Properties

Label 961.2.a.i.1.6
Level $961$
Weight $2$
Character 961.1
Self dual yes
Analytic conductor $7.674$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(1,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,2,-3,8,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.67362363425\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.2051578125.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 9x^{6} + 19x^{5} + 14x^{4} - 28x^{3} - 11x^{2} + 6x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(0.431370\) of defining polynomial
Character \(\chi\) \(=\) 961.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.26660 q^{2} +1.48431 q^{3} -0.395721 q^{4} -3.80032 q^{5} +1.88004 q^{6} +2.18899 q^{7} -3.03442 q^{8} -0.796809 q^{9} -4.81349 q^{10} -0.950596 q^{11} -0.587374 q^{12} +0.168142 q^{13} +2.77258 q^{14} -5.64087 q^{15} -3.05196 q^{16} -6.57666 q^{17} -1.00924 q^{18} -1.15284 q^{19} +1.50387 q^{20} +3.24915 q^{21} -1.20403 q^{22} -4.62850 q^{23} -4.50404 q^{24} +9.44244 q^{25} +0.212969 q^{26} -5.63566 q^{27} -0.866228 q^{28} +1.33672 q^{29} -7.14474 q^{30} +2.20322 q^{32} -1.41098 q^{33} -8.33000 q^{34} -8.31886 q^{35} +0.315314 q^{36} -3.87165 q^{37} -1.46019 q^{38} +0.249576 q^{39} +11.5318 q^{40} +0.328203 q^{41} +4.11538 q^{42} +9.63057 q^{43} +0.376170 q^{44} +3.02813 q^{45} -5.86247 q^{46} +5.63858 q^{47} -4.53008 q^{48} -2.20832 q^{49} +11.9598 q^{50} -9.76183 q^{51} -0.0665374 q^{52} -7.33294 q^{53} -7.13814 q^{54} +3.61257 q^{55} -6.64232 q^{56} -1.71118 q^{57} +1.69309 q^{58} -2.65312 q^{59} +2.23221 q^{60} -1.74967 q^{61} -1.74421 q^{63} +8.89454 q^{64} -0.638995 q^{65} -1.78715 q^{66} +0.552007 q^{67} +2.60252 q^{68} -6.87015 q^{69} -10.5367 q^{70} +1.13699 q^{71} +2.41786 q^{72} -7.92260 q^{73} -4.90384 q^{74} +14.0156 q^{75} +0.456203 q^{76} -2.08084 q^{77} +0.316114 q^{78} +4.54228 q^{79} +11.5984 q^{80} -5.97467 q^{81} +0.415702 q^{82} +0.326396 q^{83} -1.28576 q^{84} +24.9934 q^{85} +12.1981 q^{86} +1.98411 q^{87} +2.88451 q^{88} -14.7102 q^{89} +3.83543 q^{90} +0.368062 q^{91} +1.83159 q^{92} +7.14183 q^{94} +4.38117 q^{95} +3.27028 q^{96} +15.5192 q^{97} -2.79707 q^{98} +0.757443 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 3 q^{3} + 8 q^{4} + 3 q^{5} - 11 q^{6} - 2 q^{7} - 9 q^{8} + 5 q^{9} - 13 q^{10} - 18 q^{11} - 8 q^{13} - 9 q^{14} - 18 q^{15} + 4 q^{16} - 14 q^{17} + 23 q^{18} - 6 q^{19} - 7 q^{20} + q^{21}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.26660 0.895623 0.447811 0.894128i \(-0.352204\pi\)
0.447811 + 0.894128i \(0.352204\pi\)
\(3\) 1.48431 0.856970 0.428485 0.903549i \(-0.359048\pi\)
0.428485 + 0.903549i \(0.359048\pi\)
\(4\) −0.395721 −0.197860
\(5\) −3.80032 −1.69956 −0.849778 0.527141i \(-0.823264\pi\)
−0.849778 + 0.527141i \(0.823264\pi\)
\(6\) 1.88004 0.767521
\(7\) 2.18899 0.827360 0.413680 0.910422i \(-0.364243\pi\)
0.413680 + 0.910422i \(0.364243\pi\)
\(8\) −3.03442 −1.07283
\(9\) −0.796809 −0.265603
\(10\) −4.81349 −1.52216
\(11\) −0.950596 −0.286615 −0.143308 0.989678i \(-0.545774\pi\)
−0.143308 + 0.989678i \(0.545774\pi\)
\(12\) −0.587374 −0.169560
\(13\) 0.168142 0.0466343 0.0233172 0.999728i \(-0.492577\pi\)
0.0233172 + 0.999728i \(0.492577\pi\)
\(14\) 2.77258 0.741003
\(15\) −5.64087 −1.45647
\(16\) −3.05196 −0.762991
\(17\) −6.57666 −1.59507 −0.797537 0.603271i \(-0.793864\pi\)
−0.797537 + 0.603271i \(0.793864\pi\)
\(18\) −1.00924 −0.237880
\(19\) −1.15284 −0.264480 −0.132240 0.991218i \(-0.542217\pi\)
−0.132240 + 0.991218i \(0.542217\pi\)
\(20\) 1.50387 0.336274
\(21\) 3.24915 0.709023
\(22\) −1.20403 −0.256699
\(23\) −4.62850 −0.965109 −0.482554 0.875866i \(-0.660291\pi\)
−0.482554 + 0.875866i \(0.660291\pi\)
\(24\) −4.50404 −0.919383
\(25\) 9.44244 1.88849
\(26\) 0.212969 0.0417667
\(27\) −5.63566 −1.08458
\(28\) −0.866228 −0.163702
\(29\) 1.33672 0.248222 0.124111 0.992268i \(-0.460392\pi\)
0.124111 + 0.992268i \(0.460392\pi\)
\(30\) −7.14474 −1.30444
\(31\) 0 0
\(32\) 2.20322 0.389479
\(33\) −1.41098 −0.245621
\(34\) −8.33000 −1.42858
\(35\) −8.31886 −1.40614
\(36\) 0.315314 0.0525523
\(37\) −3.87165 −0.636495 −0.318248 0.948008i \(-0.603094\pi\)
−0.318248 + 0.948008i \(0.603094\pi\)
\(38\) −1.46019 −0.236874
\(39\) 0.249576 0.0399642
\(40\) 11.5318 1.82333
\(41\) 0.328203 0.0512566 0.0256283 0.999672i \(-0.491841\pi\)
0.0256283 + 0.999672i \(0.491841\pi\)
\(42\) 4.11538 0.635017
\(43\) 9.63057 1.46865 0.734324 0.678799i \(-0.237499\pi\)
0.734324 + 0.678799i \(0.237499\pi\)
\(44\) 0.376170 0.0567098
\(45\) 3.02813 0.451407
\(46\) −5.86247 −0.864373
\(47\) 5.63858 0.822471 0.411235 0.911529i \(-0.365097\pi\)
0.411235 + 0.911529i \(0.365097\pi\)
\(48\) −4.53008 −0.653860
\(49\) −2.20832 −0.315475
\(50\) 11.9598 1.69137
\(51\) −9.76183 −1.36693
\(52\) −0.0665374 −0.00922708
\(53\) −7.33294 −1.00726 −0.503629 0.863920i \(-0.668002\pi\)
−0.503629 + 0.863920i \(0.668002\pi\)
\(54\) −7.13814 −0.971377
\(55\) 3.61257 0.487119
\(56\) −6.64232 −0.887617
\(57\) −1.71118 −0.226651
\(58\) 1.69309 0.222313
\(59\) −2.65312 −0.345407 −0.172703 0.984974i \(-0.555250\pi\)
−0.172703 + 0.984974i \(0.555250\pi\)
\(60\) 2.23221 0.288177
\(61\) −1.74967 −0.224023 −0.112011 0.993707i \(-0.535729\pi\)
−0.112011 + 0.993707i \(0.535729\pi\)
\(62\) 0 0
\(63\) −1.74421 −0.219749
\(64\) 8.89454 1.11182
\(65\) −0.638995 −0.0792576
\(66\) −1.78715 −0.219983
\(67\) 0.552007 0.0674383 0.0337192 0.999431i \(-0.489265\pi\)
0.0337192 + 0.999431i \(0.489265\pi\)
\(68\) 2.60252 0.315602
\(69\) −6.87015 −0.827069
\(70\) −10.5367 −1.25937
\(71\) 1.13699 0.134936 0.0674679 0.997721i \(-0.478508\pi\)
0.0674679 + 0.997721i \(0.478508\pi\)
\(72\) 2.41786 0.284947
\(73\) −7.92260 −0.927270 −0.463635 0.886026i \(-0.653455\pi\)
−0.463635 + 0.886026i \(0.653455\pi\)
\(74\) −4.90384 −0.570059
\(75\) 14.0156 1.61838
\(76\) 0.456203 0.0523301
\(77\) −2.08084 −0.237134
\(78\) 0.316114 0.0357928
\(79\) 4.54228 0.511046 0.255523 0.966803i \(-0.417752\pi\)
0.255523 + 0.966803i \(0.417752\pi\)
\(80\) 11.5984 1.29675
\(81\) −5.97467 −0.663852
\(82\) 0.415702 0.0459066
\(83\) 0.326396 0.0358266 0.0179133 0.999840i \(-0.494298\pi\)
0.0179133 + 0.999840i \(0.494298\pi\)
\(84\) −1.28576 −0.140287
\(85\) 24.9934 2.71091
\(86\) 12.1981 1.31535
\(87\) 1.98411 0.212719
\(88\) 2.88451 0.307490
\(89\) −14.7102 −1.55927 −0.779637 0.626232i \(-0.784596\pi\)
−0.779637 + 0.626232i \(0.784596\pi\)
\(90\) 3.83543 0.404290
\(91\) 0.368062 0.0385834
\(92\) 1.83159 0.190957
\(93\) 0 0
\(94\) 7.14183 0.736623
\(95\) 4.38117 0.449498
\(96\) 3.27028 0.333771
\(97\) 15.5192 1.57573 0.787867 0.615845i \(-0.211185\pi\)
0.787867 + 0.615845i \(0.211185\pi\)
\(98\) −2.79707 −0.282546
\(99\) 0.757443 0.0761259
\(100\) −3.73657 −0.373657
\(101\) 4.87360 0.484941 0.242471 0.970159i \(-0.422042\pi\)
0.242471 + 0.970159i \(0.422042\pi\)
\(102\) −12.3643 −1.22425
\(103\) 1.93062 0.190230 0.0951148 0.995466i \(-0.469678\pi\)
0.0951148 + 0.995466i \(0.469678\pi\)
\(104\) −0.510215 −0.0500307
\(105\) −12.3478 −1.20502
\(106\) −9.28792 −0.902122
\(107\) 12.5275 1.21108 0.605540 0.795815i \(-0.292957\pi\)
0.605540 + 0.795815i \(0.292957\pi\)
\(108\) 2.23015 0.214596
\(109\) −10.2625 −0.982968 −0.491484 0.870887i \(-0.663545\pi\)
−0.491484 + 0.870887i \(0.663545\pi\)
\(110\) 4.57568 0.436274
\(111\) −5.74675 −0.545457
\(112\) −6.68072 −0.631268
\(113\) −3.84294 −0.361514 −0.180757 0.983528i \(-0.557855\pi\)
−0.180757 + 0.983528i \(0.557855\pi\)
\(114\) −2.16738 −0.202994
\(115\) 17.5898 1.64026
\(116\) −0.528966 −0.0491132
\(117\) −0.133977 −0.0123862
\(118\) −3.36045 −0.309354
\(119\) −14.3962 −1.31970
\(120\) 17.1168 1.56254
\(121\) −10.0964 −0.917852
\(122\) −2.21614 −0.200640
\(123\) 0.487156 0.0439254
\(124\) 0 0
\(125\) −16.8827 −1.51003
\(126\) −2.20922 −0.196813
\(127\) 7.34389 0.651665 0.325832 0.945428i \(-0.394356\pi\)
0.325832 + 0.945428i \(0.394356\pi\)
\(128\) 6.85938 0.606290
\(129\) 14.2948 1.25859
\(130\) −0.809352 −0.0709849
\(131\) 13.0337 1.13876 0.569379 0.822075i \(-0.307184\pi\)
0.569379 + 0.822075i \(0.307184\pi\)
\(132\) 0.558355 0.0485986
\(133\) −2.52356 −0.218820
\(134\) 0.699172 0.0603993
\(135\) 21.4173 1.84331
\(136\) 19.9564 1.71124
\(137\) −0.134299 −0.0114740 −0.00573698 0.999984i \(-0.501826\pi\)
−0.00573698 + 0.999984i \(0.501826\pi\)
\(138\) −8.70174 −0.740742
\(139\) 11.5275 0.977749 0.488874 0.872354i \(-0.337408\pi\)
0.488874 + 0.872354i \(0.337408\pi\)
\(140\) 3.29195 0.278220
\(141\) 8.36942 0.704832
\(142\) 1.44011 0.120851
\(143\) −0.159835 −0.0133661
\(144\) 2.43183 0.202653
\(145\) −5.07995 −0.421867
\(146\) −10.0348 −0.830484
\(147\) −3.27785 −0.270352
\(148\) 1.53209 0.125937
\(149\) −5.44108 −0.445751 −0.222875 0.974847i \(-0.571544\pi\)
−0.222875 + 0.974847i \(0.571544\pi\)
\(150\) 17.7521 1.44945
\(151\) 13.6892 1.11401 0.557005 0.830509i \(-0.311950\pi\)
0.557005 + 0.830509i \(0.311950\pi\)
\(152\) 3.49821 0.283742
\(153\) 5.24034 0.423656
\(154\) −2.63560 −0.212383
\(155\) 0 0
\(156\) −0.0987625 −0.00790733
\(157\) −15.0553 −1.20155 −0.600774 0.799419i \(-0.705141\pi\)
−0.600774 + 0.799419i \(0.705141\pi\)
\(158\) 5.75326 0.457705
\(159\) −10.8844 −0.863189
\(160\) −8.37296 −0.661941
\(161\) −10.1317 −0.798493
\(162\) −7.56752 −0.594561
\(163\) 17.0381 1.33453 0.667263 0.744822i \(-0.267466\pi\)
0.667263 + 0.744822i \(0.267466\pi\)
\(164\) −0.129877 −0.0101417
\(165\) 5.36219 0.417446
\(166\) 0.413414 0.0320871
\(167\) −16.1982 −1.25346 −0.626729 0.779238i \(-0.715607\pi\)
−0.626729 + 0.779238i \(0.715607\pi\)
\(168\) −9.85930 −0.760661
\(169\) −12.9717 −0.997825
\(170\) 31.6567 2.42796
\(171\) 0.918595 0.0702467
\(172\) −3.81102 −0.290587
\(173\) −2.33122 −0.177239 −0.0886196 0.996066i \(-0.528246\pi\)
−0.0886196 + 0.996066i \(0.528246\pi\)
\(174\) 2.51307 0.190515
\(175\) 20.6694 1.56246
\(176\) 2.90118 0.218685
\(177\) −3.93806 −0.296003
\(178\) −18.6319 −1.39652
\(179\) −16.9706 −1.26844 −0.634222 0.773151i \(-0.718679\pi\)
−0.634222 + 0.773151i \(0.718679\pi\)
\(180\) −1.19829 −0.0893155
\(181\) −7.33576 −0.545263 −0.272631 0.962119i \(-0.587894\pi\)
−0.272631 + 0.962119i \(0.587894\pi\)
\(182\) 0.466188 0.0345561
\(183\) −2.59707 −0.191981
\(184\) 14.0448 1.03540
\(185\) 14.7135 1.08176
\(186\) 0 0
\(187\) 6.25174 0.457173
\(188\) −2.23130 −0.162734
\(189\) −12.3364 −0.897341
\(190\) 5.54919 0.402581
\(191\) 7.82276 0.566035 0.283018 0.959115i \(-0.408665\pi\)
0.283018 + 0.959115i \(0.408665\pi\)
\(192\) 13.2023 0.952793
\(193\) −4.63151 −0.333383 −0.166692 0.986009i \(-0.553308\pi\)
−0.166692 + 0.986009i \(0.553308\pi\)
\(194\) 19.6566 1.41126
\(195\) −0.948470 −0.0679213
\(196\) 0.873880 0.0624200
\(197\) −22.3844 −1.59482 −0.797411 0.603437i \(-0.793797\pi\)
−0.797411 + 0.603437i \(0.793797\pi\)
\(198\) 0.959379 0.0681801
\(199\) −26.6038 −1.88589 −0.942945 0.332948i \(-0.891957\pi\)
−0.942945 + 0.332948i \(0.891957\pi\)
\(200\) −28.6524 −2.02603
\(201\) 0.819352 0.0577926
\(202\) 6.17291 0.434324
\(203\) 2.92606 0.205369
\(204\) 3.86296 0.270461
\(205\) −1.24728 −0.0871135
\(206\) 2.44533 0.170374
\(207\) 3.68803 0.256336
\(208\) −0.513165 −0.0355816
\(209\) 1.09589 0.0758040
\(210\) −15.6398 −1.07925
\(211\) 1.32614 0.0912951 0.0456476 0.998958i \(-0.485465\pi\)
0.0456476 + 0.998958i \(0.485465\pi\)
\(212\) 2.90180 0.199296
\(213\) 1.68765 0.115636
\(214\) 15.8674 1.08467
\(215\) −36.5993 −2.49605
\(216\) 17.1010 1.16357
\(217\) 0 0
\(218\) −12.9985 −0.880368
\(219\) −11.7596 −0.794642
\(220\) −1.42957 −0.0963814
\(221\) −1.10581 −0.0743851
\(222\) −7.27884 −0.488524
\(223\) −12.1199 −0.811612 −0.405806 0.913959i \(-0.633009\pi\)
−0.405806 + 0.913959i \(0.633009\pi\)
\(224\) 4.82284 0.322239
\(225\) −7.52382 −0.501588
\(226\) −4.86748 −0.323780
\(227\) −15.9022 −1.05546 −0.527732 0.849411i \(-0.676957\pi\)
−0.527732 + 0.849411i \(0.676957\pi\)
\(228\) 0.677149 0.0448453
\(229\) −16.2986 −1.07704 −0.538521 0.842612i \(-0.681017\pi\)
−0.538521 + 0.842612i \(0.681017\pi\)
\(230\) 22.2792 1.46905
\(231\) −3.08863 −0.203217
\(232\) −4.05616 −0.266300
\(233\) −5.12296 −0.335616 −0.167808 0.985820i \(-0.553669\pi\)
−0.167808 + 0.985820i \(0.553669\pi\)
\(234\) −0.169696 −0.0110934
\(235\) −21.4284 −1.39783
\(236\) 1.04989 0.0683423
\(237\) 6.74217 0.437951
\(238\) −18.2343 −1.18195
\(239\) 8.56800 0.554218 0.277109 0.960839i \(-0.410624\pi\)
0.277109 + 0.960839i \(0.410624\pi\)
\(240\) 17.2157 1.11127
\(241\) −6.84676 −0.441039 −0.220519 0.975383i \(-0.570775\pi\)
−0.220519 + 0.975383i \(0.570775\pi\)
\(242\) −12.7881 −0.822049
\(243\) 8.03869 0.515682
\(244\) 0.692382 0.0443252
\(245\) 8.39234 0.536167
\(246\) 0.617033 0.0393406
\(247\) −0.193842 −0.0123338
\(248\) 0 0
\(249\) 0.484474 0.0307023
\(250\) −21.3836 −1.35242
\(251\) 22.6661 1.43067 0.715336 0.698781i \(-0.246274\pi\)
0.715336 + 0.698781i \(0.246274\pi\)
\(252\) 0.690219 0.0434797
\(253\) 4.39983 0.276615
\(254\) 9.30178 0.583645
\(255\) 37.0981 2.32317
\(256\) −9.10097 −0.568810
\(257\) −16.6584 −1.03912 −0.519560 0.854434i \(-0.673904\pi\)
−0.519560 + 0.854434i \(0.673904\pi\)
\(258\) 18.1058 1.12722
\(259\) −8.47500 −0.526611
\(260\) 0.252864 0.0156819
\(261\) −1.06511 −0.0659285
\(262\) 16.5085 1.01990
\(263\) −24.5864 −1.51606 −0.758030 0.652220i \(-0.773838\pi\)
−0.758030 + 0.652220i \(0.773838\pi\)
\(264\) 4.28152 0.263509
\(265\) 27.8675 1.71189
\(266\) −3.19634 −0.195980
\(267\) −21.8345 −1.33625
\(268\) −0.218440 −0.0133434
\(269\) 12.5141 0.763001 0.381501 0.924369i \(-0.375407\pi\)
0.381501 + 0.924369i \(0.375407\pi\)
\(270\) 27.1272 1.65091
\(271\) −27.1673 −1.65030 −0.825148 0.564917i \(-0.808908\pi\)
−0.825148 + 0.564917i \(0.808908\pi\)
\(272\) 20.0717 1.21703
\(273\) 0.546320 0.0330648
\(274\) −0.170104 −0.0102763
\(275\) −8.97594 −0.541270
\(276\) 2.71866 0.163644
\(277\) −15.1573 −0.910716 −0.455358 0.890308i \(-0.650489\pi\)
−0.455358 + 0.890308i \(0.650489\pi\)
\(278\) 14.6007 0.875694
\(279\) 0 0
\(280\) 25.2430 1.50855
\(281\) 30.2477 1.80443 0.902214 0.431289i \(-0.141941\pi\)
0.902214 + 0.431289i \(0.141941\pi\)
\(282\) 10.6007 0.631264
\(283\) 3.14532 0.186970 0.0934850 0.995621i \(-0.470199\pi\)
0.0934850 + 0.995621i \(0.470199\pi\)
\(284\) −0.449930 −0.0266984
\(285\) 6.50303 0.385206
\(286\) −0.202448 −0.0119710
\(287\) 0.718432 0.0424077
\(288\) −1.75555 −0.103447
\(289\) 26.2524 1.54426
\(290\) −6.43427 −0.377833
\(291\) 23.0354 1.35036
\(292\) 3.13514 0.183470
\(293\) 1.90008 0.111004 0.0555020 0.998459i \(-0.482324\pi\)
0.0555020 + 0.998459i \(0.482324\pi\)
\(294\) −4.15173 −0.242134
\(295\) 10.0827 0.587038
\(296\) 11.7482 0.682851
\(297\) 5.35723 0.310858
\(298\) −6.89168 −0.399224
\(299\) −0.778247 −0.0450072
\(300\) −5.54624 −0.320212
\(301\) 21.0812 1.21510
\(302\) 17.3387 0.997733
\(303\) 7.23395 0.415580
\(304\) 3.51843 0.201796
\(305\) 6.64932 0.380739
\(306\) 6.63742 0.379436
\(307\) 22.7281 1.29716 0.648580 0.761146i \(-0.275363\pi\)
0.648580 + 0.761146i \(0.275363\pi\)
\(308\) 0.823433 0.0469194
\(309\) 2.86565 0.163021
\(310\) 0 0
\(311\) 15.8754 0.900213 0.450106 0.892975i \(-0.351386\pi\)
0.450106 + 0.892975i \(0.351386\pi\)
\(312\) −0.757320 −0.0428748
\(313\) 6.34935 0.358886 0.179443 0.983768i \(-0.442570\pi\)
0.179443 + 0.983768i \(0.442570\pi\)
\(314\) −19.0691 −1.07613
\(315\) 6.62855 0.373476
\(316\) −1.79747 −0.101116
\(317\) −15.3010 −0.859390 −0.429695 0.902974i \(-0.641379\pi\)
−0.429695 + 0.902974i \(0.641379\pi\)
\(318\) −13.7862 −0.773092
\(319\) −1.27068 −0.0711442
\(320\) −33.8021 −1.88959
\(321\) 18.5948 1.03786
\(322\) −12.8329 −0.715148
\(323\) 7.58184 0.421865
\(324\) 2.36430 0.131350
\(325\) 1.58767 0.0880683
\(326\) 21.5805 1.19523
\(327\) −15.2328 −0.842374
\(328\) −0.995906 −0.0549897
\(329\) 12.3428 0.680480
\(330\) 6.79176 0.373874
\(331\) −8.96795 −0.492923 −0.246462 0.969153i \(-0.579268\pi\)
−0.246462 + 0.969153i \(0.579268\pi\)
\(332\) −0.129162 −0.00708866
\(333\) 3.08497 0.169055
\(334\) −20.5167 −1.12262
\(335\) −2.09780 −0.114615
\(336\) −9.91629 −0.540978
\(337\) −4.36877 −0.237982 −0.118991 0.992895i \(-0.537966\pi\)
−0.118991 + 0.992895i \(0.537966\pi\)
\(338\) −16.4300 −0.893675
\(339\) −5.70414 −0.309806
\(340\) −9.89040 −0.536382
\(341\) 0 0
\(342\) 1.16349 0.0629145
\(343\) −20.1569 −1.08837
\(344\) −29.2232 −1.57561
\(345\) 26.1088 1.40565
\(346\) −2.95272 −0.158739
\(347\) 24.4053 1.31015 0.655073 0.755566i \(-0.272638\pi\)
0.655073 + 0.755566i \(0.272638\pi\)
\(348\) −0.785152 −0.0420885
\(349\) 13.0439 0.698224 0.349112 0.937081i \(-0.386483\pi\)
0.349112 + 0.937081i \(0.386483\pi\)
\(350\) 26.1799 1.39937
\(351\) −0.947594 −0.0505788
\(352\) −2.09438 −0.111631
\(353\) 10.8248 0.576146 0.288073 0.957608i \(-0.406985\pi\)
0.288073 + 0.957608i \(0.406985\pi\)
\(354\) −4.98796 −0.265107
\(355\) −4.32092 −0.229331
\(356\) 5.82111 0.308518
\(357\) −21.3685 −1.13094
\(358\) −21.4950 −1.13605
\(359\) 33.7834 1.78302 0.891510 0.453001i \(-0.149647\pi\)
0.891510 + 0.453001i \(0.149647\pi\)
\(360\) −9.18863 −0.484283
\(361\) −17.6710 −0.930050
\(362\) −9.29149 −0.488350
\(363\) −14.9862 −0.786571
\(364\) −0.145650 −0.00763412
\(365\) 30.1084 1.57595
\(366\) −3.28945 −0.171942
\(367\) 22.6313 1.18135 0.590673 0.806911i \(-0.298862\pi\)
0.590673 + 0.806911i \(0.298862\pi\)
\(368\) 14.1260 0.736369
\(369\) −0.261515 −0.0136139
\(370\) 18.6362 0.968847
\(371\) −16.0517 −0.833365
\(372\) 0 0
\(373\) −32.9720 −1.70723 −0.853613 0.520908i \(-0.825593\pi\)
−0.853613 + 0.520908i \(0.825593\pi\)
\(374\) 7.91846 0.409454
\(375\) −25.0592 −1.29405
\(376\) −17.1098 −0.882372
\(377\) 0.224759 0.0115757
\(378\) −15.6253 −0.803679
\(379\) −32.4919 −1.66900 −0.834498 0.551012i \(-0.814242\pi\)
−0.834498 + 0.551012i \(0.814242\pi\)
\(380\) −1.73372 −0.0889379
\(381\) 10.9006 0.558457
\(382\) 9.90832 0.506954
\(383\) −26.7804 −1.36842 −0.684208 0.729287i \(-0.739852\pi\)
−0.684208 + 0.729287i \(0.739852\pi\)
\(384\) 10.1815 0.519572
\(385\) 7.90787 0.403023
\(386\) −5.86627 −0.298585
\(387\) −7.67373 −0.390078
\(388\) −6.14126 −0.311775
\(389\) −17.7375 −0.899327 −0.449663 0.893198i \(-0.648456\pi\)
−0.449663 + 0.893198i \(0.648456\pi\)
\(390\) −1.20133 −0.0608319
\(391\) 30.4400 1.53942
\(392\) 6.70099 0.338451
\(393\) 19.3461 0.975880
\(394\) −28.3521 −1.42836
\(395\) −17.2621 −0.868552
\(396\) −0.299736 −0.0150623
\(397\) 9.94953 0.499352 0.249676 0.968329i \(-0.419676\pi\)
0.249676 + 0.968329i \(0.419676\pi\)
\(398\) −33.6964 −1.68905
\(399\) −3.74576 −0.187522
\(400\) −28.8180 −1.44090
\(401\) 19.8956 0.993538 0.496769 0.867883i \(-0.334520\pi\)
0.496769 + 0.867883i \(0.334520\pi\)
\(402\) 1.03779 0.0517604
\(403\) 0 0
\(404\) −1.92858 −0.0959506
\(405\) 22.7057 1.12825
\(406\) 3.70615 0.183933
\(407\) 3.68037 0.182429
\(408\) 29.6215 1.46648
\(409\) −24.3255 −1.20282 −0.601410 0.798941i \(-0.705394\pi\)
−0.601410 + 0.798941i \(0.705394\pi\)
\(410\) −1.57980 −0.0780208
\(411\) −0.199342 −0.00983284
\(412\) −0.763986 −0.0376389
\(413\) −5.80765 −0.285776
\(414\) 4.67127 0.229580
\(415\) −1.24041 −0.0608893
\(416\) 0.370456 0.0181631
\(417\) 17.1104 0.837901
\(418\) 1.38805 0.0678918
\(419\) −4.40675 −0.215284 −0.107642 0.994190i \(-0.534330\pi\)
−0.107642 + 0.994190i \(0.534330\pi\)
\(420\) 4.88628 0.238426
\(421\) −12.4237 −0.605493 −0.302746 0.953071i \(-0.597904\pi\)
−0.302746 + 0.953071i \(0.597904\pi\)
\(422\) 1.67969 0.0817660
\(423\) −4.49287 −0.218451
\(424\) 22.2513 1.08062
\(425\) −62.0997 −3.01228
\(426\) 2.13758 0.103566
\(427\) −3.83002 −0.185348
\(428\) −4.95739 −0.239625
\(429\) −0.237246 −0.0114544
\(430\) −46.3567 −2.23552
\(431\) −18.5653 −0.894259 −0.447130 0.894469i \(-0.647554\pi\)
−0.447130 + 0.894469i \(0.647554\pi\)
\(432\) 17.1998 0.827527
\(433\) −36.1204 −1.73584 −0.867918 0.496708i \(-0.834542\pi\)
−0.867918 + 0.496708i \(0.834542\pi\)
\(434\) 0 0
\(435\) −7.54024 −0.361527
\(436\) 4.06108 0.194490
\(437\) 5.33593 0.255252
\(438\) −14.8948 −0.711699
\(439\) −19.0094 −0.907268 −0.453634 0.891188i \(-0.649873\pi\)
−0.453634 + 0.891188i \(0.649873\pi\)
\(440\) −10.9621 −0.522596
\(441\) 1.75961 0.0837911
\(442\) −1.40063 −0.0666210
\(443\) 12.4540 0.591709 0.295854 0.955233i \(-0.404396\pi\)
0.295854 + 0.955233i \(0.404396\pi\)
\(444\) 2.27411 0.107924
\(445\) 55.9033 2.65007
\(446\) −15.3511 −0.726898
\(447\) −8.07627 −0.381995
\(448\) 19.4700 0.919873
\(449\) 25.4366 1.20043 0.600214 0.799840i \(-0.295082\pi\)
0.600214 + 0.799840i \(0.295082\pi\)
\(450\) −9.52968 −0.449234
\(451\) −0.311988 −0.0146909
\(452\) 1.52073 0.0715292
\(453\) 20.3191 0.954673
\(454\) −20.1417 −0.945297
\(455\) −1.39875 −0.0655746
\(456\) 5.19244 0.243159
\(457\) 31.9740 1.49568 0.747839 0.663880i \(-0.231091\pi\)
0.747839 + 0.663880i \(0.231091\pi\)
\(458\) −20.6438 −0.964623
\(459\) 37.0638 1.72999
\(460\) −6.96064 −0.324542
\(461\) 19.3501 0.901223 0.450612 0.892720i \(-0.351206\pi\)
0.450612 + 0.892720i \(0.351206\pi\)
\(462\) −3.91206 −0.182006
\(463\) 0.0414625 0.00192693 0.000963463 1.00000i \(-0.499693\pi\)
0.000963463 1.00000i \(0.499693\pi\)
\(464\) −4.07961 −0.189391
\(465\) 0 0
\(466\) −6.48875 −0.300586
\(467\) 25.3083 1.17113 0.585564 0.810626i \(-0.300873\pi\)
0.585564 + 0.810626i \(0.300873\pi\)
\(468\) 0.0530176 0.00245074
\(469\) 1.20834 0.0557958
\(470\) −27.1412 −1.25193
\(471\) −22.3469 −1.02969
\(472\) 8.05069 0.370563
\(473\) −9.15478 −0.420937
\(474\) 8.53965 0.392239
\(475\) −10.8856 −0.499467
\(476\) 5.69688 0.261116
\(477\) 5.84296 0.267531
\(478\) 10.8522 0.496370
\(479\) −21.2411 −0.970533 −0.485266 0.874366i \(-0.661277\pi\)
−0.485266 + 0.874366i \(0.661277\pi\)
\(480\) −12.4281 −0.567263
\(481\) −0.650988 −0.0296825
\(482\) −8.67212 −0.395004
\(483\) −15.0387 −0.684284
\(484\) 3.99534 0.181606
\(485\) −58.9779 −2.67805
\(486\) 10.1818 0.461857
\(487\) 26.7620 1.21270 0.606350 0.795198i \(-0.292633\pi\)
0.606350 + 0.795198i \(0.292633\pi\)
\(488\) 5.30925 0.240338
\(489\) 25.2899 1.14365
\(490\) 10.6298 0.480203
\(491\) −12.5664 −0.567113 −0.283557 0.958955i \(-0.591514\pi\)
−0.283557 + 0.958955i \(0.591514\pi\)
\(492\) −0.192778 −0.00869109
\(493\) −8.79111 −0.395932
\(494\) −0.245520 −0.0110465
\(495\) −2.87853 −0.129380
\(496\) 0 0
\(497\) 2.48886 0.111640
\(498\) 0.613636 0.0274977
\(499\) −23.0304 −1.03098 −0.515490 0.856895i \(-0.672390\pi\)
−0.515490 + 0.856895i \(0.672390\pi\)
\(500\) 6.68083 0.298776
\(501\) −24.0433 −1.07417
\(502\) 28.7089 1.28134
\(503\) 0.661578 0.0294983 0.0147492 0.999891i \(-0.495305\pi\)
0.0147492 + 0.999891i \(0.495305\pi\)
\(504\) 5.29266 0.235754
\(505\) −18.5212 −0.824184
\(506\) 5.57283 0.247743
\(507\) −19.2541 −0.855106
\(508\) −2.90613 −0.128939
\(509\) −11.6674 −0.517149 −0.258574 0.965991i \(-0.583253\pi\)
−0.258574 + 0.965991i \(0.583253\pi\)
\(510\) 46.9885 2.08068
\(511\) −17.3425 −0.767186
\(512\) −25.2461 −1.11573
\(513\) 6.49702 0.286851
\(514\) −21.0995 −0.930659
\(515\) −7.33697 −0.323306
\(516\) −5.65675 −0.249024
\(517\) −5.36001 −0.235733
\(518\) −10.7344 −0.471644
\(519\) −3.46026 −0.151889
\(520\) 1.93898 0.0850300
\(521\) −31.9184 −1.39837 −0.699186 0.714940i \(-0.746454\pi\)
−0.699186 + 0.714940i \(0.746454\pi\)
\(522\) −1.34907 −0.0590470
\(523\) −0.00415040 −0.000181484 0 −9.07421e−5 1.00000i \(-0.500029\pi\)
−9.07421e−5 1.00000i \(0.500029\pi\)
\(524\) −5.15769 −0.225315
\(525\) 30.6799 1.33898
\(526\) −31.1411 −1.35782
\(527\) 0 0
\(528\) 4.30627 0.187406
\(529\) −1.57699 −0.0685646
\(530\) 35.2971 1.53321
\(531\) 2.11403 0.0917411
\(532\) 0.998624 0.0432958
\(533\) 0.0551848 0.00239032
\(534\) −27.6556 −1.19678
\(535\) −47.6086 −2.05830
\(536\) −1.67502 −0.0723499
\(537\) −25.1898 −1.08702
\(538\) 15.8504 0.683361
\(539\) 2.09922 0.0904200
\(540\) −8.47527 −0.364718
\(541\) 29.2750 1.25863 0.629316 0.777150i \(-0.283335\pi\)
0.629316 + 0.777150i \(0.283335\pi\)
\(542\) −34.4101 −1.47804
\(543\) −10.8886 −0.467274
\(544\) −14.4898 −0.621247
\(545\) 39.0007 1.67061
\(546\) 0.691970 0.0296136
\(547\) 41.1653 1.76010 0.880050 0.474880i \(-0.157509\pi\)
0.880050 + 0.474880i \(0.157509\pi\)
\(548\) 0.0531450 0.00227024
\(549\) 1.39416 0.0595011
\(550\) −11.3689 −0.484773
\(551\) −1.54102 −0.0656497
\(552\) 20.8469 0.887305
\(553\) 9.94300 0.422820
\(554\) −19.1983 −0.815658
\(555\) 21.8395 0.927034
\(556\) −4.56167 −0.193458
\(557\) −5.73810 −0.243131 −0.121566 0.992583i \(-0.538791\pi\)
−0.121566 + 0.992583i \(0.538791\pi\)
\(558\) 0 0
\(559\) 1.61931 0.0684894
\(560\) 25.3889 1.07288
\(561\) 9.27955 0.391783
\(562\) 38.3118 1.61609
\(563\) −14.2942 −0.602428 −0.301214 0.953557i \(-0.597392\pi\)
−0.301214 + 0.953557i \(0.597392\pi\)
\(564\) −3.31195 −0.139458
\(565\) 14.6044 0.614412
\(566\) 3.98387 0.167455
\(567\) −13.0785 −0.549245
\(568\) −3.45011 −0.144763
\(569\) 14.3618 0.602078 0.301039 0.953612i \(-0.402667\pi\)
0.301039 + 0.953612i \(0.402667\pi\)
\(570\) 8.23675 0.345000
\(571\) 33.3790 1.39687 0.698434 0.715674i \(-0.253881\pi\)
0.698434 + 0.715674i \(0.253881\pi\)
\(572\) 0.0632502 0.00264462
\(573\) 11.6114 0.485075
\(574\) 0.909967 0.0379813
\(575\) −43.7043 −1.82260
\(576\) −7.08725 −0.295302
\(577\) −22.4796 −0.935838 −0.467919 0.883771i \(-0.654996\pi\)
−0.467919 + 0.883771i \(0.654996\pi\)
\(578\) 33.2513 1.38307
\(579\) −6.87461 −0.285699
\(580\) 2.01024 0.0834706
\(581\) 0.714477 0.0296415
\(582\) 29.1766 1.20941
\(583\) 6.97067 0.288695
\(584\) 24.0405 0.994804
\(585\) 0.509157 0.0210511
\(586\) 2.40665 0.0994176
\(587\) −6.41617 −0.264824 −0.132412 0.991195i \(-0.542272\pi\)
−0.132412 + 0.991195i \(0.542272\pi\)
\(588\) 1.29711 0.0534920
\(589\) 0 0
\(590\) 12.7708 0.525764
\(591\) −33.2255 −1.36671
\(592\) 11.8161 0.485640
\(593\) −20.8601 −0.856623 −0.428312 0.903631i \(-0.640891\pi\)
−0.428312 + 0.903631i \(0.640891\pi\)
\(594\) 6.78548 0.278412
\(595\) 54.7103 2.24290
\(596\) 2.15315 0.0881963
\(597\) −39.4884 −1.61615
\(598\) −0.985729 −0.0403095
\(599\) −11.5584 −0.472263 −0.236131 0.971721i \(-0.575880\pi\)
−0.236131 + 0.971721i \(0.575880\pi\)
\(600\) −42.5291 −1.73624
\(601\) 4.31742 0.176111 0.0880555 0.996116i \(-0.471935\pi\)
0.0880555 + 0.996116i \(0.471935\pi\)
\(602\) 26.7015 1.08827
\(603\) −0.439844 −0.0179118
\(604\) −5.41709 −0.220418
\(605\) 38.3694 1.55994
\(606\) 9.16254 0.372203
\(607\) 44.9092 1.82281 0.911405 0.411510i \(-0.134999\pi\)
0.911405 + 0.411510i \(0.134999\pi\)
\(608\) −2.53997 −0.103009
\(609\) 4.34319 0.175995
\(610\) 8.42204 0.340998
\(611\) 0.948084 0.0383554
\(612\) −2.07371 −0.0838248
\(613\) −2.60516 −0.105222 −0.0526108 0.998615i \(-0.516754\pi\)
−0.0526108 + 0.998615i \(0.516754\pi\)
\(614\) 28.7874 1.16177
\(615\) −1.85135 −0.0746536
\(616\) 6.31416 0.254405
\(617\) −24.9868 −1.00593 −0.502965 0.864307i \(-0.667758\pi\)
−0.502965 + 0.864307i \(0.667758\pi\)
\(618\) 3.62963 0.146005
\(619\) 31.9083 1.28250 0.641252 0.767330i \(-0.278415\pi\)
0.641252 + 0.767330i \(0.278415\pi\)
\(620\) 0 0
\(621\) 26.0847 1.04674
\(622\) 20.1078 0.806251
\(623\) −32.2004 −1.29008
\(624\) −0.761698 −0.0304923
\(625\) 16.9474 0.677898
\(626\) 8.04209 0.321427
\(627\) 1.62664 0.0649618
\(628\) 5.95771 0.237739
\(629\) 25.4625 1.01526
\(630\) 8.39573 0.334494
\(631\) −0.359751 −0.0143215 −0.00716073 0.999974i \(-0.502279\pi\)
−0.00716073 + 0.999974i \(0.502279\pi\)
\(632\) −13.7832 −0.548266
\(633\) 1.96841 0.0782372
\(634\) −19.3803 −0.769689
\(635\) −27.9091 −1.10754
\(636\) 4.30718 0.170791
\(637\) −0.371313 −0.0147120
\(638\) −1.60944 −0.0637183
\(639\) −0.905963 −0.0358394
\(640\) −26.0679 −1.03042
\(641\) −30.8069 −1.21680 −0.608400 0.793630i \(-0.708188\pi\)
−0.608400 + 0.793630i \(0.708188\pi\)
\(642\) 23.5522 0.929530
\(643\) −1.75184 −0.0690856 −0.0345428 0.999403i \(-0.510998\pi\)
−0.0345428 + 0.999403i \(0.510998\pi\)
\(644\) 4.00934 0.157990
\(645\) −54.3248 −2.13904
\(646\) 9.60317 0.377832
\(647\) −24.6504 −0.969106 −0.484553 0.874762i \(-0.661018\pi\)
−0.484553 + 0.874762i \(0.661018\pi\)
\(648\) 18.1297 0.712201
\(649\) 2.52204 0.0989989
\(650\) 2.01095 0.0788760
\(651\) 0 0
\(652\) −6.74233 −0.264050
\(653\) −0.285664 −0.0111789 −0.00558946 0.999984i \(-0.501779\pi\)
−0.00558946 + 0.999984i \(0.501779\pi\)
\(654\) −19.2938 −0.754449
\(655\) −49.5321 −1.93538
\(656\) −1.00166 −0.0391083
\(657\) 6.31280 0.246286
\(658\) 15.6334 0.609453
\(659\) 37.4247 1.45786 0.728929 0.684589i \(-0.240018\pi\)
0.728929 + 0.684589i \(0.240018\pi\)
\(660\) −2.12193 −0.0825960
\(661\) 4.19157 0.163033 0.0815167 0.996672i \(-0.474024\pi\)
0.0815167 + 0.996672i \(0.474024\pi\)
\(662\) −11.3588 −0.441473
\(663\) −1.64138 −0.0637458
\(664\) −0.990423 −0.0384359
\(665\) 9.59033 0.371897
\(666\) 3.90742 0.151410
\(667\) −6.18699 −0.239561
\(668\) 6.40998 0.248009
\(669\) −17.9898 −0.695526
\(670\) −2.65708 −0.102652
\(671\) 1.66323 0.0642084
\(672\) 7.15861 0.276149
\(673\) 9.97267 0.384418 0.192209 0.981354i \(-0.438435\pi\)
0.192209 + 0.981354i \(0.438435\pi\)
\(674\) −5.53349 −0.213142
\(675\) −53.2144 −2.04822
\(676\) 5.13318 0.197430
\(677\) −47.7577 −1.83548 −0.917738 0.397186i \(-0.869987\pi\)
−0.917738 + 0.397186i \(0.869987\pi\)
\(678\) −7.22487 −0.277469
\(679\) 33.9713 1.30370
\(680\) −75.8406 −2.90835
\(681\) −23.6038 −0.904500
\(682\) 0 0
\(683\) 27.7600 1.06221 0.531104 0.847307i \(-0.321777\pi\)
0.531104 + 0.847307i \(0.321777\pi\)
\(684\) −0.363507 −0.0138990
\(685\) 0.510380 0.0195006
\(686\) −25.5308 −0.974770
\(687\) −24.1923 −0.922993
\(688\) −29.3922 −1.12057
\(689\) −1.23298 −0.0469728
\(690\) 33.0694 1.25893
\(691\) 38.0310 1.44677 0.723383 0.690447i \(-0.242586\pi\)
0.723383 + 0.690447i \(0.242586\pi\)
\(692\) 0.922511 0.0350686
\(693\) 1.65804 0.0629836
\(694\) 30.9118 1.17340
\(695\) −43.8082 −1.66174
\(696\) −6.02062 −0.228211
\(697\) −2.15848 −0.0817581
\(698\) 16.5214 0.625346
\(699\) −7.60409 −0.287613
\(700\) −8.17931 −0.309149
\(701\) 41.0562 1.55067 0.775336 0.631548i \(-0.217580\pi\)
0.775336 + 0.631548i \(0.217580\pi\)
\(702\) −1.20022 −0.0452995
\(703\) 4.46340 0.168340
\(704\) −8.45511 −0.318664
\(705\) −31.8065 −1.19790
\(706\) 13.7107 0.516010
\(707\) 10.6683 0.401221
\(708\) 1.55837 0.0585673
\(709\) 42.0657 1.57981 0.789906 0.613229i \(-0.210130\pi\)
0.789906 + 0.613229i \(0.210130\pi\)
\(710\) −5.47289 −0.205394
\(711\) −3.61933 −0.135736
\(712\) 44.6368 1.67284
\(713\) 0 0
\(714\) −27.0654 −1.01290
\(715\) 0.607426 0.0227164
\(716\) 6.71563 0.250975
\(717\) 12.7176 0.474948
\(718\) 42.7901 1.59691
\(719\) −33.2690 −1.24072 −0.620362 0.784316i \(-0.713014\pi\)
−0.620362 + 0.784316i \(0.713014\pi\)
\(720\) −9.24175 −0.344420
\(721\) 4.22611 0.157388
\(722\) −22.3821 −0.832974
\(723\) −10.1628 −0.377957
\(724\) 2.90291 0.107886
\(725\) 12.6218 0.468764
\(726\) −18.9815 −0.704471
\(727\) −32.7229 −1.21363 −0.606813 0.794845i \(-0.707552\pi\)
−0.606813 + 0.794845i \(0.707552\pi\)
\(728\) −1.11686 −0.0413934
\(729\) 29.8560 1.10578
\(730\) 38.1354 1.41145
\(731\) −63.3370 −2.34260
\(732\) 1.02771 0.0379854
\(733\) −9.96391 −0.368025 −0.184013 0.982924i \(-0.558909\pi\)
−0.184013 + 0.982924i \(0.558909\pi\)
\(734\) 28.6649 1.05804
\(735\) 12.4569 0.459479
\(736\) −10.1976 −0.375889
\(737\) −0.524735 −0.0193289
\(738\) −0.331235 −0.0121929
\(739\) 30.9584 1.13882 0.569412 0.822052i \(-0.307171\pi\)
0.569412 + 0.822052i \(0.307171\pi\)
\(740\) −5.82244 −0.214037
\(741\) −0.287722 −0.0105697
\(742\) −20.3312 −0.746380
\(743\) 1.11003 0.0407231 0.0203615 0.999793i \(-0.493518\pi\)
0.0203615 + 0.999793i \(0.493518\pi\)
\(744\) 0 0
\(745\) 20.6778 0.757578
\(746\) −41.7624 −1.52903
\(747\) −0.260075 −0.00951566
\(748\) −2.47394 −0.0904563
\(749\) 27.4226 1.00200
\(750\) −31.7401 −1.15898
\(751\) 28.1553 1.02740 0.513701 0.857969i \(-0.328274\pi\)
0.513701 + 0.857969i \(0.328274\pi\)
\(752\) −17.2087 −0.627538
\(753\) 33.6436 1.22604
\(754\) 0.284679 0.0103674
\(755\) −52.0233 −1.89332
\(756\) 4.88177 0.177548
\(757\) 38.7223 1.40739 0.703693 0.710504i \(-0.251533\pi\)
0.703693 + 0.710504i \(0.251533\pi\)
\(758\) −41.1542 −1.49479
\(759\) 6.53074 0.237051
\(760\) −13.2943 −0.482236
\(761\) 43.4369 1.57459 0.787293 0.616580i \(-0.211482\pi\)
0.787293 + 0.616580i \(0.211482\pi\)
\(762\) 13.8068 0.500166
\(763\) −22.4645 −0.813269
\(764\) −3.09563 −0.111996
\(765\) −19.9150 −0.720027
\(766\) −33.9201 −1.22558
\(767\) −0.446102 −0.0161078
\(768\) −13.5087 −0.487453
\(769\) −3.11019 −0.112156 −0.0560781 0.998426i \(-0.517860\pi\)
−0.0560781 + 0.998426i \(0.517860\pi\)
\(770\) 10.0161 0.360956
\(771\) −24.7263 −0.890494
\(772\) 1.83278 0.0659633
\(773\) 21.6402 0.778343 0.389172 0.921165i \(-0.372761\pi\)
0.389172 + 0.921165i \(0.372761\pi\)
\(774\) −9.71956 −0.349362
\(775\) 0 0
\(776\) −47.0918 −1.69050
\(777\) −12.5796 −0.451289
\(778\) −22.4663 −0.805457
\(779\) −0.378366 −0.0135564
\(780\) 0.375329 0.0134389
\(781\) −1.08082 −0.0386747
\(782\) 38.5554 1.37874
\(783\) −7.53327 −0.269217
\(784\) 6.73973 0.240705
\(785\) 57.2151 2.04210
\(786\) 24.5038 0.874020
\(787\) −7.87653 −0.280768 −0.140384 0.990097i \(-0.544834\pi\)
−0.140384 + 0.990097i \(0.544834\pi\)
\(788\) 8.85796 0.315552
\(789\) −36.4939 −1.29922
\(790\) −21.8642 −0.777894
\(791\) −8.41216 −0.299102
\(792\) −2.29840 −0.0816702
\(793\) −0.294194 −0.0104471
\(794\) 12.6021 0.447231
\(795\) 41.3642 1.46704
\(796\) 10.5277 0.373143
\(797\) 29.5182 1.04559 0.522793 0.852459i \(-0.324890\pi\)
0.522793 + 0.852459i \(0.324890\pi\)
\(798\) −4.74438 −0.167949
\(799\) −37.0830 −1.31190
\(800\) 20.8038 0.735526
\(801\) 11.7212 0.414148
\(802\) 25.1998 0.889835
\(803\) 7.53119 0.265770
\(804\) −0.324234 −0.0114349
\(805\) 38.5039 1.35708
\(806\) 0 0
\(807\) 18.5749 0.653869
\(808\) −14.7886 −0.520260
\(809\) −2.12753 −0.0747998 −0.0373999 0.999300i \(-0.511908\pi\)
−0.0373999 + 0.999300i \(0.511908\pi\)
\(810\) 28.7590 1.01049
\(811\) 7.20504 0.253003 0.126502 0.991966i \(-0.459625\pi\)
0.126502 + 0.991966i \(0.459625\pi\)
\(812\) −1.15790 −0.0406343
\(813\) −40.3248 −1.41425
\(814\) 4.66157 0.163388
\(815\) −64.7502 −2.26810
\(816\) 29.7927 1.04295
\(817\) −11.1025 −0.388428
\(818\) −30.8107 −1.07727
\(819\) −0.293275 −0.0102479
\(820\) 0.493572 0.0172363
\(821\) 42.0597 1.46789 0.733947 0.679206i \(-0.237676\pi\)
0.733947 + 0.679206i \(0.237676\pi\)
\(822\) −0.252487 −0.00880651
\(823\) −30.1730 −1.05176 −0.525882 0.850558i \(-0.676265\pi\)
−0.525882 + 0.850558i \(0.676265\pi\)
\(824\) −5.85832 −0.204084
\(825\) −13.3231 −0.463852
\(826\) −7.35598 −0.255947
\(827\) −3.87046 −0.134589 −0.0672945 0.997733i \(-0.521437\pi\)
−0.0672945 + 0.997733i \(0.521437\pi\)
\(828\) −1.45943 −0.0507187
\(829\) 13.1716 0.457469 0.228735 0.973489i \(-0.426541\pi\)
0.228735 + 0.973489i \(0.426541\pi\)
\(830\) −1.57110 −0.0545338
\(831\) −22.4983 −0.780456
\(832\) 1.49555 0.0518488
\(833\) 14.5234 0.503206
\(834\) 21.6721 0.750443
\(835\) 61.5585 2.13032
\(836\) −0.433665 −0.0149986
\(837\) 0 0
\(838\) −5.58159 −0.192813
\(839\) −34.2490 −1.18241 −0.591204 0.806522i \(-0.701347\pi\)
−0.591204 + 0.806522i \(0.701347\pi\)
\(840\) 37.4685 1.29279
\(841\) −27.2132 −0.938386
\(842\) −15.7358 −0.542293
\(843\) 44.8971 1.54634
\(844\) −0.524780 −0.0180637
\(845\) 49.2967 1.69586
\(846\) −5.69067 −0.195649
\(847\) −22.1008 −0.759394
\(848\) 22.3799 0.768528
\(849\) 4.66865 0.160228
\(850\) −78.6555 −2.69786
\(851\) 17.9199 0.614287
\(852\) −0.667838 −0.0228797
\(853\) −14.4479 −0.494686 −0.247343 0.968928i \(-0.579557\pi\)
−0.247343 + 0.968928i \(0.579557\pi\)
\(854\) −4.85111 −0.166001
\(855\) −3.49096 −0.119388
\(856\) −38.0138 −1.29928
\(857\) 27.8331 0.950759 0.475379 0.879781i \(-0.342311\pi\)
0.475379 + 0.879781i \(0.342311\pi\)
\(858\) −0.300496 −0.0102588
\(859\) −47.3202 −1.61454 −0.807272 0.590180i \(-0.799057\pi\)
−0.807272 + 0.590180i \(0.799057\pi\)
\(860\) 14.4831 0.493869
\(861\) 1.06638 0.0363421
\(862\) −23.5148 −0.800919
\(863\) 26.0534 0.886867 0.443434 0.896307i \(-0.353760\pi\)
0.443434 + 0.896307i \(0.353760\pi\)
\(864\) −12.4166 −0.422422
\(865\) 8.85937 0.301228
\(866\) −45.7502 −1.55465
\(867\) 38.9668 1.32338
\(868\) 0 0
\(869\) −4.31787 −0.146474
\(870\) −9.55048 −0.323792
\(871\) 0.0928157 0.00314494
\(872\) 31.1407 1.05456
\(873\) −12.3658 −0.418520
\(874\) 6.75849 0.228609
\(875\) −36.9560 −1.24934
\(876\) 4.65353 0.157228
\(877\) −34.3215 −1.15895 −0.579477 0.814989i \(-0.696743\pi\)
−0.579477 + 0.814989i \(0.696743\pi\)
\(878\) −24.0773 −0.812570
\(879\) 2.82032 0.0951270
\(880\) −11.0254 −0.371667
\(881\) −3.63467 −0.122455 −0.0612276 0.998124i \(-0.519502\pi\)
−0.0612276 + 0.998124i \(0.519502\pi\)
\(882\) 2.22873 0.0750452
\(883\) 39.4574 1.32785 0.663923 0.747801i \(-0.268890\pi\)
0.663923 + 0.747801i \(0.268890\pi\)
\(884\) 0.437594 0.0147179
\(885\) 14.9659 0.503074
\(886\) 15.7743 0.529948
\(887\) −42.3027 −1.42039 −0.710194 0.704007i \(-0.751393\pi\)
−0.710194 + 0.704007i \(0.751393\pi\)
\(888\) 17.4381 0.585183
\(889\) 16.0757 0.539161
\(890\) 70.8072 2.37346
\(891\) 5.67949 0.190270
\(892\) 4.79611 0.160586
\(893\) −6.50038 −0.217527
\(894\) −10.2294 −0.342123
\(895\) 64.4938 2.15579
\(896\) 15.0151 0.501620
\(897\) −1.15516 −0.0385698
\(898\) 32.2180 1.07513
\(899\) 0 0
\(900\) 2.97733 0.0992444
\(901\) 48.2262 1.60665
\(902\) −0.395164 −0.0131575
\(903\) 31.2912 1.04131
\(904\) 11.6611 0.387843
\(905\) 27.8782 0.926704
\(906\) 25.7362 0.855027
\(907\) −32.3680 −1.07476 −0.537381 0.843339i \(-0.680586\pi\)
−0.537381 + 0.843339i \(0.680586\pi\)
\(908\) 6.29281 0.208834
\(909\) −3.88333 −0.128802
\(910\) −1.77166 −0.0587301
\(911\) −27.0607 −0.896563 −0.448281 0.893893i \(-0.647964\pi\)
−0.448281 + 0.893893i \(0.647964\pi\)
\(912\) 5.22246 0.172933
\(913\) −0.310271 −0.0102685
\(914\) 40.4983 1.33956
\(915\) 9.86969 0.326282
\(916\) 6.44969 0.213104
\(917\) 28.5306 0.942162
\(918\) 46.9451 1.54942
\(919\) 20.7649 0.684972 0.342486 0.939523i \(-0.388731\pi\)
0.342486 + 0.939523i \(0.388731\pi\)
\(920\) −53.3749 −1.75972
\(921\) 33.7356 1.11163
\(922\) 24.5088 0.807156
\(923\) 0.191176 0.00629264
\(924\) 1.22223 0.0402085
\(925\) −36.5578 −1.20201
\(926\) 0.0525165 0.00172580
\(927\) −1.53834 −0.0505256
\(928\) 2.94508 0.0966771
\(929\) −20.6589 −0.677798 −0.338899 0.940823i \(-0.610055\pi\)
−0.338899 + 0.940823i \(0.610055\pi\)
\(930\) 0 0
\(931\) 2.54585 0.0834368
\(932\) 2.02726 0.0664052
\(933\) 23.5641 0.771455
\(934\) 32.0555 1.04889
\(935\) −23.7586 −0.776990
\(936\) 0.406544 0.0132883
\(937\) 2.92060 0.0954119 0.0477059 0.998861i \(-0.484809\pi\)
0.0477059 + 0.998861i \(0.484809\pi\)
\(938\) 1.53048 0.0499720
\(939\) 9.42443 0.307555
\(940\) 8.47966 0.276576
\(941\) 32.8501 1.07088 0.535441 0.844573i \(-0.320145\pi\)
0.535441 + 0.844573i \(0.320145\pi\)
\(942\) −28.3046 −0.922213
\(943\) −1.51909 −0.0494682
\(944\) 8.09722 0.263542
\(945\) 46.8823 1.52508
\(946\) −11.5955 −0.377001
\(947\) 39.1247 1.27138 0.635692 0.771943i \(-0.280715\pi\)
0.635692 + 0.771943i \(0.280715\pi\)
\(948\) −2.66802 −0.0866532
\(949\) −1.33212 −0.0432426
\(950\) −13.7878 −0.447334
\(951\) −22.7115 −0.736471
\(952\) 43.6843 1.41581
\(953\) 6.01975 0.194999 0.0974994 0.995236i \(-0.468916\pi\)
0.0974994 + 0.995236i \(0.468916\pi\)
\(954\) 7.40070 0.239607
\(955\) −29.7290 −0.962008
\(956\) −3.39053 −0.109658
\(957\) −1.88608 −0.0609684
\(958\) −26.9041 −0.869231
\(959\) −0.293980 −0.00949310
\(960\) −50.1729 −1.61932
\(961\) 0 0
\(962\) −0.824543 −0.0265843
\(963\) −9.98204 −0.321667
\(964\) 2.70941 0.0872641
\(965\) 17.6012 0.566603
\(966\) −19.0480 −0.612860
\(967\) 26.3103 0.846083 0.423042 0.906110i \(-0.360962\pi\)
0.423042 + 0.906110i \(0.360962\pi\)
\(968\) 30.6367 0.984699
\(969\) 11.2538 0.361525
\(970\) −74.7015 −2.39852
\(971\) −4.73587 −0.151981 −0.0759906 0.997109i \(-0.524212\pi\)
−0.0759906 + 0.997109i \(0.524212\pi\)
\(972\) −3.18108 −0.102033
\(973\) 25.2336 0.808951
\(974\) 33.8967 1.08612
\(975\) 2.35661 0.0754719
\(976\) 5.33994 0.170927
\(977\) −17.2800 −0.552837 −0.276419 0.961037i \(-0.589148\pi\)
−0.276419 + 0.961037i \(0.589148\pi\)
\(978\) 32.0322 1.02428
\(979\) 13.9834 0.446912
\(980\) −3.32102 −0.106086
\(981\) 8.17725 0.261079
\(982\) −15.9166 −0.507920
\(983\) −40.9665 −1.30663 −0.653315 0.757087i \(-0.726622\pi\)
−0.653315 + 0.757087i \(0.726622\pi\)
\(984\) −1.47824 −0.0471245
\(985\) 85.0678 2.71049
\(986\) −11.1348 −0.354605
\(987\) 18.3206 0.583150
\(988\) 0.0767071 0.00244038
\(989\) −44.5751 −1.41741
\(990\) −3.64595 −0.115876
\(991\) 14.1338 0.448975 0.224487 0.974477i \(-0.427929\pi\)
0.224487 + 0.974477i \(0.427929\pi\)
\(992\) 0 0
\(993\) −13.3113 −0.422420
\(994\) 3.15239 0.0999877
\(995\) 101.103 3.20517
\(996\) −0.191716 −0.00607477
\(997\) 15.4538 0.489428 0.244714 0.969595i \(-0.421306\pi\)
0.244714 + 0.969595i \(0.421306\pi\)
\(998\) −29.1703 −0.923370
\(999\) 21.8193 0.690332
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.a.i.1.6 8
3.2 odd 2 8649.2.a.bf.1.3 8
31.2 even 5 961.2.d.p.531.3 16
31.3 odd 30 961.2.g.n.846.2 16
31.4 even 5 961.2.d.o.388.2 16
31.5 even 3 961.2.c.j.521.6 16
31.6 odd 6 961.2.c.i.439.6 16
31.7 even 15 961.2.g.k.235.1 16
31.8 even 5 961.2.d.o.374.2 16
31.9 even 15 961.2.g.k.732.1 16
31.10 even 15 961.2.g.t.844.2 16
31.11 odd 30 961.2.g.l.338.1 16
31.12 odd 30 961.2.g.m.547.2 16
31.13 odd 30 961.2.g.m.448.2 16
31.14 even 15 31.2.g.a.10.1 16
31.15 odd 10 961.2.d.q.628.3 16
31.16 even 5 961.2.d.p.628.3 16
31.17 odd 30 961.2.g.l.816.1 16
31.18 even 15 961.2.g.s.448.2 16
31.19 even 15 961.2.g.s.547.2 16
31.20 even 15 31.2.g.a.28.1 yes 16
31.21 odd 30 961.2.g.n.844.2 16
31.22 odd 30 961.2.g.j.732.1 16
31.23 odd 10 961.2.d.n.374.2 16
31.24 odd 30 961.2.g.j.235.1 16
31.25 even 3 961.2.c.j.439.6 16
31.26 odd 6 961.2.c.i.521.6 16
31.27 odd 10 961.2.d.n.388.2 16
31.28 even 15 961.2.g.t.846.2 16
31.29 odd 10 961.2.d.q.531.3 16
31.30 odd 2 961.2.a.j.1.6 8
93.14 odd 30 279.2.y.c.10.2 16
93.20 odd 30 279.2.y.c.28.2 16
93.92 even 2 8649.2.a.be.1.3 8
124.51 odd 30 496.2.bg.c.369.2 16
124.107 odd 30 496.2.bg.c.289.2 16
155.14 even 30 775.2.bl.a.351.2 16
155.82 odd 60 775.2.ck.a.524.1 32
155.107 odd 60 775.2.ck.a.599.4 32
155.113 odd 60 775.2.ck.a.524.4 32
155.138 odd 60 775.2.ck.a.599.1 32
155.144 even 30 775.2.bl.a.276.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.10.1 16 31.14 even 15
31.2.g.a.28.1 yes 16 31.20 even 15
279.2.y.c.10.2 16 93.14 odd 30
279.2.y.c.28.2 16 93.20 odd 30
496.2.bg.c.289.2 16 124.107 odd 30
496.2.bg.c.369.2 16 124.51 odd 30
775.2.bl.a.276.2 16 155.144 even 30
775.2.bl.a.351.2 16 155.14 even 30
775.2.ck.a.524.1 32 155.82 odd 60
775.2.ck.a.524.4 32 155.113 odd 60
775.2.ck.a.599.1 32 155.138 odd 60
775.2.ck.a.599.4 32 155.107 odd 60
961.2.a.i.1.6 8 1.1 even 1 trivial
961.2.a.j.1.6 8 31.30 odd 2
961.2.c.i.439.6 16 31.6 odd 6
961.2.c.i.521.6 16 31.26 odd 6
961.2.c.j.439.6 16 31.25 even 3
961.2.c.j.521.6 16 31.5 even 3
961.2.d.n.374.2 16 31.23 odd 10
961.2.d.n.388.2 16 31.27 odd 10
961.2.d.o.374.2 16 31.8 even 5
961.2.d.o.388.2 16 31.4 even 5
961.2.d.p.531.3 16 31.2 even 5
961.2.d.p.628.3 16 31.16 even 5
961.2.d.q.531.3 16 31.29 odd 10
961.2.d.q.628.3 16 31.15 odd 10
961.2.g.j.235.1 16 31.24 odd 30
961.2.g.j.732.1 16 31.22 odd 30
961.2.g.k.235.1 16 31.7 even 15
961.2.g.k.732.1 16 31.9 even 15
961.2.g.l.338.1 16 31.11 odd 30
961.2.g.l.816.1 16 31.17 odd 30
961.2.g.m.448.2 16 31.13 odd 30
961.2.g.m.547.2 16 31.12 odd 30
961.2.g.n.844.2 16 31.21 odd 30
961.2.g.n.846.2 16 31.3 odd 30
961.2.g.s.448.2 16 31.18 even 15
961.2.g.s.547.2 16 31.19 even 15
961.2.g.t.844.2 16 31.10 even 15
961.2.g.t.846.2 16 31.28 even 15
8649.2.a.be.1.3 8 93.92 even 2
8649.2.a.bf.1.3 8 3.2 odd 2