276991i
\(985\) −68.8213 + 50.0016i −2.19283 + 1.59318i
\(986\) −11.1348 −0.354605
\(987\) 18.3206 0.583150
\(988\) −0.0620574 + 0.0450873i −0.00197431 + 0.00143442i
\(989\) −13.7745 + 42.3934i −0.438003 + 1.34803i
\(990\) −1.12666 3.46750i −0.0358076 0.110204i
\(991\) 14.1338 0.448975 0.224487 0.974477i \(-0.427929\pi\)
0.224487 + 0.974477i \(0.427929\pi\)
\(992\) 0 0
\(993\) −13.3113 −0.422420
\(994\) 0.974142 + 2.99810i 0.0308979 + 0.0950940i
\(995\) 31.2425 96.1545i 0.990453 3.04830i
\(996\) 0.155102 0.112688i 0.00491459 0.00357066i
\(997\) 15.4538 0.489428 0.244714 0.969595i \(-0.421306\pi\)
0.244714 + 0.969595i \(0.421306\pi\)
\(998\) −29.1703 −0.923370
\(999\) −17.6522 + 12.8251i −0.558490 + 0.405767i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.d.p.531.3 16
31.2 even 5 961.2.d.o.388.2 16
31.3 odd 30 961.2.c.i.439.6 16
31.4 even 5 961.2.d.o.374.2 16
31.5 even 3 961.2.g.t.844.2 16
31.6 odd 6 961.2.g.m.547.2 16
31.7 even 15 31.2.g.a.10.1 16
31.8 even 5 inner 961.2.d.p.628.3 16
31.9 even 15 961.2.g.s.448.2 16
31.10 even 15 31.2.g.a.28.1 yes 16
31.11 odd 30 961.2.g.j.732.1 16
31.12 odd 30 961.2.g.j.235.1 16
31.13 odd 30 961.2.c.i.521.6 16
31.14 even 15 961.2.g.t.846.2 16
31.15 odd 10 961.2.a.j.1.6 8
31.16 even 5 961.2.a.i.1.6 8
31.17 odd 30 961.2.g.n.846.2 16
31.18 even 15 961.2.c.j.521.6 16
31.19 even 15 961.2.g.k.235.1 16
31.20 even 15 961.2.g.k.732.1 16
31.21 odd 30 961.2.g.l.338.1 16
31.22 odd 30 961.2.g.m.448.2 16
31.23 odd 10 961.2.d.q.628.3 16
31.24 odd 30 961.2.g.l.816.1 16
31.25 even 3 961.2.g.s.547.2 16
31.26 odd 6 961.2.g.n.844.2 16
31.27 odd 10 961.2.d.n.374.2 16
31.28 even 15 961.2.c.j.439.6 16
31.29 odd 10 961.2.d.n.388.2 16
31.30 odd 2 961.2.d.q.531.3 16
93.38 odd 30 279.2.y.c.10.2 16
93.41 odd 30 279.2.y.c.28.2 16
93.47 odd 10 8649.2.a.bf.1.3 8
93.77 even 10 8649.2.a.be.1.3 8
124.7 odd 30 496.2.bg.c.289.2 16
124.103 odd 30 496.2.bg.c.369.2 16
155.7 odd 60 775.2.ck.a.599.4 32
155.38 odd 60 775.2.ck.a.599.1 32
155.69 even 30 775.2.bl.a.351.2 16
155.72 odd 60 775.2.ck.a.524.1 32
155.103 odd 60 775.2.ck.a.524.4 32
155.134 even 30 775.2.bl.a.276.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.10.1 16 31.7 even 15
31.2.g.a.28.1 yes 16 31.10 even 15
279.2.y.c.10.2 16 93.38 odd 30
279.2.y.c.28.2 16 93.41 odd 30
496.2.bg.c.289.2 16 124.7 odd 30
496.2.bg.c.369.2 16 124.103 odd 30
775.2.bl.a.276.2 16 155.134 even 30
775.2.bl.a.351.2 16 155.69 even 30
775.2.ck.a.524.1 32 155.72 odd 60
775.2.ck.a.524.4 32 155.103 odd 60
775.2.ck.a.599.1 32 155.38 odd 60
775.2.ck.a.599.4 32 155.7 odd 60
961.2.a.i.1.6 8 31.16 even 5
961.2.a.j.1.6 8 31.15 odd 10
961.2.c.i.439.6 16 31.3 odd 30
961.2.c.i.521.6 16 31.13 odd 30
961.2.c.j.439.6 16 31.28 even 15
961.2.c.j.521.6 16 31.18 even 15
961.2.d.n.374.2 16 31.27 odd 10
961.2.d.n.388.2 16 31.29 odd 10
961.2.d.o.374.2 16 31.4 even 5
961.2.d.o.388.2 16 31.2 even 5
961.2.d.p.531.3 16 1.1 even 1 trivial
961.2.d.p.628.3 16 31.8 even 5 inner
961.2.d.q.531.3 16 31.30 odd 2
961.2.d.q.628.3 16 31.23 odd 10
961.2.g.j.235.1 16 31.12 odd 30
961.2.g.j.732.1 16 31.11 odd 30
961.2.g.k.235.1 16 31.19 even 15
961.2.g.k.732.1 16 31.20 even 15
961.2.g.l.338.1 16 31.21 odd 30
961.2.g.l.816.1 16 31.24 odd 30
961.2.g.m.448.2 16 31.22 odd 30
961.2.g.m.547.2 16 31.6 odd 6
961.2.g.n.844.2 16 31.26 odd 6
961.2.g.n.846.2 16 31.17 odd 30
961.2.g.s.448.2 16 31.9 even 15
961.2.g.s.547.2 16 31.25 even 3
961.2.g.t.844.2 16 31.5 even 3
961.2.g.t.846.2 16 31.14 even 15
8649.2.a.be.1.3 8 93.77 even 10
8649.2.a.bf.1.3 8 93.47 odd 10