Properties

Label 961.2.a.j.1.6
Level $961$
Weight $2$
Character 961.1
Self dual yes
Analytic conductor $7.674$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(1,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,2,3,8,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.8.2051578125.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 9x^{6} + 19x^{5} + 14x^{4} - 28x^{3} - 11x^{2} + 6x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(0.431370\) of defining polynomial
Character \(\chi\) \(=\) 961.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.26660 q^{2} -1.48431 q^{3} -0.395721 q^{4} -3.80032 q^{5} -1.88004 q^{6} +2.18899 q^{7} -3.03442 q^{8} -0.796809 q^{9} -4.81349 q^{10} +0.950596 q^{11} +0.587374 q^{12} -0.168142 q^{13} +2.77258 q^{14} +5.64087 q^{15} -3.05196 q^{16} +6.57666 q^{17} -1.00924 q^{18} -1.15284 q^{19} +1.50387 q^{20} -3.24915 q^{21} +1.20403 q^{22} +4.62850 q^{23} +4.50404 q^{24} +9.44244 q^{25} -0.212969 q^{26} +5.63566 q^{27} -0.866228 q^{28} -1.33672 q^{29} +7.14474 q^{30} +2.20322 q^{32} -1.41098 q^{33} +8.33000 q^{34} -8.31886 q^{35} +0.315314 q^{36} +3.87165 q^{37} -1.46019 q^{38} +0.249576 q^{39} +11.5318 q^{40} +0.328203 q^{41} -4.11538 q^{42} -9.63057 q^{43} -0.376170 q^{44} +3.02813 q^{45} +5.86247 q^{46} +5.63858 q^{47} +4.53008 q^{48} -2.20832 q^{49} +11.9598 q^{50} -9.76183 q^{51} +0.0665374 q^{52} +7.33294 q^{53} +7.13814 q^{54} -3.61257 q^{55} -6.64232 q^{56} +1.71118 q^{57} -1.69309 q^{58} -2.65312 q^{59} -2.23221 q^{60} +1.74967 q^{61} -1.74421 q^{63} +8.89454 q^{64} +0.638995 q^{65} -1.78715 q^{66} +0.552007 q^{67} -2.60252 q^{68} -6.87015 q^{69} -10.5367 q^{70} +1.13699 q^{71} +2.41786 q^{72} +7.92260 q^{73} +4.90384 q^{74} -14.0156 q^{75} +0.456203 q^{76} +2.08084 q^{77} +0.316114 q^{78} -4.54228 q^{79} +11.5984 q^{80} -5.97467 q^{81} +0.415702 q^{82} -0.326396 q^{83} +1.28576 q^{84} -24.9934 q^{85} -12.1981 q^{86} +1.98411 q^{87} -2.88451 q^{88} +14.7102 q^{89} +3.83543 q^{90} -0.368062 q^{91} -1.83159 q^{92} +7.14183 q^{94} +4.38117 q^{95} -3.27028 q^{96} +15.5192 q^{97} -2.79707 q^{98} -0.757443 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} + 3 q^{3} + 8 q^{4} + 3 q^{5} + 11 q^{6} - 2 q^{7} - 9 q^{8} + 5 q^{9} - 13 q^{10} + 18 q^{11} + 8 q^{13} - 9 q^{14} + 18 q^{15} + 4 q^{16} + 14 q^{17} + 23 q^{18} - 6 q^{19} - 7 q^{20} - q^{21}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.26660 0.895623 0.447811 0.894128i \(-0.352204\pi\)
0.447811 + 0.894128i \(0.352204\pi\)
\(3\) −1.48431 −0.856970 −0.428485 0.903549i \(-0.640952\pi\)
−0.428485 + 0.903549i \(0.640952\pi\)
\(4\) −0.395721 −0.197860
\(5\) −3.80032 −1.69956 −0.849778 0.527141i \(-0.823264\pi\)
−0.849778 + 0.527141i \(0.823264\pi\)
\(6\) −1.88004 −0.767521
\(7\) 2.18899 0.827360 0.413680 0.910422i \(-0.364243\pi\)
0.413680 + 0.910422i \(0.364243\pi\)
\(8\) −3.03442 −1.07283
\(9\) −0.796809 −0.265603
\(10\) −4.81349 −1.52216
\(11\) 0.950596 0.286615 0.143308 0.989678i \(-0.454226\pi\)
0.143308 + 0.989678i \(0.454226\pi\)
\(12\) 0.587374 0.169560
\(13\) −0.168142 −0.0466343 −0.0233172 0.999728i \(-0.507423\pi\)
−0.0233172 + 0.999728i \(0.507423\pi\)
\(14\) 2.77258 0.741003
\(15\) 5.64087 1.45647
\(16\) −3.05196 −0.762991
\(17\) 6.57666 1.59507 0.797537 0.603271i \(-0.206136\pi\)
0.797537 + 0.603271i \(0.206136\pi\)
\(18\) −1.00924 −0.237880
\(19\) −1.15284 −0.264480 −0.132240 0.991218i \(-0.542217\pi\)
−0.132240 + 0.991218i \(0.542217\pi\)
\(20\) 1.50387 0.336274
\(21\) −3.24915 −0.709023
\(22\) 1.20403 0.256699
\(23\) 4.62850 0.965109 0.482554 0.875866i \(-0.339709\pi\)
0.482554 + 0.875866i \(0.339709\pi\)
\(24\) 4.50404 0.919383
\(25\) 9.44244 1.88849
\(26\) −0.212969 −0.0417667
\(27\) 5.63566 1.08458
\(28\) −0.866228 −0.163702
\(29\) −1.33672 −0.248222 −0.124111 0.992268i \(-0.539608\pi\)
−0.124111 + 0.992268i \(0.539608\pi\)
\(30\) 7.14474 1.30444
\(31\) 0 0
\(32\) 2.20322 0.389479
\(33\) −1.41098 −0.245621
\(34\) 8.33000 1.42858
\(35\) −8.31886 −1.40614
\(36\) 0.315314 0.0525523
\(37\) 3.87165 0.636495 0.318248 0.948008i \(-0.396906\pi\)
0.318248 + 0.948008i \(0.396906\pi\)
\(38\) −1.46019 −0.236874
\(39\) 0.249576 0.0399642
\(40\) 11.5318 1.82333
\(41\) 0.328203 0.0512566 0.0256283 0.999672i \(-0.491841\pi\)
0.0256283 + 0.999672i \(0.491841\pi\)
\(42\) −4.11538 −0.635017
\(43\) −9.63057 −1.46865 −0.734324 0.678799i \(-0.762501\pi\)
−0.734324 + 0.678799i \(0.762501\pi\)
\(44\) −0.376170 −0.0567098
\(45\) 3.02813 0.451407
\(46\) 5.86247 0.864373
\(47\) 5.63858 0.822471 0.411235 0.911529i \(-0.365097\pi\)
0.411235 + 0.911529i \(0.365097\pi\)
\(48\) 4.53008 0.653860
\(49\) −2.20832 −0.315475
\(50\) 11.9598 1.69137
\(51\) −9.76183 −1.36693
\(52\) 0.0665374 0.00922708
\(53\) 7.33294 1.00726 0.503629 0.863920i \(-0.331998\pi\)
0.503629 + 0.863920i \(0.331998\pi\)
\(54\) 7.13814 0.971377
\(55\) −3.61257 −0.487119
\(56\) −6.64232 −0.887617
\(57\) 1.71118 0.226651
\(58\) −1.69309 −0.222313
\(59\) −2.65312 −0.345407 −0.172703 0.984974i \(-0.555250\pi\)
−0.172703 + 0.984974i \(0.555250\pi\)
\(60\) −2.23221 −0.288177
\(61\) 1.74967 0.224023 0.112011 0.993707i \(-0.464271\pi\)
0.112011 + 0.993707i \(0.464271\pi\)
\(62\) 0 0
\(63\) −1.74421 −0.219749
\(64\) 8.89454 1.11182
\(65\) 0.638995 0.0792576
\(66\) −1.78715 −0.219983
\(67\) 0.552007 0.0674383 0.0337192 0.999431i \(-0.489265\pi\)
0.0337192 + 0.999431i \(0.489265\pi\)
\(68\) −2.60252 −0.315602
\(69\) −6.87015 −0.827069
\(70\) −10.5367 −1.25937
\(71\) 1.13699 0.134936 0.0674679 0.997721i \(-0.478508\pi\)
0.0674679 + 0.997721i \(0.478508\pi\)
\(72\) 2.41786 0.284947
\(73\) 7.92260 0.927270 0.463635 0.886026i \(-0.346545\pi\)
0.463635 + 0.886026i \(0.346545\pi\)
\(74\) 4.90384 0.570059
\(75\) −14.0156 −1.61838
\(76\) 0.456203 0.0523301
\(77\) 2.08084 0.237134
\(78\) 0.316114 0.0357928
\(79\) −4.54228 −0.511046 −0.255523 0.966803i \(-0.582248\pi\)
−0.255523 + 0.966803i \(0.582248\pi\)
\(80\) 11.5984 1.29675
\(81\) −5.97467 −0.663852
\(82\) 0.415702 0.0459066
\(83\) −0.326396 −0.0358266 −0.0179133 0.999840i \(-0.505702\pi\)
−0.0179133 + 0.999840i \(0.505702\pi\)
\(84\) 1.28576 0.140287
\(85\) −24.9934 −2.71091
\(86\) −12.1981 −1.31535
\(87\) 1.98411 0.212719
\(88\) −2.88451 −0.307490
\(89\) 14.7102 1.55927 0.779637 0.626232i \(-0.215404\pi\)
0.779637 + 0.626232i \(0.215404\pi\)
\(90\) 3.83543 0.404290
\(91\) −0.368062 −0.0385834
\(92\) −1.83159 −0.190957
\(93\) 0 0
\(94\) 7.14183 0.736623
\(95\) 4.38117 0.449498
\(96\) −3.27028 −0.333771
\(97\) 15.5192 1.57573 0.787867 0.615845i \(-0.211185\pi\)
0.787867 + 0.615845i \(0.211185\pi\)
\(98\) −2.79707 −0.282546
\(99\) −0.757443 −0.0761259
\(100\) −3.73657 −0.373657
\(101\) 4.87360 0.484941 0.242471 0.970159i \(-0.422042\pi\)
0.242471 + 0.970159i \(0.422042\pi\)
\(102\) −12.3643 −1.22425
\(103\) 1.93062 0.190230 0.0951148 0.995466i \(-0.469678\pi\)
0.0951148 + 0.995466i \(0.469678\pi\)
\(104\) 0.510215 0.0500307
\(105\) 12.3478 1.20502
\(106\) 9.28792 0.902122
\(107\) 12.5275 1.21108 0.605540 0.795815i \(-0.292957\pi\)
0.605540 + 0.795815i \(0.292957\pi\)
\(108\) −2.23015 −0.214596
\(109\) −10.2625 −0.982968 −0.491484 0.870887i \(-0.663545\pi\)
−0.491484 + 0.870887i \(0.663545\pi\)
\(110\) −4.57568 −0.436274
\(111\) −5.74675 −0.545457
\(112\) −6.68072 −0.631268
\(113\) −3.84294 −0.361514 −0.180757 0.983528i \(-0.557855\pi\)
−0.180757 + 0.983528i \(0.557855\pi\)
\(114\) 2.16738 0.202994
\(115\) −17.5898 −1.64026
\(116\) 0.528966 0.0491132
\(117\) 0.133977 0.0123862
\(118\) −3.36045 −0.309354
\(119\) 14.3962 1.31970
\(120\) −17.1168 −1.56254
\(121\) −10.0964 −0.917852
\(122\) 2.21614 0.200640
\(123\) −0.487156 −0.0439254
\(124\) 0 0
\(125\) −16.8827 −1.51003
\(126\) −2.20922 −0.196813
\(127\) −7.34389 −0.651665 −0.325832 0.945428i \(-0.605644\pi\)
−0.325832 + 0.945428i \(0.605644\pi\)
\(128\) 6.85938 0.606290
\(129\) 14.2948 1.25859
\(130\) 0.809352 0.0709849
\(131\) 13.0337 1.13876 0.569379 0.822075i \(-0.307184\pi\)
0.569379 + 0.822075i \(0.307184\pi\)
\(132\) 0.558355 0.0485986
\(133\) −2.52356 −0.218820
\(134\) 0.699172 0.0603993
\(135\) −21.4173 −1.84331
\(136\) −19.9564 −1.71124
\(137\) 0.134299 0.0114740 0.00573698 0.999984i \(-0.498174\pi\)
0.00573698 + 0.999984i \(0.498174\pi\)
\(138\) −8.70174 −0.740742
\(139\) −11.5275 −0.977749 −0.488874 0.872354i \(-0.662592\pi\)
−0.488874 + 0.872354i \(0.662592\pi\)
\(140\) 3.29195 0.278220
\(141\) −8.36942 −0.704832
\(142\) 1.44011 0.120851
\(143\) −0.159835 −0.0133661
\(144\) 2.43183 0.202653
\(145\) 5.07995 0.421867
\(146\) 10.0348 0.830484
\(147\) 3.27785 0.270352
\(148\) −1.53209 −0.125937
\(149\) −5.44108 −0.445751 −0.222875 0.974847i \(-0.571544\pi\)
−0.222875 + 0.974847i \(0.571544\pi\)
\(150\) −17.7521 −1.44945
\(151\) −13.6892 −1.11401 −0.557005 0.830509i \(-0.688050\pi\)
−0.557005 + 0.830509i \(0.688050\pi\)
\(152\) 3.49821 0.283742
\(153\) −5.24034 −0.423656
\(154\) 2.63560 0.212383
\(155\) 0 0
\(156\) −0.0987625 −0.00790733
\(157\) −15.0553 −1.20155 −0.600774 0.799419i \(-0.705141\pi\)
−0.600774 + 0.799419i \(0.705141\pi\)
\(158\) −5.75326 −0.457705
\(159\) −10.8844 −0.863189
\(160\) −8.37296 −0.661941
\(161\) 10.1317 0.798493
\(162\) −7.56752 −0.594561
\(163\) 17.0381 1.33453 0.667263 0.744822i \(-0.267466\pi\)
0.667263 + 0.744822i \(0.267466\pi\)
\(164\) −0.129877 −0.0101417
\(165\) 5.36219 0.417446
\(166\) −0.413414 −0.0320871
\(167\) 16.1982 1.25346 0.626729 0.779238i \(-0.284393\pi\)
0.626729 + 0.779238i \(0.284393\pi\)
\(168\) 9.85930 0.760661
\(169\) −12.9717 −0.997825
\(170\) −31.6567 −2.42796
\(171\) 0.918595 0.0702467
\(172\) 3.81102 0.290587
\(173\) −2.33122 −0.177239 −0.0886196 0.996066i \(-0.528246\pi\)
−0.0886196 + 0.996066i \(0.528246\pi\)
\(174\) 2.51307 0.190515
\(175\) 20.6694 1.56246
\(176\) −2.90118 −0.218685
\(177\) 3.93806 0.296003
\(178\) 18.6319 1.39652
\(179\) 16.9706 1.26844 0.634222 0.773151i \(-0.281321\pi\)
0.634222 + 0.773151i \(0.281321\pi\)
\(180\) −1.19829 −0.0893155
\(181\) 7.33576 0.545263 0.272631 0.962119i \(-0.412106\pi\)
0.272631 + 0.962119i \(0.412106\pi\)
\(182\) −0.466188 −0.0345561
\(183\) −2.59707 −0.191981
\(184\) −14.0448 −1.03540
\(185\) −14.7135 −1.08176
\(186\) 0 0
\(187\) 6.25174 0.457173
\(188\) −2.23130 −0.162734
\(189\) 12.3364 0.897341
\(190\) 5.54919 0.402581
\(191\) 7.82276 0.566035 0.283018 0.959115i \(-0.408665\pi\)
0.283018 + 0.959115i \(0.408665\pi\)
\(192\) −13.2023 −0.952793
\(193\) −4.63151 −0.333383 −0.166692 0.986009i \(-0.553308\pi\)
−0.166692 + 0.986009i \(0.553308\pi\)
\(194\) 19.6566 1.41126
\(195\) −0.948470 −0.0679213
\(196\) 0.873880 0.0624200
\(197\) 22.3844 1.59482 0.797411 0.603437i \(-0.206203\pi\)
0.797411 + 0.603437i \(0.206203\pi\)
\(198\) −0.959379 −0.0681801
\(199\) 26.6038 1.88589 0.942945 0.332948i \(-0.108043\pi\)
0.942945 + 0.332948i \(0.108043\pi\)
\(200\) −28.6524 −2.02603
\(201\) −0.819352 −0.0577926
\(202\) 6.17291 0.434324
\(203\) −2.92606 −0.205369
\(204\) 3.86296 0.270461
\(205\) −1.24728 −0.0871135
\(206\) 2.44533 0.170374
\(207\) −3.68803 −0.256336
\(208\) 0.513165 0.0355816
\(209\) −1.09589 −0.0758040
\(210\) 15.6398 1.07925
\(211\) 1.32614 0.0912951 0.0456476 0.998958i \(-0.485465\pi\)
0.0456476 + 0.998958i \(0.485465\pi\)
\(212\) −2.90180 −0.199296
\(213\) −1.68765 −0.115636
\(214\) 15.8674 1.08467
\(215\) 36.5993 2.49605
\(216\) −17.1010 −1.16357
\(217\) 0 0
\(218\) −12.9985 −0.880368
\(219\) −11.7596 −0.794642
\(220\) 1.42957 0.0963814
\(221\) −1.10581 −0.0743851
\(222\) −7.27884 −0.488524
\(223\) 12.1199 0.811612 0.405806 0.913959i \(-0.366991\pi\)
0.405806 + 0.913959i \(0.366991\pi\)
\(224\) 4.82284 0.322239
\(225\) −7.52382 −0.501588
\(226\) −4.86748 −0.323780
\(227\) −15.9022 −1.05546 −0.527732 0.849411i \(-0.676957\pi\)
−0.527732 + 0.849411i \(0.676957\pi\)
\(228\) −0.677149 −0.0448453
\(229\) 16.2986 1.07704 0.538521 0.842612i \(-0.318983\pi\)
0.538521 + 0.842612i \(0.318983\pi\)
\(230\) −22.2792 −1.46905
\(231\) −3.08863 −0.203217
\(232\) 4.05616 0.266300
\(233\) −5.12296 −0.335616 −0.167808 0.985820i \(-0.553669\pi\)
−0.167808 + 0.985820i \(0.553669\pi\)
\(234\) 0.169696 0.0110934
\(235\) −21.4284 −1.39783
\(236\) 1.04989 0.0683423
\(237\) 6.74217 0.437951
\(238\) 18.2343 1.18195
\(239\) −8.56800 −0.554218 −0.277109 0.960839i \(-0.589376\pi\)
−0.277109 + 0.960839i \(0.589376\pi\)
\(240\) −17.2157 −1.11127
\(241\) 6.84676 0.441039 0.220519 0.975383i \(-0.429225\pi\)
0.220519 + 0.975383i \(0.429225\pi\)
\(242\) −12.7881 −0.822049
\(243\) −8.03869 −0.515682
\(244\) −0.692382 −0.0443252
\(245\) 8.39234 0.536167
\(246\) −0.617033 −0.0393406
\(247\) 0.193842 0.0123338
\(248\) 0 0
\(249\) 0.484474 0.0307023
\(250\) −21.3836 −1.35242
\(251\) −22.6661 −1.43067 −0.715336 0.698781i \(-0.753726\pi\)
−0.715336 + 0.698781i \(0.753726\pi\)
\(252\) 0.690219 0.0434797
\(253\) 4.39983 0.276615
\(254\) −9.30178 −0.583645
\(255\) 37.0981 2.32317
\(256\) −9.10097 −0.568810
\(257\) −16.6584 −1.03912 −0.519560 0.854434i \(-0.673904\pi\)
−0.519560 + 0.854434i \(0.673904\pi\)
\(258\) 18.1058 1.12722
\(259\) 8.47500 0.526611
\(260\) −0.252864 −0.0156819
\(261\) 1.06511 0.0659285
\(262\) 16.5085 1.01990
\(263\) 24.5864 1.51606 0.758030 0.652220i \(-0.226162\pi\)
0.758030 + 0.652220i \(0.226162\pi\)
\(264\) 4.28152 0.263509
\(265\) −27.8675 −1.71189
\(266\) −3.19634 −0.195980
\(267\) −21.8345 −1.33625
\(268\) −0.218440 −0.0133434
\(269\) −12.5141 −0.763001 −0.381501 0.924369i \(-0.624593\pi\)
−0.381501 + 0.924369i \(0.624593\pi\)
\(270\) −27.1272 −1.65091
\(271\) 27.1673 1.65030 0.825148 0.564917i \(-0.191092\pi\)
0.825148 + 0.564917i \(0.191092\pi\)
\(272\) −20.0717 −1.21703
\(273\) 0.546320 0.0330648
\(274\) 0.170104 0.0102763
\(275\) 8.97594 0.541270
\(276\) 2.71866 0.163644
\(277\) 15.1573 0.910716 0.455358 0.890308i \(-0.349511\pi\)
0.455358 + 0.890308i \(0.349511\pi\)
\(278\) −14.6007 −0.875694
\(279\) 0 0
\(280\) 25.2430 1.50855
\(281\) 30.2477 1.80443 0.902214 0.431289i \(-0.141941\pi\)
0.902214 + 0.431289i \(0.141941\pi\)
\(282\) −10.6007 −0.631264
\(283\) 3.14532 0.186970 0.0934850 0.995621i \(-0.470199\pi\)
0.0934850 + 0.995621i \(0.470199\pi\)
\(284\) −0.449930 −0.0266984
\(285\) −6.50303 −0.385206
\(286\) −0.202448 −0.0119710
\(287\) 0.718432 0.0424077
\(288\) −1.75555 −0.103447
\(289\) 26.2524 1.54426
\(290\) 6.43427 0.377833
\(291\) −23.0354 −1.35036
\(292\) −3.13514 −0.183470
\(293\) 1.90008 0.111004 0.0555020 0.998459i \(-0.482324\pi\)
0.0555020 + 0.998459i \(0.482324\pi\)
\(294\) 4.15173 0.242134
\(295\) 10.0827 0.587038
\(296\) −11.7482 −0.682851
\(297\) 5.35723 0.310858
\(298\) −6.89168 −0.399224
\(299\) −0.778247 −0.0450072
\(300\) 5.54624 0.320212
\(301\) −21.0812 −1.21510
\(302\) −17.3387 −0.997733
\(303\) −7.23395 −0.415580
\(304\) 3.51843 0.201796
\(305\) −6.64932 −0.380739
\(306\) −6.63742 −0.379436
\(307\) 22.7281 1.29716 0.648580 0.761146i \(-0.275363\pi\)
0.648580 + 0.761146i \(0.275363\pi\)
\(308\) −0.823433 −0.0469194
\(309\) −2.86565 −0.163021
\(310\) 0 0
\(311\) 15.8754 0.900213 0.450106 0.892975i \(-0.351386\pi\)
0.450106 + 0.892975i \(0.351386\pi\)
\(312\) −0.757320 −0.0428748
\(313\) −6.34935 −0.358886 −0.179443 0.983768i \(-0.557430\pi\)
−0.179443 + 0.983768i \(0.557430\pi\)
\(314\) −19.0691 −1.07613
\(315\) 6.62855 0.373476
\(316\) 1.79747 0.101116
\(317\) −15.3010 −0.859390 −0.429695 0.902974i \(-0.641379\pi\)
−0.429695 + 0.902974i \(0.641379\pi\)
\(318\) −13.7862 −0.773092
\(319\) −1.27068 −0.0711442
\(320\) −33.8021 −1.88959
\(321\) −18.5948 −1.03786
\(322\) 12.8329 0.715148
\(323\) −7.58184 −0.421865
\(324\) 2.36430 0.131350
\(325\) −1.58767 −0.0880683
\(326\) 21.5805 1.19523
\(327\) 15.2328 0.842374
\(328\) −0.995906 −0.0549897
\(329\) 12.3428 0.680480
\(330\) 6.79176 0.373874
\(331\) 8.96795 0.492923 0.246462 0.969153i \(-0.420732\pi\)
0.246462 + 0.969153i \(0.420732\pi\)
\(332\) 0.129162 0.00708866
\(333\) −3.08497 −0.169055
\(334\) 20.5167 1.12262
\(335\) −2.09780 −0.114615
\(336\) 9.91629 0.540978
\(337\) 4.36877 0.237982 0.118991 0.992895i \(-0.462034\pi\)
0.118991 + 0.992895i \(0.462034\pi\)
\(338\) −16.4300 −0.893675
\(339\) 5.70414 0.309806
\(340\) 9.89040 0.536382
\(341\) 0 0
\(342\) 1.16349 0.0629145
\(343\) −20.1569 −1.08837
\(344\) 29.2232 1.57561
\(345\) 26.1088 1.40565
\(346\) −2.95272 −0.158739
\(347\) −24.4053 −1.31015 −0.655073 0.755566i \(-0.727362\pi\)
−0.655073 + 0.755566i \(0.727362\pi\)
\(348\) −0.785152 −0.0420885
\(349\) 13.0439 0.698224 0.349112 0.937081i \(-0.386483\pi\)
0.349112 + 0.937081i \(0.386483\pi\)
\(350\) 26.1799 1.39937
\(351\) −0.947594 −0.0505788
\(352\) 2.09438 0.111631
\(353\) −10.8248 −0.576146 −0.288073 0.957608i \(-0.593015\pi\)
−0.288073 + 0.957608i \(0.593015\pi\)
\(354\) 4.98796 0.265107
\(355\) −4.32092 −0.229331
\(356\) −5.82111 −0.308518
\(357\) −21.3685 −1.13094
\(358\) 21.4950 1.13605
\(359\) 33.7834 1.78302 0.891510 0.453001i \(-0.149647\pi\)
0.891510 + 0.453001i \(0.149647\pi\)
\(360\) −9.18863 −0.484283
\(361\) −17.6710 −0.930050
\(362\) 9.29149 0.488350
\(363\) 14.9862 0.786571
\(364\) 0.145650 0.00763412
\(365\) −30.1084 −1.57595
\(366\) −3.28945 −0.171942
\(367\) −22.6313 −1.18135 −0.590673 0.806911i \(-0.701138\pi\)
−0.590673 + 0.806911i \(0.701138\pi\)
\(368\) −14.1260 −0.736369
\(369\) −0.261515 −0.0136139
\(370\) −18.6362 −0.968847
\(371\) 16.0517 0.833365
\(372\) 0 0
\(373\) −32.9720 −1.70723 −0.853613 0.520908i \(-0.825593\pi\)
−0.853613 + 0.520908i \(0.825593\pi\)
\(374\) 7.91846 0.409454
\(375\) 25.0592 1.29405
\(376\) −17.1098 −0.882372
\(377\) 0.224759 0.0115757
\(378\) 15.6253 0.803679
\(379\) −32.4919 −1.66900 −0.834498 0.551012i \(-0.814242\pi\)
−0.834498 + 0.551012i \(0.814242\pi\)
\(380\) −1.73372 −0.0889379
\(381\) 10.9006 0.558457
\(382\) 9.90832 0.506954
\(383\) 26.7804 1.36842 0.684208 0.729287i \(-0.260148\pi\)
0.684208 + 0.729287i \(0.260148\pi\)
\(384\) −10.1815 −0.519572
\(385\) −7.90787 −0.403023
\(386\) −5.86627 −0.298585
\(387\) 7.67373 0.390078
\(388\) −6.14126 −0.311775
\(389\) 17.7375 0.899327 0.449663 0.893198i \(-0.351544\pi\)
0.449663 + 0.893198i \(0.351544\pi\)
\(390\) −1.20133 −0.0608319
\(391\) 30.4400 1.53942
\(392\) 6.70099 0.338451
\(393\) −19.3461 −0.975880
\(394\) 28.3521 1.42836
\(395\) 17.2621 0.868552
\(396\) 0.299736 0.0150623
\(397\) 9.94953 0.499352 0.249676 0.968329i \(-0.419676\pi\)
0.249676 + 0.968329i \(0.419676\pi\)
\(398\) 33.6964 1.68905
\(399\) 3.74576 0.187522
\(400\) −28.8180 −1.44090
\(401\) −19.8956 −0.993538 −0.496769 0.867883i \(-0.665480\pi\)
−0.496769 + 0.867883i \(0.665480\pi\)
\(402\) −1.03779 −0.0517604
\(403\) 0 0
\(404\) −1.92858 −0.0959506
\(405\) 22.7057 1.12825
\(406\) −3.70615 −0.183933
\(407\) 3.68037 0.182429
\(408\) 29.6215 1.46648
\(409\) 24.3255 1.20282 0.601410 0.798941i \(-0.294606\pi\)
0.601410 + 0.798941i \(0.294606\pi\)
\(410\) −1.57980 −0.0780208
\(411\) −0.199342 −0.00983284
\(412\) −0.763986 −0.0376389
\(413\) −5.80765 −0.285776
\(414\) −4.67127 −0.229580
\(415\) 1.24041 0.0608893
\(416\) −0.370456 −0.0181631
\(417\) 17.1104 0.837901
\(418\) −1.38805 −0.0678918
\(419\) −4.40675 −0.215284 −0.107642 0.994190i \(-0.534330\pi\)
−0.107642 + 0.994190i \(0.534330\pi\)
\(420\) −4.88628 −0.238426
\(421\) −12.4237 −0.605493 −0.302746 0.953071i \(-0.597904\pi\)
−0.302746 + 0.953071i \(0.597904\pi\)
\(422\) 1.67969 0.0817660
\(423\) −4.49287 −0.218451
\(424\) −22.2513 −1.08062
\(425\) 62.0997 3.01228
\(426\) −2.13758 −0.103566
\(427\) 3.83002 0.185348
\(428\) −4.95739 −0.239625
\(429\) 0.237246 0.0114544
\(430\) 46.3567 2.23552
\(431\) −18.5653 −0.894259 −0.447130 0.894469i \(-0.647554\pi\)
−0.447130 + 0.894469i \(0.647554\pi\)
\(432\) −17.1998 −0.827527
\(433\) 36.1204 1.73584 0.867918 0.496708i \(-0.165458\pi\)
0.867918 + 0.496708i \(0.165458\pi\)
\(434\) 0 0
\(435\) −7.54024 −0.361527
\(436\) 4.06108 0.194490
\(437\) −5.33593 −0.255252
\(438\) −14.8948 −0.711699
\(439\) −19.0094 −0.907268 −0.453634 0.891188i \(-0.649873\pi\)
−0.453634 + 0.891188i \(0.649873\pi\)
\(440\) 10.9621 0.522596
\(441\) 1.75961 0.0837911
\(442\) −1.40063 −0.0666210
\(443\) 12.4540 0.591709 0.295854 0.955233i \(-0.404396\pi\)
0.295854 + 0.955233i \(0.404396\pi\)
\(444\) 2.27411 0.107924
\(445\) −55.9033 −2.65007
\(446\) 15.3511 0.726898
\(447\) 8.07627 0.381995
\(448\) 19.4700 0.919873
\(449\) −25.4366 −1.20043 −0.600214 0.799840i \(-0.704918\pi\)
−0.600214 + 0.799840i \(0.704918\pi\)
\(450\) −9.52968 −0.449234
\(451\) 0.311988 0.0146909
\(452\) 1.52073 0.0715292
\(453\) 20.3191 0.954673
\(454\) −20.1417 −0.945297
\(455\) 1.39875 0.0655746
\(456\) −5.19244 −0.243159
\(457\) −31.9740 −1.49568 −0.747839 0.663880i \(-0.768909\pi\)
−0.747839 + 0.663880i \(0.768909\pi\)
\(458\) 20.6438 0.964623
\(459\) 37.0638 1.72999
\(460\) 6.96064 0.324542
\(461\) −19.3501 −0.901223 −0.450612 0.892720i \(-0.648794\pi\)
−0.450612 + 0.892720i \(0.648794\pi\)
\(462\) −3.91206 −0.182006
\(463\) −0.0414625 −0.00192693 −0.000963463 1.00000i \(-0.500307\pi\)
−0.000963463 1.00000i \(0.500307\pi\)
\(464\) 4.07961 0.189391
\(465\) 0 0
\(466\) −6.48875 −0.300586
\(467\) 25.3083 1.17113 0.585564 0.810626i \(-0.300873\pi\)
0.585564 + 0.810626i \(0.300873\pi\)
\(468\) −0.0530176 −0.00245074
\(469\) 1.20834 0.0557958
\(470\) −27.1412 −1.25193
\(471\) 22.3469 1.02969
\(472\) 8.05069 0.370563
\(473\) −9.15478 −0.420937
\(474\) 8.53965 0.392239
\(475\) −10.8856 −0.499467
\(476\) −5.69688 −0.261116
\(477\) −5.84296 −0.267531
\(478\) −10.8522 −0.496370
\(479\) −21.2411 −0.970533 −0.485266 0.874366i \(-0.661277\pi\)
−0.485266 + 0.874366i \(0.661277\pi\)
\(480\) 12.4281 0.567263
\(481\) −0.650988 −0.0296825
\(482\) 8.67212 0.395004
\(483\) −15.0387 −0.684284
\(484\) 3.99534 0.181606
\(485\) −58.9779 −2.67805
\(486\) −10.1818 −0.461857
\(487\) −26.7620 −1.21270 −0.606350 0.795198i \(-0.707367\pi\)
−0.606350 + 0.795198i \(0.707367\pi\)
\(488\) −5.30925 −0.240338
\(489\) −25.2899 −1.14365
\(490\) 10.6298 0.480203
\(491\) 12.5664 0.567113 0.283557 0.958955i \(-0.408486\pi\)
0.283557 + 0.958955i \(0.408486\pi\)
\(492\) 0.192778 0.00869109
\(493\) −8.79111 −0.395932
\(494\) 0.245520 0.0110465
\(495\) 2.87853 0.129380
\(496\) 0 0
\(497\) 2.48886 0.111640
\(498\) 0.613636 0.0274977
\(499\) 23.0304 1.03098 0.515490 0.856895i \(-0.327610\pi\)
0.515490 + 0.856895i \(0.327610\pi\)
\(500\) 6.68083 0.298776
\(501\) −24.0433 −1.07417
\(502\) −28.7089 −1.28134
\(503\) 0.661578 0.0294983 0.0147492 0.999891i \(-0.495305\pi\)
0.0147492 + 0.999891i \(0.495305\pi\)
\(504\) 5.29266 0.235754
\(505\) −18.5212 −0.824184
\(506\) 5.57283 0.247743
\(507\) 19.2541 0.855106
\(508\) 2.90613 0.128939
\(509\) 11.6674 0.517149 0.258574 0.965991i \(-0.416747\pi\)
0.258574 + 0.965991i \(0.416747\pi\)
\(510\) 46.9885 2.08068
\(511\) 17.3425 0.767186
\(512\) −25.2461 −1.11573
\(513\) −6.49702 −0.286851
\(514\) −21.0995 −0.930659
\(515\) −7.33697 −0.323306
\(516\) −5.65675 −0.249024
\(517\) 5.36001 0.235733
\(518\) 10.7344 0.471644
\(519\) 3.46026 0.151889
\(520\) −1.93898 −0.0850300
\(521\) −31.9184 −1.39837 −0.699186 0.714940i \(-0.746454\pi\)
−0.699186 + 0.714940i \(0.746454\pi\)
\(522\) 1.34907 0.0590470
\(523\) 0.00415040 0.000181484 0 9.07421e−5 1.00000i \(-0.499971\pi\)
9.07421e−5 1.00000i \(0.499971\pi\)
\(524\) −5.15769 −0.225315
\(525\) −30.6799 −1.33898
\(526\) 31.1411 1.35782
\(527\) 0 0
\(528\) 4.30627 0.187406
\(529\) −1.57699 −0.0685646
\(530\) −35.2971 −1.53321
\(531\) 2.11403 0.0917411
\(532\) 0.998624 0.0432958
\(533\) −0.0551848 −0.00239032
\(534\) −27.6556 −1.19678
\(535\) −47.6086 −2.05830
\(536\) −1.67502 −0.0723499
\(537\) −25.1898 −1.08702
\(538\) −15.8504 −0.683361
\(539\) −2.09922 −0.0904200
\(540\) 8.47527 0.364718
\(541\) 29.2750 1.25863 0.629316 0.777150i \(-0.283335\pi\)
0.629316 + 0.777150i \(0.283335\pi\)
\(542\) 34.4101 1.47804
\(543\) −10.8886 −0.467274
\(544\) 14.4898 0.621247
\(545\) 39.0007 1.67061
\(546\) 0.691970 0.0296136
\(547\) 41.1653 1.76010 0.880050 0.474880i \(-0.157509\pi\)
0.880050 + 0.474880i \(0.157509\pi\)
\(548\) −0.0531450 −0.00227024
\(549\) −1.39416 −0.0595011
\(550\) 11.3689 0.484773
\(551\) 1.54102 0.0656497
\(552\) 20.8469 0.887305
\(553\) −9.94300 −0.422820
\(554\) 19.1983 0.815658
\(555\) 21.8395 0.927034
\(556\) 4.56167 0.193458
\(557\) 5.73810 0.243131 0.121566 0.992583i \(-0.461209\pi\)
0.121566 + 0.992583i \(0.461209\pi\)
\(558\) 0 0
\(559\) 1.61931 0.0684894
\(560\) 25.3889 1.07288
\(561\) −9.27955 −0.391783
\(562\) 38.3118 1.61609
\(563\) −14.2942 −0.602428 −0.301214 0.953557i \(-0.597392\pi\)
−0.301214 + 0.953557i \(0.597392\pi\)
\(564\) 3.31195 0.139458
\(565\) 14.6044 0.614412
\(566\) 3.98387 0.167455
\(567\) −13.0785 −0.549245
\(568\) −3.45011 −0.144763
\(569\) −14.3618 −0.602078 −0.301039 0.953612i \(-0.597333\pi\)
−0.301039 + 0.953612i \(0.597333\pi\)
\(570\) −8.23675 −0.345000
\(571\) −33.3790 −1.39687 −0.698434 0.715674i \(-0.746119\pi\)
−0.698434 + 0.715674i \(0.746119\pi\)
\(572\) 0.0632502 0.00264462
\(573\) −11.6114 −0.485075
\(574\) 0.909967 0.0379813
\(575\) 43.7043 1.82260
\(576\) −7.08725 −0.295302
\(577\) −22.4796 −0.935838 −0.467919 0.883771i \(-0.654996\pi\)
−0.467919 + 0.883771i \(0.654996\pi\)
\(578\) 33.2513 1.38307
\(579\) 6.87461 0.285699
\(580\) −2.01024 −0.0834706
\(581\) −0.714477 −0.0296415
\(582\) −29.1766 −1.20941
\(583\) 6.97067 0.288695
\(584\) −24.0405 −0.994804
\(585\) −0.509157 −0.0210511
\(586\) 2.40665 0.0994176
\(587\) 6.41617 0.264824 0.132412 0.991195i \(-0.457728\pi\)
0.132412 + 0.991195i \(0.457728\pi\)
\(588\) −1.29711 −0.0534920
\(589\) 0 0
\(590\) 12.7708 0.525764
\(591\) −33.2255 −1.36671
\(592\) −11.8161 −0.485640
\(593\) −20.8601 −0.856623 −0.428312 0.903631i \(-0.640891\pi\)
−0.428312 + 0.903631i \(0.640891\pi\)
\(594\) 6.78548 0.278412
\(595\) −54.7103 −2.24290
\(596\) 2.15315 0.0881963
\(597\) −39.4884 −1.61615
\(598\) −0.985729 −0.0403095
\(599\) −11.5584 −0.472263 −0.236131 0.971721i \(-0.575880\pi\)
−0.236131 + 0.971721i \(0.575880\pi\)
\(600\) 42.5291 1.73624
\(601\) −4.31742 −0.176111 −0.0880555 0.996116i \(-0.528065\pi\)
−0.0880555 + 0.996116i \(0.528065\pi\)
\(602\) −26.7015 −1.08827
\(603\) −0.439844 −0.0179118
\(604\) 5.41709 0.220418
\(605\) 38.3694 1.55994
\(606\) −9.16254 −0.372203
\(607\) 44.9092 1.82281 0.911405 0.411510i \(-0.134999\pi\)
0.911405 + 0.411510i \(0.134999\pi\)
\(608\) −2.53997 −0.103009
\(609\) 4.34319 0.175995
\(610\) −8.42204 −0.340998
\(611\) −0.948084 −0.0383554
\(612\) 2.07371 0.0838248
\(613\) 2.60516 0.105222 0.0526108 0.998615i \(-0.483246\pi\)
0.0526108 + 0.998615i \(0.483246\pi\)
\(614\) 28.7874 1.16177
\(615\) 1.85135 0.0746536
\(616\) −6.31416 −0.254405
\(617\) −24.9868 −1.00593 −0.502965 0.864307i \(-0.667758\pi\)
−0.502965 + 0.864307i \(0.667758\pi\)
\(618\) −3.62963 −0.146005
\(619\) −31.9083 −1.28250 −0.641252 0.767330i \(-0.721585\pi\)
−0.641252 + 0.767330i \(0.721585\pi\)
\(620\) 0 0
\(621\) 26.0847 1.04674
\(622\) 20.1078 0.806251
\(623\) 32.2004 1.29008
\(624\) −0.761698 −0.0304923
\(625\) 16.9474 0.677898
\(626\) −8.04209 −0.321427
\(627\) 1.62664 0.0649618
\(628\) 5.95771 0.237739
\(629\) 25.4625 1.01526
\(630\) 8.39573 0.334494
\(631\) 0.359751 0.0143215 0.00716073 0.999974i \(-0.497721\pi\)
0.00716073 + 0.999974i \(0.497721\pi\)
\(632\) 13.7832 0.548266
\(633\) −1.96841 −0.0782372
\(634\) −19.3803 −0.769689
\(635\) 27.9091 1.10754
\(636\) 4.30718 0.170791
\(637\) 0.371313 0.0147120
\(638\) −1.60944 −0.0637183
\(639\) −0.905963 −0.0358394
\(640\) −26.0679 −1.03042
\(641\) 30.8069 1.21680 0.608400 0.793630i \(-0.291812\pi\)
0.608400 + 0.793630i \(0.291812\pi\)
\(642\) −23.5522 −0.929530
\(643\) 1.75184 0.0690856 0.0345428 0.999403i \(-0.489002\pi\)
0.0345428 + 0.999403i \(0.489002\pi\)
\(644\) −4.00934 −0.157990
\(645\) −54.3248 −2.13904
\(646\) −9.60317 −0.377832
\(647\) 24.6504 0.969106 0.484553 0.874762i \(-0.338982\pi\)
0.484553 + 0.874762i \(0.338982\pi\)
\(648\) 18.1297 0.712201
\(649\) −2.52204 −0.0989989
\(650\) −2.01095 −0.0788760
\(651\) 0 0
\(652\) −6.74233 −0.264050
\(653\) −0.285664 −0.0111789 −0.00558946 0.999984i \(-0.501779\pi\)
−0.00558946 + 0.999984i \(0.501779\pi\)
\(654\) 19.2938 0.754449
\(655\) −49.5321 −1.93538
\(656\) −1.00166 −0.0391083
\(657\) −6.31280 −0.246286
\(658\) 15.6334 0.609453
\(659\) 37.4247 1.45786 0.728929 0.684589i \(-0.240018\pi\)
0.728929 + 0.684589i \(0.240018\pi\)
\(660\) −2.12193 −0.0825960
\(661\) 4.19157 0.163033 0.0815167 0.996672i \(-0.474024\pi\)
0.0815167 + 0.996672i \(0.474024\pi\)
\(662\) 11.3588 0.441473
\(663\) 1.64138 0.0637458
\(664\) 0.990423 0.0384359
\(665\) 9.59033 0.371897
\(666\) −3.90742 −0.151410
\(667\) −6.18699 −0.239561
\(668\) −6.40998 −0.248009
\(669\) −17.9898 −0.695526
\(670\) −2.65708 −0.102652
\(671\) 1.66323 0.0642084
\(672\) −7.15861 −0.276149
\(673\) −9.97267 −0.384418 −0.192209 0.981354i \(-0.561565\pi\)
−0.192209 + 0.981354i \(0.561565\pi\)
\(674\) 5.53349 0.213142
\(675\) 53.2144 2.04822
\(676\) 5.13318 0.197430
\(677\) 47.7577 1.83548 0.917738 0.397186i \(-0.130013\pi\)
0.917738 + 0.397186i \(0.130013\pi\)
\(678\) 7.22487 0.277469
\(679\) 33.9713 1.30370
\(680\) 75.8406 2.90835
\(681\) 23.6038 0.904500
\(682\) 0 0
\(683\) 27.7600 1.06221 0.531104 0.847307i \(-0.321777\pi\)
0.531104 + 0.847307i \(0.321777\pi\)
\(684\) −0.363507 −0.0138990
\(685\) −0.510380 −0.0195006
\(686\) −25.5308 −0.974770
\(687\) −24.1923 −0.922993
\(688\) 29.3922 1.12057
\(689\) −1.23298 −0.0469728
\(690\) 33.0694 1.25893
\(691\) 38.0310 1.44677 0.723383 0.690447i \(-0.242586\pi\)
0.723383 + 0.690447i \(0.242586\pi\)
\(692\) 0.922511 0.0350686
\(693\) −1.65804 −0.0629836
\(694\) −30.9118 −1.17340
\(695\) 43.8082 1.66174
\(696\) −6.02062 −0.228211
\(697\) 2.15848 0.0817581
\(698\) 16.5214 0.625346
\(699\) 7.60409 0.287613
\(700\) −8.17931 −0.309149
\(701\) 41.0562 1.55067 0.775336 0.631548i \(-0.217580\pi\)
0.775336 + 0.631548i \(0.217580\pi\)
\(702\) −1.20022 −0.0452995
\(703\) −4.46340 −0.168340
\(704\) 8.45511 0.318664
\(705\) 31.8065 1.19790
\(706\) −13.7107 −0.516010
\(707\) 10.6683 0.401221
\(708\) −1.55837 −0.0585673
\(709\) −42.0657 −1.57981 −0.789906 0.613229i \(-0.789870\pi\)
−0.789906 + 0.613229i \(0.789870\pi\)
\(710\) −5.47289 −0.205394
\(711\) 3.61933 0.135736
\(712\) −44.6368 −1.67284
\(713\) 0 0
\(714\) −27.0654 −1.01290
\(715\) 0.607426 0.0227164
\(716\) −6.71563 −0.250975
\(717\) 12.7176 0.474948
\(718\) 42.7901 1.59691
\(719\) 33.2690 1.24072 0.620362 0.784316i \(-0.286986\pi\)
0.620362 + 0.784316i \(0.286986\pi\)
\(720\) −9.24175 −0.344420
\(721\) 4.22611 0.157388
\(722\) −22.3821 −0.832974
\(723\) −10.1628 −0.377957
\(724\) −2.90291 −0.107886
\(725\) −12.6218 −0.468764
\(726\) 18.9815 0.704471
\(727\) −32.7229 −1.21363 −0.606813 0.794845i \(-0.707552\pi\)
−0.606813 + 0.794845i \(0.707552\pi\)
\(728\) 1.11686 0.0413934
\(729\) 29.8560 1.10578
\(730\) −38.1354 −1.41145
\(731\) −63.3370 −2.34260
\(732\) 1.02771 0.0379854
\(733\) −9.96391 −0.368025 −0.184013 0.982924i \(-0.558909\pi\)
−0.184013 + 0.982924i \(0.558909\pi\)
\(734\) −28.6649 −1.05804
\(735\) −12.4569 −0.459479
\(736\) 10.1976 0.375889
\(737\) 0.524735 0.0193289
\(738\) −0.331235 −0.0121929
\(739\) −30.9584 −1.13882 −0.569412 0.822052i \(-0.692829\pi\)
−0.569412 + 0.822052i \(0.692829\pi\)
\(740\) 5.82244 0.214037
\(741\) −0.287722 −0.0105697
\(742\) 20.3312 0.746380
\(743\) −1.11003 −0.0407231 −0.0203615 0.999793i \(-0.506482\pi\)
−0.0203615 + 0.999793i \(0.506482\pi\)
\(744\) 0 0
\(745\) 20.6778 0.757578
\(746\) −41.7624 −1.52903
\(747\) 0.260075 0.00951566
\(748\) −2.47394 −0.0904563
\(749\) 27.4226 1.00200
\(750\) 31.7401 1.15898
\(751\) 28.1553 1.02740 0.513701 0.857969i \(-0.328274\pi\)
0.513701 + 0.857969i \(0.328274\pi\)
\(752\) −17.2087 −0.627538
\(753\) 33.6436 1.22604
\(754\) 0.284679 0.0103674
\(755\) 52.0233 1.89332
\(756\) −4.88177 −0.177548
\(757\) −38.7223 −1.40739 −0.703693 0.710504i \(-0.748467\pi\)
−0.703693 + 0.710504i \(0.748467\pi\)
\(758\) −41.1542 −1.49479
\(759\) −6.53074 −0.237051
\(760\) −13.2943 −0.482236
\(761\) −43.4369 −1.57459 −0.787293 0.616580i \(-0.788518\pi\)
−0.787293 + 0.616580i \(0.788518\pi\)
\(762\) 13.8068 0.500166
\(763\) −22.4645 −0.813269
\(764\) −3.09563 −0.111996
\(765\) 19.9150 0.720027
\(766\) 33.9201 1.22558
\(767\) 0.446102 0.0161078
\(768\) 13.5087 0.487453
\(769\) −3.11019 −0.112156 −0.0560781 0.998426i \(-0.517860\pi\)
−0.0560781 + 0.998426i \(0.517860\pi\)
\(770\) −10.0161 −0.360956
\(771\) 24.7263 0.890494
\(772\) 1.83278 0.0659633
\(773\) −21.6402 −0.778343 −0.389172 0.921165i \(-0.627239\pi\)
−0.389172 + 0.921165i \(0.627239\pi\)
\(774\) 9.71956 0.349362
\(775\) 0 0
\(776\) −47.0918 −1.69050
\(777\) −12.5796 −0.451289
\(778\) 22.4663 0.805457
\(779\) −0.378366 −0.0135564
\(780\) 0.375329 0.0134389
\(781\) 1.08082 0.0386747
\(782\) 38.5554 1.37874
\(783\) −7.53327 −0.269217
\(784\) 6.73973 0.240705
\(785\) 57.2151 2.04210
\(786\) −24.5038 −0.874020
\(787\) 7.87653 0.280768 0.140384 0.990097i \(-0.455166\pi\)
0.140384 + 0.990097i \(0.455166\pi\)
\(788\) −8.85796 −0.315552
\(789\) −36.4939 −1.29922
\(790\) 21.8642 0.777894
\(791\) −8.41216 −0.299102
\(792\) 2.29840 0.0816702
\(793\) −0.294194 −0.0104471
\(794\) 12.6021 0.447231
\(795\) 41.3642 1.46704
\(796\) −10.5277 −0.373143
\(797\) −29.5182 −1.04559 −0.522793 0.852459i \(-0.675110\pi\)
−0.522793 + 0.852459i \(0.675110\pi\)
\(798\) 4.74438 0.167949
\(799\) 37.0830 1.31190
\(800\) 20.8038 0.735526
\(801\) −11.7212 −0.414148
\(802\) −25.1998 −0.889835
\(803\) 7.53119 0.265770
\(804\) 0.324234 0.0114349
\(805\) −38.5039 −1.35708
\(806\) 0 0
\(807\) 18.5749 0.653869
\(808\) −14.7886 −0.520260
\(809\) 2.12753 0.0747998 0.0373999 0.999300i \(-0.488092\pi\)
0.0373999 + 0.999300i \(0.488092\pi\)
\(810\) 28.7590 1.01049
\(811\) 7.20504 0.253003 0.126502 0.991966i \(-0.459625\pi\)
0.126502 + 0.991966i \(0.459625\pi\)
\(812\) 1.15790 0.0406343
\(813\) −40.3248 −1.41425
\(814\) 4.66157 0.163388
\(815\) −64.7502 −2.26810
\(816\) 29.7927 1.04295
\(817\) 11.1025 0.388428
\(818\) 30.8107 1.07727
\(819\) 0.293275 0.0102479
\(820\) 0.493572 0.0172363
\(821\) −42.0597 −1.46789 −0.733947 0.679206i \(-0.762324\pi\)
−0.733947 + 0.679206i \(0.762324\pi\)
\(822\) −0.252487 −0.00880651
\(823\) 30.1730 1.05176 0.525882 0.850558i \(-0.323735\pi\)
0.525882 + 0.850558i \(0.323735\pi\)
\(824\) −5.85832 −0.204084
\(825\) −13.3231 −0.463852
\(826\) −7.35598 −0.255947
\(827\) 3.87046 0.134589 0.0672945 0.997733i \(-0.478563\pi\)
0.0672945 + 0.997733i \(0.478563\pi\)
\(828\) 1.45943 0.0507187
\(829\) −13.1716 −0.457469 −0.228735 0.973489i \(-0.573459\pi\)
−0.228735 + 0.973489i \(0.573459\pi\)
\(830\) 1.57110 0.0545338
\(831\) −22.4983 −0.780456
\(832\) −1.49555 −0.0518488
\(833\) −14.5234 −0.503206
\(834\) 21.6721 0.750443
\(835\) −61.5585 −2.13032
\(836\) 0.433665 0.0149986
\(837\) 0 0
\(838\) −5.58159 −0.192813
\(839\) −34.2490 −1.18241 −0.591204 0.806522i \(-0.701347\pi\)
−0.591204 + 0.806522i \(0.701347\pi\)
\(840\) −37.4685 −1.29279
\(841\) −27.2132 −0.938386
\(842\) −15.7358 −0.542293
\(843\) −44.8971 −1.54634
\(844\) −0.524780 −0.0180637
\(845\) 49.2967 1.69586
\(846\) −5.69067 −0.195649
\(847\) −22.1008 −0.759394
\(848\) −22.3799 −0.768528
\(849\) −4.66865 −0.160228
\(850\) 78.6555 2.69786
\(851\) 17.9199 0.614287
\(852\) 0.667838 0.0228797
\(853\) −14.4479 −0.494686 −0.247343 0.968928i \(-0.579557\pi\)
−0.247343 + 0.968928i \(0.579557\pi\)
\(854\) 4.85111 0.166001
\(855\) −3.49096 −0.119388
\(856\) −38.0138 −1.29928
\(857\) 27.8331 0.950759 0.475379 0.879781i \(-0.342311\pi\)
0.475379 + 0.879781i \(0.342311\pi\)
\(858\) 0.300496 0.0102588
\(859\) 47.3202 1.61454 0.807272 0.590180i \(-0.200943\pi\)
0.807272 + 0.590180i \(0.200943\pi\)
\(860\) −14.4831 −0.493869
\(861\) −1.06638 −0.0363421
\(862\) −23.5148 −0.800919
\(863\) −26.0534 −0.886867 −0.443434 0.896307i \(-0.646240\pi\)
−0.443434 + 0.896307i \(0.646240\pi\)
\(864\) 12.4166 0.422422
\(865\) 8.85937 0.301228
\(866\) 45.7502 1.55465
\(867\) −38.9668 −1.32338
\(868\) 0 0
\(869\) −4.31787 −0.146474
\(870\) −9.55048 −0.323792
\(871\) −0.0928157 −0.00314494
\(872\) 31.1407 1.05456
\(873\) −12.3658 −0.418520
\(874\) −6.75849 −0.228609
\(875\) −36.9560 −1.24934
\(876\) 4.65353 0.157228
\(877\) −34.3215 −1.15895 −0.579477 0.814989i \(-0.696743\pi\)
−0.579477 + 0.814989i \(0.696743\pi\)
\(878\) −24.0773 −0.812570
\(879\) −2.82032 −0.0951270
\(880\) 11.0254 0.371667
\(881\) 3.63467 0.122455 0.0612276 0.998124i \(-0.480498\pi\)
0.0612276 + 0.998124i \(0.480498\pi\)
\(882\) 2.22873 0.0750452
\(883\) −39.4574 −1.32785 −0.663923 0.747801i \(-0.731110\pi\)
−0.663923 + 0.747801i \(0.731110\pi\)
\(884\) 0.437594 0.0147179
\(885\) −14.9659 −0.503074
\(886\) 15.7743 0.529948
\(887\) −42.3027 −1.42039 −0.710194 0.704007i \(-0.751393\pi\)
−0.710194 + 0.704007i \(0.751393\pi\)
\(888\) 17.4381 0.585183
\(889\) −16.0757 −0.539161
\(890\) −70.8072 −2.37346
\(891\) −5.67949 −0.190270
\(892\) −4.79611 −0.160586
\(893\) −6.50038 −0.217527
\(894\) 10.2294 0.342123
\(895\) −64.4938 −2.15579
\(896\) 15.0151 0.501620
\(897\) 1.15516 0.0385698
\(898\) −32.2180 −1.07513
\(899\) 0 0
\(900\) 2.97733 0.0992444
\(901\) 48.2262 1.60665
\(902\) 0.395164 0.0131575
\(903\) 31.2912 1.04131
\(904\) 11.6611 0.387843
\(905\) −27.8782 −0.926704
\(906\) 25.7362 0.855027
\(907\) −32.3680 −1.07476 −0.537381 0.843339i \(-0.680586\pi\)
−0.537381 + 0.843339i \(0.680586\pi\)
\(908\) 6.29281 0.208834
\(909\) −3.88333 −0.128802
\(910\) 1.77166 0.0587301
\(911\) 27.0607 0.896563 0.448281 0.893893i \(-0.352036\pi\)
0.448281 + 0.893893i \(0.352036\pi\)
\(912\) −5.22246 −0.172933
\(913\) −0.310271 −0.0102685
\(914\) −40.4983 −1.33956
\(915\) 9.86969 0.326282
\(916\) −6.44969 −0.213104
\(917\) 28.5306 0.942162
\(918\) 46.9451 1.54942
\(919\) 20.7649 0.684972 0.342486 0.939523i \(-0.388731\pi\)
0.342486 + 0.939523i \(0.388731\pi\)
\(920\) 53.3749 1.75972
\(921\) −33.7356 −1.11163
\(922\) −24.5088 −0.807156
\(923\) −0.191176 −0.00629264
\(924\) 1.22223 0.0402085
\(925\) 36.5578 1.20201
\(926\) −0.0525165 −0.00172580
\(927\) −1.53834 −0.0505256
\(928\) −2.94508 −0.0966771
\(929\) 20.6589 0.677798 0.338899 0.940823i \(-0.389945\pi\)
0.338899 + 0.940823i \(0.389945\pi\)
\(930\) 0 0
\(931\) 2.54585 0.0834368
\(932\) 2.02726 0.0664052
\(933\) −23.5641 −0.771455
\(934\) 32.0555 1.04889
\(935\) −23.7586 −0.776990
\(936\) −0.406544 −0.0132883
\(937\) 2.92060 0.0954119 0.0477059 0.998861i \(-0.484809\pi\)
0.0477059 + 0.998861i \(0.484809\pi\)
\(938\) 1.53048 0.0499720
\(939\) 9.42443 0.307555
\(940\) 8.47966 0.276576
\(941\) −32.8501 −1.07088 −0.535441 0.844573i \(-0.679855\pi\)
−0.535441 + 0.844573i \(0.679855\pi\)
\(942\) 28.3046 0.922213
\(943\) 1.51909 0.0494682
\(944\) 8.09722 0.263542
\(945\) −46.8823 −1.52508
\(946\) −11.5955 −0.377001
\(947\) −39.1247 −1.27138 −0.635692 0.771943i \(-0.719285\pi\)
−0.635692 + 0.771943i \(0.719285\pi\)
\(948\) −2.66802 −0.0866532
\(949\) −1.33212 −0.0432426
\(950\) −13.7878 −0.447334
\(951\) 22.7115 0.736471
\(952\) −43.6843 −1.41581
\(953\) −6.01975 −0.194999 −0.0974994 0.995236i \(-0.531084\pi\)
−0.0974994 + 0.995236i \(0.531084\pi\)
\(954\) −7.40070 −0.239607
\(955\) −29.7290 −0.962008
\(956\) 3.39053 0.109658
\(957\) 1.88608 0.0609684
\(958\) −26.9041 −0.869231
\(959\) 0.293980 0.00949310
\(960\) 50.1729 1.61932
\(961\) 0 0
\(962\) −0.824543 −0.0265843
\(963\) −9.98204 −0.321667
\(964\) −2.70941 −0.0872641
\(965\) 17.6012 0.566603
\(966\) −19.0480 −0.612860
\(967\) −26.3103 −0.846083 −0.423042 0.906110i \(-0.639038\pi\)
−0.423042 + 0.906110i \(0.639038\pi\)
\(968\) 30.6367 0.984699
\(969\) 11.2538 0.361525
\(970\) −74.7015 −2.39852
\(971\) −4.73587 −0.151981 −0.0759906 0.997109i \(-0.524212\pi\)
−0.0759906 + 0.997109i \(0.524212\pi\)
\(972\) 3.18108 0.102033
\(973\) −25.2336 −0.808951
\(974\) −33.8967 −1.08612
\(975\) 2.35661 0.0754719
\(976\) −5.33994 −0.170927
\(977\) −17.2800 −0.552837 −0.276419 0.961037i \(-0.589148\pi\)
−0.276419 + 0.961037i \(0.589148\pi\)
\(978\) −32.0322 −1.02428
\(979\) 13.9834 0.446912
\(980\) −3.32102 −0.106086
\(981\) 8.17725 0.261079
\(982\) 15.9166 0.507920
\(983\) 40.9665 1.30663 0.653315 0.757087i \(-0.273378\pi\)
0.653315 + 0.757087i \(0.273378\pi\)
\(984\) 1.47824 0.0471245
\(985\) −85.0678 −2.71049
\(986\) −11.1348 −0.354605
\(987\) −18.3206 −0.583150
\(988\) −0.0767071 −0.00244038
\(989\) −44.5751 −1.41741
\(990\) 3.64595 0.115876
\(991\) −14.1338 −0.448975 −0.224487 0.974477i \(-0.572071\pi\)
−0.224487 + 0.974477i \(0.572071\pi\)
\(992\) 0 0
\(993\) −13.3113 −0.422420
\(994\) 3.15239 0.0999877
\(995\) −101.103 −3.20517
\(996\) −0.191716 −0.00607477
\(997\) 15.4538 0.489428 0.244714 0.969595i \(-0.421306\pi\)
0.244714 + 0.969595i \(0.421306\pi\)
\(998\) 29.1703 0.923370
\(999\) 21.8193 0.690332
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.a.j.1.6 8
3.2 odd 2 8649.2.a.be.1.3 8
31.2 even 5 961.2.d.q.531.3 16
31.3 odd 30 961.2.g.t.846.2 16
31.4 even 5 961.2.d.n.388.2 16
31.5 even 3 961.2.c.i.521.6 16
31.6 odd 6 961.2.c.j.439.6 16
31.7 even 15 961.2.g.j.235.1 16
31.8 even 5 961.2.d.n.374.2 16
31.9 even 15 961.2.g.j.732.1 16
31.10 even 15 961.2.g.n.844.2 16
31.11 odd 30 31.2.g.a.28.1 yes 16
31.12 odd 30 961.2.g.s.547.2 16
31.13 odd 30 961.2.g.s.448.2 16
31.14 even 15 961.2.g.l.816.1 16
31.15 odd 10 961.2.d.p.628.3 16
31.16 even 5 961.2.d.q.628.3 16
31.17 odd 30 31.2.g.a.10.1 16
31.18 even 15 961.2.g.m.448.2 16
31.19 even 15 961.2.g.m.547.2 16
31.20 even 15 961.2.g.l.338.1 16
31.21 odd 30 961.2.g.t.844.2 16
31.22 odd 30 961.2.g.k.732.1 16
31.23 odd 10 961.2.d.o.374.2 16
31.24 odd 30 961.2.g.k.235.1 16
31.25 even 3 961.2.c.i.439.6 16
31.26 odd 6 961.2.c.j.521.6 16
31.27 odd 10 961.2.d.o.388.2 16
31.28 even 15 961.2.g.n.846.2 16
31.29 odd 10 961.2.d.p.531.3 16
31.30 odd 2 961.2.a.i.1.6 8
93.11 even 30 279.2.y.c.28.2 16
93.17 even 30 279.2.y.c.10.2 16
93.92 even 2 8649.2.a.bf.1.3 8
124.11 even 30 496.2.bg.c.369.2 16
124.79 even 30 496.2.bg.c.289.2 16
155.17 even 60 775.2.ck.a.599.4 32
155.42 even 60 775.2.ck.a.524.1 32
155.48 even 60 775.2.ck.a.599.1 32
155.73 even 60 775.2.ck.a.524.4 32
155.79 odd 30 775.2.bl.a.351.2 16
155.104 odd 30 775.2.bl.a.276.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.10.1 16 31.17 odd 30
31.2.g.a.28.1 yes 16 31.11 odd 30
279.2.y.c.10.2 16 93.17 even 30
279.2.y.c.28.2 16 93.11 even 30
496.2.bg.c.289.2 16 124.79 even 30
496.2.bg.c.369.2 16 124.11 even 30
775.2.bl.a.276.2 16 155.104 odd 30
775.2.bl.a.351.2 16 155.79 odd 30
775.2.ck.a.524.1 32 155.42 even 60
775.2.ck.a.524.4 32 155.73 even 60
775.2.ck.a.599.1 32 155.48 even 60
775.2.ck.a.599.4 32 155.17 even 60
961.2.a.i.1.6 8 31.30 odd 2
961.2.a.j.1.6 8 1.1 even 1 trivial
961.2.c.i.439.6 16 31.25 even 3
961.2.c.i.521.6 16 31.5 even 3
961.2.c.j.439.6 16 31.6 odd 6
961.2.c.j.521.6 16 31.26 odd 6
961.2.d.n.374.2 16 31.8 even 5
961.2.d.n.388.2 16 31.4 even 5
961.2.d.o.374.2 16 31.23 odd 10
961.2.d.o.388.2 16 31.27 odd 10
961.2.d.p.531.3 16 31.29 odd 10
961.2.d.p.628.3 16 31.15 odd 10
961.2.d.q.531.3 16 31.2 even 5
961.2.d.q.628.3 16 31.16 even 5
961.2.g.j.235.1 16 31.7 even 15
961.2.g.j.732.1 16 31.9 even 15
961.2.g.k.235.1 16 31.24 odd 30
961.2.g.k.732.1 16 31.22 odd 30
961.2.g.l.338.1 16 31.20 even 15
961.2.g.l.816.1 16 31.14 even 15
961.2.g.m.448.2 16 31.18 even 15
961.2.g.m.547.2 16 31.19 even 15
961.2.g.n.844.2 16 31.10 even 15
961.2.g.n.846.2 16 31.28 even 15
961.2.g.s.448.2 16 31.13 odd 30
961.2.g.s.547.2 16 31.12 odd 30
961.2.g.t.844.2 16 31.21 odd 30
961.2.g.t.846.2 16 31.3 odd 30
8649.2.a.be.1.3 8 3.2 odd 2
8649.2.a.bf.1.3 8 93.92 even 2