Properties

Label 775.2.ck.a.524.1
Level $775$
Weight $2$
Character 775.524
Analytic conductor $6.188$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [775,2,Mod(49,775)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(775, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([15, 26])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("775.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 775 = 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 775.ck (of order \(30\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.18840615665\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{30})\)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 524.1
Character \(\chi\) \(=\) 775.524
Dual form 775.2.ck.a.599.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.744490 - 1.02470i) q^{2} +(1.47618 + 0.155153i) q^{3} +(0.122284 - 0.376353i) q^{4} +(-0.940018 - 1.62816i) q^{6} +(-0.455117 - 2.14115i) q^{7} +(-2.88591 + 0.937688i) q^{8} +(-0.779397 - 0.165666i) q^{9} +(-0.636073 - 0.706430i) q^{11} +(0.238907 - 0.536593i) q^{12} +(-0.0683897 - 0.153606i) q^{13} +(-1.85522 + 2.06043i) q^{14} +(2.46909 + 1.79390i) q^{16} +(-4.88741 - 4.40064i) q^{17} +(0.410495 + 0.921986i) q^{18} +(1.05317 + 0.468903i) q^{19} +(-0.339629 - 3.23135i) q^{21} +(-0.250331 + 1.17772i) q^{22} +(-4.40197 + 1.43029i) q^{23} +(-4.40562 + 0.936443i) q^{24} +(-0.106485 + 0.184437i) q^{26} +(-5.35983 - 1.74151i) q^{27} +(-0.861483 - 0.0905455i) q^{28} +(1.08143 - 0.785701i) q^{29} +(5.56350 + 0.217815i) q^{31} +2.20322i q^{32} +(-0.829355 - 1.14151i) q^{33} +(-0.870722 + 8.28437i) q^{34} +(-0.157657 + 0.273070i) q^{36} +(-3.35295 + 1.93582i) q^{37} +(-0.303591 - 1.42828i) q^{38} +(-0.0771233 - 0.237361i) q^{39} +(-0.0343065 - 0.326405i) q^{41} +(-3.05832 + 2.75373i) q^{42} +(3.91711 - 8.79797i) q^{43} +(-0.343649 + 0.153002i) q^{44} +(4.74283 + 3.44587i) q^{46} +(3.31427 - 4.56170i) q^{47} +(3.36650 + 3.03121i) q^{48} +(2.01741 - 0.898207i) q^{49} +(-6.53194 - 7.25445i) q^{51} +(-0.0661729 + 0.00695505i) q^{52} +(1.52460 - 7.17270i) q^{53} +(2.20581 + 6.78877i) q^{54} +(3.32116 + 5.75242i) q^{56} +(1.48193 + 0.855590i) q^{57} +(-1.61022 - 0.523192i) q^{58} +(-0.277326 + 2.63859i) q^{59} -1.74967 q^{61} +(-3.91877 - 5.86309i) q^{62} +1.74421i q^{63} +(7.19583 - 5.22808i) q^{64} +(-0.552261 + 1.69968i) q^{66} +(-0.478052 - 0.276003i) q^{67} +(-2.25385 + 1.30126i) q^{68} +(-6.72002 + 1.42838i) q^{69} +(-1.11214 - 0.236393i) q^{71} +(2.40461 - 0.252735i) q^{72} +(-5.88764 + 5.30125i) q^{73} +(4.47988 + 1.99457i) q^{74} +(0.305260 - 0.339025i) q^{76} +(-1.22309 + 1.68344i) q^{77} +(-0.185807 + 0.255741i) q^{78} +(-3.03938 + 3.37557i) q^{79} +(-5.45813 - 2.43012i) q^{81} +(-0.308927 + 0.278159i) q^{82} +(-0.324608 + 0.0341177i) q^{83} +(-1.25766 - 0.267324i) q^{84} +(-11.9315 + 2.53613i) q^{86} +(1.71829 - 0.992053i) q^{87} +(2.49806 + 1.44225i) q^{88} +(4.54569 - 13.9902i) q^{89} +(-0.297768 + 0.216341i) q^{91} +1.83159i q^{92} +(8.17896 + 1.18473i) q^{93} -7.14183 q^{94} +(-0.341837 + 3.25236i) q^{96} +(14.7596 + 4.79569i) q^{97} +(-2.42233 - 1.39853i) q^{98} +(0.378722 + 0.655965i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 28 q^{4} + 22 q^{6} + 20 q^{9} - 14 q^{11} + 12 q^{14} - 4 q^{16} - 32 q^{19} + 18 q^{21} + 40 q^{24} + 18 q^{26} + 28 q^{29} + 30 q^{31} + 64 q^{34} + 2 q^{36} + 6 q^{39} - 16 q^{41} - 78 q^{44}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/775\mathbb{Z}\right)^\times\).

\(n\) \(251\) \(652\)
\(\chi(n)\) \(e\left(\frac{8}{15}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.744490 1.02470i −0.526434 0.724574i 0.460148 0.887842i \(-0.347796\pi\)
−0.986582 + 0.163268i \(0.947796\pi\)
\(3\) 1.47618 + 0.155153i 0.852275 + 0.0895777i 0.520584 0.853810i \(-0.325714\pi\)
0.331691 + 0.943388i \(0.392381\pi\)
\(4\) 0.122284 0.376353i 0.0611422 0.188176i
\(5\) 0 0
\(6\) −0.940018 1.62816i −0.383761 0.664693i
\(7\) −0.455117 2.14115i −0.172018 0.809280i −0.976536 0.215353i \(-0.930910\pi\)
0.804518 0.593928i \(-0.202423\pi\)
\(8\) −2.88591 + 0.937688i −1.02032 + 0.331523i
\(9\) −0.779397 0.165666i −0.259799 0.0552220i
\(10\) 0 0
\(11\) −0.636073 0.706430i −0.191783 0.212997i 0.639583 0.768722i \(-0.279107\pi\)
−0.831366 + 0.555726i \(0.812441\pi\)
\(12\) 0.238907 0.536593i 0.0689664 0.154901i
\(13\) −0.0683897 0.153606i −0.0189679 0.0426026i 0.903813 0.427927i \(-0.140756\pi\)
−0.922781 + 0.385325i \(0.874089\pi\)
\(14\) −1.85522 + 2.06043i −0.495827 + 0.550672i
\(15\) 0 0
\(16\) 2.46909 + 1.79390i 0.617273 + 0.448475i
\(17\) −4.88741 4.40064i −1.18537 1.06731i −0.996352 0.0853387i \(-0.972803\pi\)
−0.189018 0.981974i \(-0.560531\pi\)
\(18\) 0.410495 + 0.921986i 0.0967546 + 0.217314i
\(19\) 1.05317 + 0.468903i 0.241615 + 0.107574i 0.523972 0.851736i \(-0.324450\pi\)
−0.282357 + 0.959309i \(0.591116\pi\)
\(20\) 0 0
\(21\) −0.339629 3.23135i −0.0741130 0.705139i
\(22\) −0.250331 + 1.17772i −0.0533708 + 0.251090i
\(23\) −4.40197 + 1.43029i −0.917873 + 0.298235i −0.729594 0.683880i \(-0.760291\pi\)
−0.188279 + 0.982116i \(0.560291\pi\)
\(24\) −4.40562 + 0.936443i −0.899293 + 0.191151i
\(25\) 0 0
\(26\) −0.106485 + 0.184437i −0.0208834 + 0.0361711i
\(27\) −5.35983 1.74151i −1.03150 0.335155i
\(28\) −0.861483 0.0905455i −0.162805 0.0171115i
\(29\) 1.08143 0.785701i 0.200816 0.145901i −0.482833 0.875713i \(-0.660392\pi\)
0.683649 + 0.729811i \(0.260392\pi\)
\(30\) 0 0
\(31\) 5.56350 + 0.217815i 0.999234 + 0.0391208i
\(32\) 2.20322i 0.389479i
\(33\) −0.829355 1.14151i −0.144372 0.198711i
\(34\) −0.870722 + 8.28437i −0.149328 + 1.42076i
\(35\) 0 0
\(36\) −0.157657 + 0.273070i −0.0262762 + 0.0455116i
\(37\) −3.35295 + 1.93582i −0.551221 + 0.318248i −0.749614 0.661875i \(-0.769761\pi\)
0.198393 + 0.980122i \(0.436428\pi\)
\(38\) −0.303591 1.42828i −0.0492489 0.231698i
\(39\) −0.0771233 0.237361i −0.0123496 0.0380082i
\(40\) 0 0
\(41\) −0.0343065 0.326405i −0.00535778 0.0509758i 0.991516 0.129982i \(-0.0414920\pi\)
−0.996874 + 0.0790062i \(0.974825\pi\)
\(42\) −3.05832 + 2.75373i −0.471909 + 0.424909i
\(43\) 3.91711 8.79797i 0.597353 1.34168i −0.321437 0.946931i \(-0.604166\pi\)
0.918790 0.394746i \(-0.129167\pi\)
\(44\) −0.343649 + 0.153002i −0.0518070 + 0.0230660i
\(45\) 0 0
\(46\) 4.74283 + 3.44587i 0.699293 + 0.508066i
\(47\) 3.31427 4.56170i 0.483436 0.665393i −0.495725 0.868480i \(-0.665097\pi\)
0.979161 + 0.203087i \(0.0650974\pi\)
\(48\) 3.36650 + 3.03121i 0.485913 + 0.437518i
\(49\) 2.01741 0.898207i 0.288201 0.128315i
\(50\) 0 0
\(51\) −6.53194 7.25445i −0.914654 1.01583i
\(52\) −0.0661729 + 0.00695505i −0.00917653 + 0.000964493i
\(53\) 1.52460 7.17270i 0.209421 0.985246i −0.740331 0.672242i \(-0.765331\pi\)
0.949752 0.313004i \(-0.101335\pi\)
\(54\) 2.20581 + 6.78877i 0.300172 + 0.923835i
\(55\) 0 0
\(56\) 3.32116 + 5.75242i 0.443809 + 0.768699i
\(57\) 1.48193 + 0.855590i 0.196286 + 0.113326i
\(58\) −1.61022 0.523192i −0.211432 0.0686985i
\(59\) −0.277326 + 2.63859i −0.0361048 + 0.343515i 0.961526 + 0.274715i \(0.0885835\pi\)
−0.997631 + 0.0687995i \(0.978083\pi\)
\(60\) 0 0
\(61\) −1.74967 −0.224023 −0.112011 0.993707i \(-0.535729\pi\)
−0.112011 + 0.993707i \(0.535729\pi\)
\(62\) −3.91877 5.86309i −0.497685 0.744614i
\(63\) 1.74421i 0.219749i
\(64\) 7.19583 5.22808i 0.899479 0.653510i
\(65\) 0 0
\(66\) −0.552261 + 1.69968i −0.0679786 + 0.209217i
\(67\) −0.478052 0.276003i −0.0584033 0.0337192i 0.470514 0.882393i \(-0.344069\pi\)
−0.528917 + 0.848673i \(0.677402\pi\)
\(68\) −2.25385 + 1.30126i −0.273319 + 0.157801i
\(69\) −6.72002 + 1.42838i −0.808996 + 0.171957i
\(70\) 0 0
\(71\) −1.11214 0.236393i −0.131987 0.0280547i 0.141444 0.989946i \(-0.454825\pi\)
−0.273431 + 0.961891i \(0.588159\pi\)
\(72\) 2.40461 0.252735i 0.283386 0.0297851i
\(73\) −5.88764 + 5.30125i −0.689096 + 0.620465i −0.937415 0.348214i \(-0.886788\pi\)
0.248319 + 0.968678i \(0.420122\pi\)
\(74\) 4.47988 + 1.99457i 0.520775 + 0.231864i
\(75\) 0 0
\(76\) 0.305260 0.339025i 0.0350157 0.0388888i
\(77\) −1.22309 + 1.68344i −0.139384 + 0.191846i
\(78\) −0.185807 + 0.255741i −0.0210385 + 0.0289570i
\(79\) −3.03938 + 3.37557i −0.341957 + 0.379782i −0.889453 0.457027i \(-0.848914\pi\)
0.547496 + 0.836808i \(0.315581\pi\)
\(80\) 0 0
\(81\) −5.45813 2.43012i −0.606459 0.270013i
\(82\) −0.308927 + 0.278159i −0.0341152 + 0.0307175i
\(83\) −0.324608 + 0.0341177i −0.0356303 + 0.00374490i −0.122327 0.992490i \(-0.539036\pi\)
0.0866965 + 0.996235i \(0.472369\pi\)
\(84\) −1.25766 0.267324i −0.137222 0.0291674i
\(85\) 0 0
\(86\) −11.9315 + 2.53613i −1.28661 + 0.273478i
\(87\) 1.71829 0.992053i 0.184220 0.106359i
\(88\) 2.49806 + 1.44225i 0.266294 + 0.153745i
\(89\) 4.54569 13.9902i 0.481842 1.48296i −0.354661 0.934995i \(-0.615404\pi\)
0.836503 0.547962i \(-0.184596\pi\)
\(90\) 0 0
\(91\) −0.297768 + 0.216341i −0.0312146 + 0.0226787i
\(92\) 1.83159i 0.190957i
\(93\) 8.17896 + 1.18473i 0.848118 + 0.122851i
\(94\) −7.14183 −0.736623
\(95\) 0 0
\(96\) −0.341837 + 3.25236i −0.0348886 + 0.331943i
\(97\) 14.7596 + 4.79569i 1.49861 + 0.486929i 0.939613 0.342239i \(-0.111185\pi\)
0.559000 + 0.829168i \(0.311185\pi\)
\(98\) −2.42233 1.39853i −0.244692 0.141273i
\(99\) 0.378722 + 0.655965i 0.0380630 + 0.0659270i
\(100\) 0 0
\(101\) 1.50602 + 4.63507i 0.149855 + 0.461206i 0.997603 0.0691923i \(-0.0220422\pi\)
−0.847748 + 0.530399i \(0.822042\pi\)
\(102\) −2.57069 + 12.0942i −0.254536 + 1.19750i
\(103\) −1.92004 + 0.201805i −0.189187 + 0.0198844i −0.198648 0.980071i \(-0.563655\pi\)
0.00946083 + 0.999955i \(0.496988\pi\)
\(104\) 0.341401 + 0.379164i 0.0334771 + 0.0371801i
\(105\) 0 0
\(106\) −8.48494 + 3.77774i −0.824130 + 0.366926i
\(107\) 9.30976 + 8.38254i 0.900008 + 0.810371i 0.982508 0.186220i \(-0.0596238\pi\)
−0.0824999 + 0.996591i \(0.526290\pi\)
\(108\) −1.31085 + 1.80423i −0.126136 + 0.173612i
\(109\) −8.30253 6.03214i −0.795238 0.577774i 0.114275 0.993449i \(-0.463545\pi\)
−0.909513 + 0.415675i \(0.863545\pi\)
\(110\) 0 0
\(111\) −5.24991 + 2.33741i −0.498300 + 0.221857i
\(112\) 2.71729 6.10314i 0.256760 0.576692i
\(113\) −2.85586 + 2.57143i −0.268657 + 0.241900i −0.792437 0.609954i \(-0.791188\pi\)
0.523780 + 0.851854i \(0.324521\pi\)
\(114\) −0.226553 2.15551i −0.0212187 0.201882i
\(115\) 0 0
\(116\) −0.163459 0.503076i −0.0151768 0.0467095i
\(117\) 0.0278555 + 0.131050i 0.00257524 + 0.0121155i
\(118\) 2.91023 1.68022i 0.267908 0.154677i
\(119\) −7.19811 + 12.4675i −0.659850 + 1.14289i
\(120\) 0 0
\(121\) 1.05536 10.0411i 0.0959416 0.912824i
\(122\) 1.30261 + 1.79289i 0.117933 + 0.162321i
\(123\) 0.487156i 0.0439254i
\(124\) 0.762305 2.06720i 0.0684570 0.185640i
\(125\) 0 0
\(126\) 1.78729 1.29854i 0.159225 0.115684i
\(127\) −7.30366 0.767645i −0.648095 0.0681175i −0.225223 0.974307i \(-0.572311\pi\)
−0.422871 + 0.906190i \(0.638978\pi\)
\(128\) −6.52366 2.11967i −0.576616 0.187354i
\(129\) 7.14740 12.3797i 0.629294 1.08997i
\(130\) 0 0
\(131\) −12.7489 + 2.70985i −1.11387 + 0.236761i −0.727855 0.685731i \(-0.759483\pi\)
−0.386017 + 0.922492i \(0.626149\pi\)
\(132\) −0.531027 + 0.172541i −0.0462200 + 0.0150178i
\(133\) 0.524677 2.46841i 0.0454953 0.214039i
\(134\) 0.0730834 + 0.695342i 0.00631345 + 0.0600684i
\(135\) 0 0
\(136\) 18.2310 + 8.11698i 1.56330 + 0.696025i
\(137\) −0.0546244 0.122689i −0.00466688 0.0104820i 0.911197 0.411971i \(-0.135159\pi\)
−0.915864 + 0.401489i \(0.868493\pi\)
\(138\) 6.46666 + 5.82260i 0.550478 + 0.495653i
\(139\) 9.32593 + 6.77569i 0.791015 + 0.574706i 0.908265 0.418396i \(-0.137408\pi\)
−0.117249 + 0.993103i \(0.537408\pi\)
\(140\) 0 0
\(141\) 5.60024 6.21969i 0.471625 0.523793i
\(142\) 0.585746 + 1.31561i 0.0491547 + 0.110403i
\(143\) −0.0650109 + 0.146017i −0.00543649 + 0.0122106i
\(144\) −1.62721 1.80720i −0.135601 0.150600i
\(145\) 0 0
\(146\) 9.81549 + 2.08635i 0.812336 + 0.172667i
\(147\) 3.11742 1.01291i 0.257120 0.0835435i
\(148\) 0.318540 + 1.49861i 0.0261838 + 0.123185i
\(149\) −2.72054 4.71211i −0.222875 0.386031i 0.732805 0.680439i \(-0.238211\pi\)
−0.955680 + 0.294408i \(0.904878\pi\)
\(150\) 0 0
\(151\) 4.23019 13.0192i 0.344248 1.05949i −0.617737 0.786385i \(-0.711950\pi\)
0.961985 0.273102i \(-0.0880496\pi\)
\(152\) −3.47905 0.365662i −0.282188 0.0296591i
\(153\) 3.08019 + 4.23952i 0.249019 + 0.342745i
\(154\) 2.63560 0.212383
\(155\) 0 0
\(156\) −0.0987625 −0.00790733
\(157\) 8.84931 + 12.1800i 0.706252 + 0.972072i 0.999870 + 0.0161493i \(0.00514071\pi\)
−0.293618 + 0.955923i \(0.594859\pi\)
\(158\) 5.72174 + 0.601379i 0.455197 + 0.0478432i
\(159\) 3.36346 10.3517i 0.266740 0.820942i
\(160\) 0 0
\(161\) 5.06587 + 8.77434i 0.399246 + 0.691515i
\(162\) 1.57338 + 7.40215i 0.123616 + 0.581568i
\(163\) 16.2042 5.26506i 1.26921 0.412391i 0.404443 0.914563i \(-0.367466\pi\)
0.864768 + 0.502172i \(0.167466\pi\)
\(164\) −0.127038 0.0270028i −0.00992003 0.00210857i
\(165\) 0 0
\(166\) 0.276628 + 0.307226i 0.0214705 + 0.0238454i
\(167\) 6.58842 14.7978i 0.509827 1.14509i −0.456955 0.889490i \(-0.651060\pi\)
0.966782 0.255601i \(-0.0822732\pi\)
\(168\) 4.01014 + 9.00692i 0.309389 + 0.694899i
\(169\) 8.67978 9.63987i 0.667675 0.741529i
\(170\) 0 0
\(171\) −0.743159 0.539937i −0.0568308 0.0412900i
\(172\) −2.83214 2.55007i −0.215948 0.194441i
\(173\) 0.948192 + 2.12967i 0.0720897 + 0.161916i 0.945996 0.324178i \(-0.105088\pi\)
−0.873906 + 0.486094i \(0.838421\pi\)
\(174\) −2.29581 1.02216i −0.174045 0.0774896i
\(175\) 0 0
\(176\) −0.303256 2.88529i −0.0228588 0.217487i
\(177\) −0.818770 + 3.85201i −0.0615425 + 0.289535i
\(178\) −17.7200 + 5.75758i −1.32817 + 0.431549i
\(179\) −16.5998 + 3.52839i −1.24073 + 0.263724i −0.781110 0.624394i \(-0.785346\pi\)
−0.459616 + 0.888118i \(0.652013\pi\)
\(180\) 0 0
\(181\) 3.66788 6.35296i 0.272631 0.472211i −0.696903 0.717165i \(-0.745439\pi\)
0.969535 + 0.244954i \(0.0787727\pi\)
\(182\) 0.443371 + 0.144060i 0.0328648 + 0.0106784i
\(183\) −2.58284 0.271467i −0.190929 0.0200674i
\(184\) 11.3625 8.25534i 0.837655 0.608592i
\(185\) 0 0
\(186\) −4.87515 9.26301i −0.357464 0.679197i
\(187\) 6.25174i 0.457173i
\(188\) −1.31153 1.80516i −0.0956528 0.131655i
\(189\) −1.28951 + 12.2688i −0.0937977 + 0.892425i
\(190\) 0 0
\(191\) −3.91138 + 6.77471i −0.283018 + 0.490201i −0.972127 0.234457i \(-0.924669\pi\)
0.689109 + 0.724658i \(0.258002\pi\)
\(192\) 11.4335 6.60115i 0.825143 0.476397i
\(193\) −0.962944 4.53030i −0.0693142 0.326098i 0.929805 0.368052i \(-0.119975\pi\)
−0.999120 + 0.0419539i \(0.986642\pi\)
\(194\) −6.07423 18.6946i −0.436104 1.34219i
\(195\) 0 0
\(196\) −0.0913453 0.869092i −0.00652466 0.0620780i
\(197\) 16.6348 14.9781i 1.18518 1.06714i 0.188813 0.982013i \(-0.439536\pi\)
0.996370 0.0851305i \(-0.0271307\pi\)
\(198\) 0.390215 0.876436i 0.0277313 0.0622856i
\(199\) 24.3037 10.8207i 1.72285 0.767061i 0.726001 0.687694i \(-0.241377\pi\)
0.996845 0.0793670i \(-0.0252899\pi\)
\(200\) 0 0
\(201\) −0.662869 0.481603i −0.0467552 0.0339696i
\(202\) 3.62834 4.99399i 0.255289 0.351376i
\(203\) −2.17448 1.95791i −0.152619 0.137419i
\(204\) −3.52899 + 1.57121i −0.247078 + 0.110006i
\(205\) 0 0
\(206\) 1.63624 + 1.81723i 0.114002 + 0.126612i
\(207\) 3.66783 0.385504i 0.254932 0.0267944i
\(208\) 0.106693 0.501951i 0.00739782 0.0348040i
\(209\) −0.338648 1.04225i −0.0234247 0.0720939i
\(210\) 0 0
\(211\) −0.663069 1.14847i −0.0456476 0.0790639i 0.842299 0.539011i \(-0.181202\pi\)
−0.887946 + 0.459947i \(0.847868\pi\)
\(212\) −2.51303 1.45090i −0.172596 0.0996481i
\(213\) −1.60505 0.521512i −0.109976 0.0357334i
\(214\) 1.65859 15.7804i 0.113379 1.07873i
\(215\) 0 0
\(216\) 17.1010 1.16357
\(217\) −2.06567 12.0115i −0.140227 0.815390i
\(218\) 12.9985i 0.880368i
\(219\) −9.51374 + 6.91214i −0.642879 + 0.467079i
\(220\) 0 0
\(221\) −0.341716 + 1.05169i −0.0229863 + 0.0707445i
\(222\) 6.30366 + 3.63942i 0.423074 + 0.244262i
\(223\) 10.4962 6.05997i 0.702876 0.405806i −0.105542 0.994415i \(-0.533658\pi\)
0.808418 + 0.588609i \(0.200324\pi\)
\(224\) 4.71744 1.00272i 0.315198 0.0669973i
\(225\) 0 0
\(226\) 4.76111 + 1.01201i 0.316704 + 0.0673176i
\(227\) −15.8150 + 1.66223i −1.04968 + 0.110326i −0.613628 0.789595i \(-0.710291\pi\)
−0.436053 + 0.899921i \(0.643624\pi\)
\(228\) 0.503220 0.453101i 0.0333266 0.0300074i
\(229\) 14.8895 + 6.62924i 0.983927 + 0.438073i 0.834685 0.550728i \(-0.185650\pi\)
0.149242 + 0.988801i \(0.452317\pi\)
\(230\) 0 0
\(231\) −2.06670 + 2.29530i −0.135979 + 0.151020i
\(232\) −2.38415 + 3.28150i −0.156527 + 0.215441i
\(233\) 3.01120 4.14456i 0.197270 0.271519i −0.698910 0.715210i \(-0.746331\pi\)
0.896180 + 0.443691i \(0.146331\pi\)
\(234\) 0.113549 0.126109i 0.00742292 0.00824399i
\(235\) 0 0
\(236\) 0.959126 + 0.427030i 0.0624338 + 0.0277973i
\(237\) −5.01041 + 4.51140i −0.325461 + 0.293047i
\(238\) 18.1344 1.90600i 1.17548 0.123548i
\(239\) 8.38077 + 1.78139i 0.542107 + 0.115228i 0.470823 0.882228i \(-0.343957\pi\)
0.0712838 + 0.997456i \(0.477290\pi\)
\(240\) 0 0
\(241\) 6.69714 1.42352i 0.431401 0.0916971i 0.0129071 0.999917i \(-0.495891\pi\)
0.418494 + 0.908220i \(0.362558\pi\)
\(242\) −11.0748 + 6.39404i −0.711915 + 0.411024i
\(243\) 6.96171 + 4.01935i 0.446594 + 0.257841i
\(244\) −0.213958 + 0.658494i −0.0136972 + 0.0421558i
\(245\) 0 0
\(246\) −0.499190 + 0.362683i −0.0318272 + 0.0231238i
\(247\) 0.193842i 0.0123338i
\(248\) −16.2600 + 4.58824i −1.03251 + 0.291353i
\(249\) −0.484474 −0.0307023
\(250\) 0 0
\(251\) −2.36925 + 22.5419i −0.149546 + 1.42283i 0.620180 + 0.784460i \(0.287060\pi\)
−0.769726 + 0.638375i \(0.779607\pi\)
\(252\) 0.656437 + 0.213289i 0.0413516 + 0.0134360i
\(253\) 3.81037 + 2.19992i 0.239556 + 0.138308i
\(254\) 4.65089 + 8.05558i 0.291823 + 0.505452i
\(255\) 0 0
\(256\) −2.81235 8.65553i −0.175772 0.540971i
\(257\) −3.46347 + 16.2943i −0.216045 + 1.01641i 0.727740 + 0.685853i \(0.240571\pi\)
−0.943785 + 0.330560i \(0.892763\pi\)
\(258\) −18.0066 + 1.89257i −1.12104 + 0.117826i
\(259\) 5.67088 + 6.29815i 0.352371 + 0.391348i
\(260\) 0 0
\(261\) −0.973024 + 0.433218i −0.0602286 + 0.0268155i
\(262\) 12.2682 + 11.0463i 0.757931 + 0.682444i
\(263\) 14.4515 19.8908i 0.891118 1.22652i −0.0820979 0.996624i \(-0.526162\pi\)
0.973216 0.229894i \(-0.0738380\pi\)
\(264\) 3.46382 + 2.51661i 0.213184 + 0.154887i
\(265\) 0 0
\(266\) −2.92000 + 1.30007i −0.179037 + 0.0797124i
\(267\) 8.88089 19.9468i 0.543502 1.22073i
\(268\) −0.162333 + 0.146165i −0.00991606 + 0.00892846i
\(269\) 1.30808 + 12.4456i 0.0797553 + 0.758821i 0.959182 + 0.282788i \(0.0912592\pi\)
−0.879427 + 0.476033i \(0.842074\pi\)
\(270\) 0 0
\(271\) −8.39516 25.8376i −0.509969 1.56952i −0.792252 0.610194i \(-0.791092\pi\)
0.282283 0.959331i \(-0.408908\pi\)
\(272\) −4.17314 19.6331i −0.253034 1.19043i
\(273\) −0.473127 + 0.273160i −0.0286349 + 0.0165324i
\(274\) −0.0850519 + 0.147314i −0.00513817 + 0.00889957i
\(275\) 0 0
\(276\) −0.284177 + 2.70377i −0.0171055 + 0.162748i
\(277\) 8.90926 + 12.2625i 0.535305 + 0.736785i 0.987927 0.154918i \(-0.0495113\pi\)
−0.452622 + 0.891703i \(0.649511\pi\)
\(278\) 14.6007i 0.875694i
\(279\) −4.30009 1.09145i −0.257440 0.0653433i
\(280\) 0 0
\(281\) −24.4709 + 17.7792i −1.45981 + 1.06062i −0.476401 + 0.879228i \(0.658059\pi\)
−0.983412 + 0.181387i \(0.941941\pi\)
\(282\) −10.5426 1.10808i −0.627806 0.0659850i
\(283\) −2.99138 0.971958i −0.177819 0.0577769i 0.218754 0.975780i \(-0.429801\pi\)
−0.396573 + 0.918003i \(0.629801\pi\)
\(284\) −0.224965 + 0.389651i −0.0133492 + 0.0231215i
\(285\) 0 0
\(286\) 0.198024 0.0420913i 0.0117094 0.00248891i
\(287\) −0.683269 + 0.222008i −0.0403321 + 0.0131047i
\(288\) 0.364999 1.71719i 0.0215078 0.101186i
\(289\) 2.74412 + 26.1086i 0.161419 + 1.53580i
\(290\) 0 0
\(291\) 21.0438 + 9.36932i 1.23361 + 0.549239i
\(292\) 1.27517 + 2.86409i 0.0746239 + 0.167608i
\(293\) −1.41204 1.27140i −0.0824920 0.0742761i 0.626853 0.779137i \(-0.284343\pi\)
−0.709345 + 0.704861i \(0.751009\pi\)
\(294\) −3.35882 2.44033i −0.195890 0.142323i
\(295\) 0 0
\(296\) 7.86109 8.73063i 0.456917 0.507458i
\(297\) 2.17898 + 4.89408i 0.126437 + 0.283983i
\(298\) −2.80310 + 6.29586i −0.162379 + 0.364709i
\(299\) 0.520749 + 0.578350i 0.0301157 + 0.0334469i
\(300\) 0 0
\(301\) −20.6205 4.38303i −1.18855 0.252634i
\(302\) −16.4901 + 5.35797i −0.948900 + 0.308316i
\(303\) 1.50402 + 7.07588i 0.0864039 + 0.406498i
\(304\) 1.75922 + 3.04705i 0.100898 + 0.174760i
\(305\) 0 0
\(306\) 2.05108 6.31256i 0.117252 0.360865i
\(307\) −22.6036 2.37573i −1.29005 0.135590i −0.565466 0.824772i \(-0.691304\pi\)
−0.724589 + 0.689181i \(0.757970\pi\)
\(308\) 0.484002 + 0.666171i 0.0275786 + 0.0379586i
\(309\) −2.86565 −0.163021
\(310\) 0 0
\(311\) 15.8754 0.900213 0.450106 0.892975i \(-0.351386\pi\)
0.450106 + 0.892975i \(0.351386\pi\)
\(312\) 0.445142 + 0.612685i 0.0252012 + 0.0346865i
\(313\) 6.31457 + 0.663688i 0.356920 + 0.0375138i 0.281292 0.959622i \(-0.409237\pi\)
0.0756284 + 0.997136i \(0.475904\pi\)
\(314\) 5.89268 18.1358i 0.332543 1.02346i
\(315\) 0 0
\(316\) 0.898737 + 1.55666i 0.0505579 + 0.0875689i
\(317\) 3.18126 + 14.9666i 0.178677 + 0.840610i 0.972581 + 0.232566i \(0.0747122\pi\)
−0.793903 + 0.608044i \(0.791954\pi\)
\(318\) −13.1115 + 4.26017i −0.735254 + 0.238898i
\(319\) −1.24291 0.264188i −0.0695895 0.0147917i
\(320\) 0 0
\(321\) 12.4423 + 13.8186i 0.694463 + 0.771280i
\(322\) 5.21960 11.7234i 0.290877 0.653320i
\(323\) −3.08381 6.92636i −0.171588 0.385393i
\(324\) −1.58202 + 1.75702i −0.0878903 + 0.0976120i
\(325\) 0 0
\(326\) −17.4590 12.6847i −0.966963 0.702540i
\(327\) −11.3201 10.1927i −0.626006 0.563658i
\(328\) 0.405071 + 0.909805i 0.0223663 + 0.0502356i
\(329\) −11.2757 5.02026i −0.621649 0.276776i
\(330\) 0 0
\(331\) 0.937407 + 8.91883i 0.0515245 + 0.490223i 0.989606 + 0.143808i \(0.0459346\pi\)
−0.938081 + 0.346416i \(0.887399\pi\)
\(332\) −0.0268542 + 0.126339i −0.00147382 + 0.00693376i
\(333\) 2.93398 0.953307i 0.160781 0.0522409i
\(334\) −20.0684 + 4.26566i −1.09809 + 0.233407i
\(335\) 0 0
\(336\) 4.95814 8.58776i 0.270489 0.468501i
\(337\) −4.15495 1.35002i −0.226334 0.0735405i 0.193654 0.981070i \(-0.437966\pi\)
−0.419989 + 0.907529i \(0.637966\pi\)
\(338\) −16.3400 1.71740i −0.888779 0.0934144i
\(339\) −4.61474 + 3.35281i −0.250638 + 0.182100i
\(340\) 0 0
\(341\) −3.38492 4.06877i −0.183304 0.220336i
\(342\) 1.16349i 0.0629145i
\(343\) −11.8479 16.3073i −0.639729 0.880511i
\(344\) −3.05466 + 29.0631i −0.164696 + 1.56698i
\(345\) 0 0
\(346\) 1.47636 2.55713i 0.0793697 0.137472i
\(347\) 21.1356 12.2026i 1.13462 0.655073i 0.189526 0.981876i \(-0.439305\pi\)
0.945092 + 0.326803i \(0.105971\pi\)
\(348\) −0.163242 0.767994i −0.00875070 0.0411688i
\(349\) −4.03079 12.4055i −0.215763 0.664051i −0.999099 0.0424515i \(-0.986483\pi\)
0.783335 0.621599i \(-0.213517\pi\)
\(350\) 0 0
\(351\) 0.0990505 + 0.942403i 0.00528692 + 0.0503017i
\(352\) 1.55642 1.40141i 0.0829577 0.0746955i
\(353\) 4.40285 9.88896i 0.234340 0.526336i −0.757649 0.652662i \(-0.773652\pi\)
0.991989 + 0.126326i \(0.0403187\pi\)
\(354\) 4.55673 2.02879i 0.242187 0.107829i
\(355\) 0 0
\(356\) −4.70938 3.42156i −0.249597 0.181343i
\(357\) −12.5601 + 17.2875i −0.664752 + 0.914952i
\(358\) 15.9739 + 14.3830i 0.844248 + 0.760164i
\(359\) −30.8627 + 13.7409i −1.62887 + 0.725220i −0.998687 0.0512273i \(-0.983687\pi\)
−0.630183 + 0.776447i \(0.717020\pi\)
\(360\) 0 0
\(361\) −11.8242 13.1321i −0.622325 0.691162i
\(362\) −9.24059 + 0.971225i −0.485674 + 0.0510464i
\(363\) 3.11580 14.6587i 0.163537 0.769382i
\(364\) 0.0450082 + 0.138521i 0.00235907 + 0.00726048i
\(365\) 0 0
\(366\) 1.64472 + 2.84875i 0.0859711 + 0.148906i
\(367\) −19.5993 11.3157i −1.02308 0.590673i −0.108082 0.994142i \(-0.534471\pi\)
−0.914993 + 0.403469i \(0.867804\pi\)
\(368\) −13.4346 4.36518i −0.700329 0.227551i
\(369\) −0.0273357 + 0.260082i −0.00142304 + 0.0135393i
\(370\) 0 0
\(371\) −16.0517 −0.833365
\(372\) 1.44604 2.93330i 0.0749734 0.152084i
\(373\) 32.9720i 1.70723i 0.520908 + 0.853613i \(0.325593\pi\)
−0.520908 + 0.853613i \(0.674407\pi\)
\(374\) 6.40617 4.65436i 0.331255 0.240671i
\(375\) 0 0
\(376\) −5.28723 + 16.2724i −0.272668 + 0.839185i
\(377\) −0.194647 0.112379i −0.0100248 0.00578783i
\(378\) 13.5319 7.81265i 0.696006 0.401840i
\(379\) −31.7818 + 6.75544i −1.63252 + 0.347004i −0.930824 0.365469i \(-0.880909\pi\)
−0.701700 + 0.712472i \(0.747575\pi\)
\(380\) 0 0
\(381\) −10.6624 2.26637i −0.546253 0.116110i
\(382\) 9.85404 1.03570i 0.504177 0.0529911i
\(383\) −19.9017 + 17.9196i −1.01693 + 0.915649i −0.996454 0.0841414i \(-0.973185\pi\)
−0.0204773 + 0.999790i \(0.506519\pi\)
\(384\) −9.30125 4.14118i −0.474652 0.211329i
\(385\) 0 0
\(386\) −3.92530 + 4.35949i −0.199793 + 0.221892i
\(387\) −4.51050 + 6.20818i −0.229282 + 0.315579i
\(388\) 3.60974 4.96838i 0.183257 0.252232i
\(389\) 11.8687 13.1815i 0.601767 0.668330i −0.362892 0.931831i \(-0.618211\pi\)
0.964659 + 0.263501i \(0.0848772\pi\)
\(390\) 0 0
\(391\) 27.8084 + 12.3811i 1.40633 + 0.626138i
\(392\) −4.97981 + 4.48384i −0.251518 + 0.226468i
\(393\) −19.2401 + 2.02222i −0.970534 + 0.102007i
\(394\) −27.7325 5.89473i −1.39714 0.296972i
\(395\) 0 0
\(396\) 0.293186 0.0623186i 0.0147332 0.00313163i
\(397\) 8.61654 4.97476i 0.432452 0.249676i −0.267939 0.963436i \(-0.586342\pi\)
0.700391 + 0.713760i \(0.253009\pi\)
\(398\) −29.1819 16.8482i −1.46276 0.844523i
\(399\) 1.15750 3.56243i 0.0579476 0.178344i
\(400\) 0 0
\(401\) −16.0959 + 11.6943i −0.803789 + 0.583987i −0.912023 0.410138i \(-0.865480\pi\)
0.108234 + 0.994125i \(0.465480\pi\)
\(402\) 1.03779i 0.0517604i
\(403\) −0.347028 0.869482i −0.0172867 0.0433120i
\(404\) 1.92858 0.0959506
\(405\) 0 0
\(406\) −0.387398 + 3.68584i −0.0192262 + 0.182925i
\(407\) 3.50024 + 1.13730i 0.173501 + 0.0563738i
\(408\) 25.6530 + 14.8108i 1.27001 + 0.733242i
\(409\) −12.1628 21.0665i −0.601410 1.04167i −0.992608 0.121365i \(-0.961273\pi\)
0.391198 0.920306i \(-0.372061\pi\)
\(410\) 0 0
\(411\) −0.0616002 0.189586i −0.00303851 0.00935159i
\(412\) −0.158842 + 0.747291i −0.00782556 + 0.0368164i
\(413\) 5.77584 0.607065i 0.284210 0.0298717i
\(414\) −3.12569 3.47143i −0.153619 0.170611i
\(415\) 0 0
\(416\) 0.338428 0.150678i 0.0165928 0.00738759i
\(417\) 12.7155 + 11.4491i 0.622682 + 0.560665i
\(418\) −0.815876 + 1.12296i −0.0399058 + 0.0549256i
\(419\) −3.56513 2.59022i −0.174168 0.126541i 0.497286 0.867587i \(-0.334330\pi\)
−0.671454 + 0.741046i \(0.734330\pi\)
\(420\) 0 0
\(421\) −11.3496 + 5.05316i −0.553145 + 0.246276i −0.664222 0.747536i \(-0.731237\pi\)
0.111076 + 0.993812i \(0.464570\pi\)
\(422\) −0.683191 + 1.53447i −0.0332572 + 0.0746969i
\(423\) −3.33885 + 3.00632i −0.162341 + 0.146172i
\(424\) 2.32589 + 22.1294i 0.112955 + 1.07470i
\(425\) 0 0
\(426\) 0.660548 + 2.03296i 0.0320037 + 0.0984972i
\(427\) 0.796305 + 3.74632i 0.0385359 + 0.181297i
\(428\) 4.29323 2.47870i 0.207521 0.119812i
\(429\) −0.118623 + 0.205461i −0.00572718 + 0.00991976i
\(430\) 0 0
\(431\) 1.94060 18.4636i 0.0934755 0.889360i −0.842831 0.538178i \(-0.819113\pi\)
0.936307 0.351183i \(-0.114220\pi\)
\(432\) −10.1098 13.9150i −0.486408 0.669484i
\(433\) 36.1204i 1.73584i 0.496708 + 0.867918i \(0.334542\pi\)
−0.496708 + 0.867918i \(0.665458\pi\)
\(434\) −10.7703 + 11.0591i −0.516991 + 0.530853i
\(435\) 0 0
\(436\) −3.28548 + 2.38704i −0.157346 + 0.114319i
\(437\) −5.30670 0.557756i −0.253854 0.0266811i
\(438\) 14.1658 + 4.60274i 0.676866 + 0.219927i
\(439\) −9.50469 + 16.4626i −0.453634 + 0.785718i −0.998609 0.0527352i \(-0.983206\pi\)
0.544974 + 0.838453i \(0.316539\pi\)
\(440\) 0 0
\(441\) −1.72116 + 0.365844i −0.0819601 + 0.0174212i
\(442\) 1.33208 0.432817i 0.0633603 0.0205870i
\(443\) −2.58934 + 12.1819i −0.123023 + 0.578779i 0.872847 + 0.487993i \(0.162271\pi\)
−0.995870 + 0.0907852i \(0.971062\pi\)
\(444\) 0.237709 + 2.26165i 0.0112812 + 0.107333i
\(445\) 0 0
\(446\) −14.0240 6.24387i −0.664054 0.295656i
\(447\) −3.28492 7.37804i −0.155371 0.348969i
\(448\) −14.4691 13.0280i −0.683599 0.615515i
\(449\) 20.5786 + 14.9513i 0.971166 + 0.705593i 0.955717 0.294287i \(-0.0950822\pi\)
0.0154490 + 0.999881i \(0.495082\pi\)
\(450\) 0 0
\(451\) −0.208761 + 0.231852i −0.00983016 + 0.0109175i
\(452\) 0.618537 + 1.38926i 0.0290935 + 0.0653452i
\(453\) 8.26451 18.5624i 0.388300 0.872137i
\(454\) 13.4774 + 14.9682i 0.632527 + 0.702492i
\(455\) 0 0
\(456\) −5.07898 1.07957i −0.237845 0.0505555i
\(457\) −30.4090 + 9.88049i −1.42247 + 0.462190i −0.916388 0.400292i \(-0.868909\pi\)
−0.506087 + 0.862482i \(0.668909\pi\)
\(458\) −4.29210 20.1927i −0.200556 0.943544i
\(459\) 18.5319 + 32.0982i 0.864995 + 1.49822i
\(460\) 0 0
\(461\) 5.97950 18.4030i 0.278493 0.857114i −0.709781 0.704423i \(-0.751206\pi\)
0.988274 0.152691i \(-0.0487940\pi\)
\(462\) 3.89063 + 0.408922i 0.181008 + 0.0190248i
\(463\) 0.0243710 + 0.0335439i 0.00113262 + 0.00155892i 0.809583 0.587006i \(-0.199693\pi\)
−0.808450 + 0.588564i \(0.799693\pi\)
\(464\) 4.07961 0.189391
\(465\) 0 0
\(466\) −6.48875 −0.300586
\(467\) −14.8758 20.4748i −0.688372 0.947462i 0.311625 0.950205i \(-0.399127\pi\)
−0.999996 + 0.00274297i \(0.999127\pi\)
\(468\) 0.0527272 + 0.00554185i 0.00243732 + 0.000256172i
\(469\) −0.373397 + 1.14920i −0.0172419 + 0.0530650i
\(470\) 0 0
\(471\) 11.1734 + 19.3530i 0.514845 + 0.891737i
\(472\) −1.67383 7.87476i −0.0770444 0.362465i
\(473\) −8.70671 + 2.82898i −0.400335 + 0.130077i
\(474\) 8.35304 + 1.77549i 0.383668 + 0.0815511i
\(475\) 0 0
\(476\) 3.81196 + 4.23361i 0.174721 + 0.194047i
\(477\) −2.37655 + 5.33781i −0.108815 + 0.244401i
\(478\) −4.41400 9.91401i −0.201892 0.453456i
\(479\) 14.2131 15.7852i 0.649413 0.721246i −0.325074 0.945689i \(-0.605389\pi\)
0.974487 + 0.224442i \(0.0720559\pi\)
\(480\) 0 0
\(481\) 0.526661 + 0.382641i 0.0240137 + 0.0174469i
\(482\) −6.44464 5.80278i −0.293545 0.264309i
\(483\) 6.11679 + 13.7385i 0.278323 + 0.625125i
\(484\) −3.64993 1.62505i −0.165906 0.0738660i
\(485\) 0 0
\(486\) −1.06429 10.1260i −0.0482772 0.459327i
\(487\) 5.56413 26.1772i 0.252135 1.18620i −0.651753 0.758431i \(-0.725966\pi\)
0.903888 0.427769i \(-0.140700\pi\)
\(488\) 5.04940 1.64065i 0.228575 0.0742687i
\(489\) 24.7373 5.25807i 1.11866 0.237778i
\(490\) 0 0
\(491\) 6.28320 10.8828i 0.283557 0.491135i −0.688701 0.725045i \(-0.741819\pi\)
0.972258 + 0.233910i \(0.0751522\pi\)
\(492\) −0.183342 0.0595716i −0.00826572 0.00268569i
\(493\) −8.74296 0.918922i −0.393763 0.0413861i
\(494\) −0.198630 + 0.144313i −0.00893678 + 0.00649295i
\(495\) 0 0
\(496\) 13.3461 + 10.5182i 0.599255 + 0.472280i
\(497\) 2.48886i 0.111640i
\(498\) 0.360686 + 0.496442i 0.0161627 + 0.0222461i
\(499\) −2.40733 + 22.9042i −0.107767 + 1.02533i 0.798318 + 0.602236i \(0.205724\pi\)
−0.906085 + 0.423097i \(0.860943\pi\)
\(500\) 0 0
\(501\) 12.0216 20.8221i 0.537087 0.930263i
\(502\) 24.8626 14.3545i 1.10967 0.640671i
\(503\) 0.137550 + 0.647121i 0.00613305 + 0.0288537i 0.981108 0.193462i \(-0.0619717\pi\)
−0.974975 + 0.222316i \(0.928638\pi\)
\(504\) −1.63552 5.03362i −0.0728520 0.224215i
\(505\) 0 0
\(506\) −0.582520 5.54231i −0.0258962 0.246386i
\(507\) 14.3086 12.8835i 0.635468 0.572178i
\(508\) −1.18203 + 2.65488i −0.0524440 + 0.117791i
\(509\) 10.6587 4.74556i 0.472439 0.210343i −0.156685 0.987649i \(-0.550081\pi\)
0.629124 + 0.777305i \(0.283414\pi\)
\(510\) 0 0
\(511\) 14.0304 + 10.1937i 0.620667 + 0.450941i
\(512\) −14.8393 + 20.4245i −0.655809 + 0.902644i
\(513\) −4.82823 4.34736i −0.213172 0.191941i
\(514\) 19.2754 8.58194i 0.850200 0.378533i
\(515\) 0 0
\(516\) −3.78510 4.20378i −0.166630 0.185061i
\(517\) −5.33064 + 0.560273i −0.234441 + 0.0246408i
\(518\) 2.23182 10.4999i 0.0980604 0.461338i
\(519\) 1.06928 + 3.29090i 0.0469362 + 0.144455i
\(520\) 0 0
\(521\) 15.9592 + 27.6422i 0.699186 + 1.21103i 0.968749 + 0.248043i \(0.0797874\pi\)
−0.269563 + 0.962983i \(0.586879\pi\)
\(522\) 1.16833 + 0.674533i 0.0511362 + 0.0295235i
\(523\) 0.00394726 + 0.00128254i 0.000172602 + 5.60817e-5i 0.309103 0.951028i \(-0.399971\pi\)
−0.308931 + 0.951085i \(0.599971\pi\)
\(524\) −0.539126 + 5.12944i −0.0235518 + 0.224081i
\(525\) 0 0
\(526\) −31.1411 −1.35782
\(527\) −26.2326 25.5475i −1.14271 1.11287i
\(528\) 4.30627i 0.187406i
\(529\) −1.27581 + 0.926929i −0.0554699 + 0.0403013i
\(530\) 0 0
\(531\) 0.653271 2.01056i 0.0283496 0.0872510i
\(532\) −0.864834 0.499312i −0.0374953 0.0216479i
\(533\) −0.0477914 + 0.0275924i −0.00207008 + 0.00119516i
\(534\) −27.0513 + 5.74993i −1.17062 + 0.248824i
\(535\) 0 0
\(536\) 1.63842 + 0.348257i 0.0707689 + 0.0150424i
\(537\) −25.0518 + 2.63305i −1.08106 + 0.113624i
\(538\) 11.7792 10.6060i 0.507836 0.457258i
\(539\) −1.91774 0.853831i −0.0826028 0.0367771i
\(540\) 0 0
\(541\) 19.5888 21.7556i 0.842189 0.935346i −0.156440 0.987687i \(-0.550002\pi\)
0.998629 + 0.0523416i \(0.0166685\pi\)
\(542\) −20.2258 + 27.8384i −0.868771 + 1.19576i
\(543\) 6.40015 8.80905i 0.274657 0.378032i
\(544\) 9.69560 10.7681i 0.415695 0.461677i
\(545\) 0 0
\(546\) 0.632146 + 0.281449i 0.0270533 + 0.0120449i
\(547\) −30.5918 + 27.5450i −1.30801 + 1.17774i −0.336248 + 0.941773i \(0.609158\pi\)
−0.971762 + 0.235964i \(0.924175\pi\)
\(548\) −0.0528539 + 0.00555517i −0.00225781 + 0.000237305i
\(549\) 1.36369 + 0.289861i 0.0582009 + 0.0123710i
\(550\) 0 0
\(551\) 1.50735 0.320396i 0.0642151 0.0136493i
\(552\) 18.0540 10.4235i 0.768429 0.443653i
\(553\) 8.61089 + 4.97150i 0.366172 + 0.211410i
\(554\) 5.93260 18.2587i 0.252052 0.775737i
\(555\) 0 0
\(556\) 3.69046 2.68128i 0.156511 0.113712i
\(557\) 5.73810i 0.243131i −0.992583 0.121566i \(-0.961209\pi\)
0.992583 0.121566i \(-0.0387915\pi\)
\(558\) 2.08297 + 5.21889i 0.0881790 + 0.220933i
\(559\) −1.61931 −0.0684894
\(560\) 0 0
\(561\) −0.969977 + 9.22872i −0.0409525 + 0.389637i
\(562\) 36.4367 + 11.8390i 1.53699 + 0.499398i
\(563\) −12.3791 7.14710i −0.521718 0.301214i 0.215919 0.976411i \(-0.430725\pi\)
−0.737637 + 0.675197i \(0.764059\pi\)
\(564\) −1.65598 2.86823i −0.0697292 0.120774i
\(565\) 0 0
\(566\) 1.23108 + 3.78889i 0.0517463 + 0.159259i
\(567\) −2.71917 + 12.7927i −0.114194 + 0.537242i
\(568\) 3.43121 0.360634i 0.143970 0.0151319i
\(569\) −9.60991 10.6729i −0.402869 0.447431i 0.507237 0.861806i \(-0.330667\pi\)
−0.910106 + 0.414375i \(0.864000\pi\)
\(570\) 0 0
\(571\) 30.4932 13.5765i 1.27610 0.568157i 0.346960 0.937880i \(-0.387214\pi\)
0.929142 + 0.369722i \(0.120547\pi\)
\(572\) 0.0470040 + 0.0423226i 0.00196534 + 0.00176960i
\(573\) −6.82503 + 9.39385i −0.285120 + 0.392434i
\(574\) 0.736179 + 0.534865i 0.0307275 + 0.0223248i
\(575\) 0 0
\(576\) −6.47452 + 2.88264i −0.269772 + 0.120110i
\(577\) 9.14328 20.5361i 0.380640 0.854931i −0.617045 0.786928i \(-0.711670\pi\)
0.997685 0.0680033i \(-0.0216628\pi\)
\(578\) 24.7105 22.2495i 1.02782 0.925456i
\(579\) −0.718593 6.83695i −0.0298637 0.284134i
\(580\) 0 0
\(581\) 0.220786 + 0.679508i 0.00915973 + 0.0281908i
\(582\) −6.06616 28.5390i −0.251450 1.18298i
\(583\) −6.03677 + 3.48533i −0.250018 + 0.144348i
\(584\) 12.0203 20.8197i 0.497402 0.861525i
\(585\) 0 0
\(586\) −0.251563 + 2.39346i −0.0103920 + 0.0988730i
\(587\) 3.77133 + 5.19079i 0.155659 + 0.214247i 0.879723 0.475486i \(-0.157728\pi\)
−0.724064 + 0.689733i \(0.757728\pi\)
\(588\) 1.29711i 0.0534920i
\(589\) 5.75720 + 2.83814i 0.237221 + 0.116944i
\(590\) 0 0
\(591\) 26.8800 19.5294i 1.10569 0.803334i
\(592\) −11.7514 1.23512i −0.482980 0.0507632i
\(593\) 19.8392 + 6.44614i 0.814697 + 0.264711i 0.686586 0.727049i \(-0.259109\pi\)
0.128111 + 0.991760i \(0.459109\pi\)
\(594\) 3.39274 5.87640i 0.139206 0.241112i
\(595\) 0 0
\(596\) −2.10610 + 0.447664i −0.0862690 + 0.0183370i
\(597\) 37.5557 12.2026i 1.53705 0.499418i
\(598\) 0.204945 0.964189i 0.00838081 0.0394286i
\(599\) −1.20818 11.4951i −0.0493649 0.469676i −0.991080 0.133265i \(-0.957454\pi\)
0.941715 0.336410i \(-0.109213\pi\)
\(600\) 0 0
\(601\) 3.94416 + 1.75605i 0.160885 + 0.0716308i 0.485599 0.874181i \(-0.338601\pi\)
−0.324714 + 0.945812i \(0.605268\pi\)
\(602\) 10.8605 + 24.3930i 0.442640 + 0.994186i
\(603\) 0.326868 + 0.294313i 0.0133111 + 0.0119854i
\(604\) −4.38252 3.18409i −0.178322 0.129559i
\(605\) 0 0
\(606\) 6.13093 6.80909i 0.249052 0.276600i
\(607\) 18.2662 + 41.0266i 0.741404 + 1.66522i 0.746635 + 0.665234i \(0.231668\pi\)
−0.00523163 + 0.999986i \(0.501665\pi\)
\(608\) −1.03310 + 2.32038i −0.0418977 + 0.0941037i
\(609\) −2.90616 3.22762i −0.117764 0.130790i
\(610\) 0 0
\(611\) −0.927366 0.197118i −0.0375172 0.00797453i
\(612\) 1.97222 0.640812i 0.0797221 0.0259033i
\(613\) −0.541644 2.54823i −0.0218768 0.102922i 0.965855 0.259085i \(-0.0834209\pi\)
−0.987731 + 0.156163i \(0.950088\pi\)
\(614\) 14.3937 + 24.9306i 0.580883 + 1.00612i
\(615\) 0 0
\(616\) 1.95118 6.00512i 0.0786154 0.241953i
\(617\) 24.8499 + 2.61183i 1.00042 + 0.105148i 0.590555 0.806998i \(-0.298909\pi\)
0.409865 + 0.912146i \(0.365576\pi\)
\(618\) 2.13344 + 2.93643i 0.0858197 + 0.118121i
\(619\) −31.9083 −1.28250 −0.641252 0.767330i \(-0.721585\pi\)
−0.641252 + 0.767330i \(0.721585\pi\)
\(620\) 0 0
\(621\) 26.0847 1.04674
\(622\) −11.8191 16.2676i −0.473902 0.652271i
\(623\) −32.0240 3.36586i −1.28301 0.134850i
\(624\) 0.235378 0.724418i 0.00942264 0.0289999i
\(625\) 0 0
\(626\) −4.02105 6.96466i −0.160713 0.278364i
\(627\) −0.338198 1.59109i −0.0135063 0.0635422i
\(628\) 5.66612 1.84103i 0.226103 0.0734652i
\(629\) 24.9061 + 5.29395i 0.993071 + 0.211084i
\(630\) 0 0
\(631\) −0.240720 0.267347i −0.00958293 0.0106429i 0.738334 0.674435i \(-0.235613\pi\)
−0.747917 + 0.663792i \(0.768946\pi\)
\(632\) 5.60613 12.5916i 0.223000 0.500866i
\(633\) −0.800623 1.79823i −0.0318219 0.0714732i
\(634\) 12.9679 14.4024i 0.515022 0.571990i
\(635\) 0 0
\(636\) −3.48458 2.53170i −0.138173 0.100388i
\(637\) −0.275939 0.248457i −0.0109331 0.00984422i
\(638\) 0.654618 + 1.47030i 0.0259166 + 0.0582096i
\(639\) 0.827639 + 0.368488i 0.0327409 + 0.0145772i
\(640\) 0 0
\(641\) 3.22020 + 30.6382i 0.127190 + 1.21013i 0.852878 + 0.522110i \(0.174855\pi\)
−0.725688 + 0.688024i \(0.758478\pi\)
\(642\) 4.89677 23.0375i 0.193260 0.909218i
\(643\) −1.66609 + 0.541347i −0.0657044 + 0.0213486i −0.341685 0.939815i \(-0.610998\pi\)
0.275980 + 0.961163i \(0.410998\pi\)
\(644\) 3.92172 0.833588i 0.154538 0.0328480i
\(645\) 0 0
\(646\) −4.80159 + 8.31659i −0.188916 + 0.327212i
\(647\) −23.4439 7.61739i −0.921675 0.299470i −0.190521 0.981683i \(-0.561018\pi\)
−0.731154 + 0.682213i \(0.761018\pi\)
\(648\) 18.0304 + 1.89507i 0.708299 + 0.0744452i
\(649\) 2.04038 1.48242i 0.0800918 0.0581901i
\(650\) 0 0
\(651\) −1.18569 18.0516i −0.0464707 0.707498i
\(652\) 6.74233i 0.264050i
\(653\) −0.167909 0.231107i −0.00657080 0.00904393i 0.805719 0.592298i \(-0.201779\pi\)
−0.812290 + 0.583254i \(0.801779\pi\)
\(654\) −2.01676 + 19.1881i −0.0788614 + 0.750316i
\(655\) 0 0
\(656\) 0.500831 0.867465i 0.0195542 0.0338688i
\(657\) 5.46704 3.15640i 0.213290 0.123143i
\(658\) 3.25036 + 15.2918i 0.126712 + 0.596135i
\(659\) −11.5649 35.5930i −0.450503 1.38651i −0.876335 0.481703i \(-0.840018\pi\)
0.425832 0.904802i \(-0.359982\pi\)
\(660\) 0 0
\(661\) −0.438139 4.16861i −0.0170416 0.162140i 0.982691 0.185251i \(-0.0593097\pi\)
−0.999733 + 0.0231105i \(0.992643\pi\)
\(662\) 8.44125 7.60054i 0.328079 0.295403i
\(663\) −0.667608 + 1.49947i −0.0259278 + 0.0582347i
\(664\) 0.904797 0.402841i 0.0351129 0.0156333i
\(665\) 0 0
\(666\) −3.16117 2.29673i −0.122493 0.0889963i
\(667\) −3.63662 + 5.00538i −0.140810 + 0.193809i
\(668\) −4.76354 4.28911i −0.184307 0.165951i
\(669\) 16.4345 7.31712i 0.635395 0.282896i
\(670\) 0 0
\(671\) 1.11292 + 1.23602i 0.0429638 + 0.0477161i
\(672\) 7.11939 0.748278i 0.274636 0.0288655i
\(673\) −2.07343 + 9.75474i −0.0799250 + 0.376018i −0.999872 0.0160261i \(-0.994899\pi\)
0.919947 + 0.392044i \(0.128232\pi\)
\(674\) 1.70994 + 5.26266i 0.0658645 + 0.202710i
\(675\) 0 0
\(676\) −2.56659 4.44546i −0.0987150 0.170979i
\(677\) 41.3594 + 23.8788i 1.58957 + 0.917738i 0.993377 + 0.114896i \(0.0366536\pi\)
0.596192 + 0.802842i \(0.296680\pi\)
\(678\) 6.87126 + 2.23261i 0.263889 + 0.0857428i
\(679\) 3.55097 33.7852i 0.136274 1.29656i
\(680\) 0 0
\(681\) −23.6038 −0.904500
\(682\) −1.64924 + 6.49769i −0.0631527 + 0.248810i
\(683\) 27.7600i 1.06221i −0.847307 0.531104i \(-0.821777\pi\)
0.847307 0.531104i \(-0.178223\pi\)
\(684\) −0.294083 + 0.213664i −0.0112446 + 0.00816965i
\(685\) 0 0
\(686\) −7.88945 + 24.2812i −0.301221 + 0.927062i
\(687\) 20.9511 + 12.0961i 0.799335 + 0.461496i
\(688\) 25.4544 14.6961i 0.970438 0.560283i
\(689\) −1.20604 + 0.256351i −0.0459463 + 0.00976619i
\(690\) 0 0
\(691\) −37.1999 7.90708i −1.41515 0.300800i −0.564023 0.825759i \(-0.690747\pi\)
−0.851127 + 0.524959i \(0.824081\pi\)
\(692\) 0.917457 0.0964286i 0.0348765 0.00366567i
\(693\) 1.23216 1.10944i 0.0468059 0.0421442i
\(694\) −28.2393 12.5730i −1.07195 0.477263i
\(695\) 0 0
\(696\) −4.02858 + 4.47419i −0.152703 + 0.169594i
\(697\) −1.26872 + 1.74624i −0.0480562 + 0.0661437i
\(698\) −9.71106 + 13.3661i −0.367569 + 0.505915i
\(699\) 5.08813 5.65094i 0.192451 0.213738i
\(700\) 0 0
\(701\) 37.5067 + 16.6991i 1.41661 + 0.630716i 0.965179 0.261590i \(-0.0842469\pi\)
0.451431 + 0.892306i \(0.350914\pi\)
\(702\) 0.891940 0.803106i 0.0336641 0.0303113i
\(703\) −4.43895 + 0.466552i −0.167418 + 0.0175963i
\(704\) −8.27034 1.75792i −0.311700 0.0662539i
\(705\) 0 0
\(706\) −13.4111 + 2.85062i −0.504734 + 0.107284i
\(707\) 9.23898 5.33413i 0.347468 0.200611i
\(708\) 1.34959 + 0.779187i 0.0507207 + 0.0292836i
\(709\) −12.9990 + 40.0069i −0.488188 + 1.50249i 0.339121 + 0.940743i \(0.389870\pi\)
−0.827309 + 0.561747i \(0.810130\pi\)
\(710\) 0 0
\(711\) 2.92810 2.12739i 0.109812 0.0797833i
\(712\) 44.6368i 1.67284i
\(713\) −24.8019 + 6.99858i −0.928838 + 0.262099i
\(714\) 27.0654 1.01290
\(715\) 0 0
\(716\) −0.701974 + 6.67884i −0.0262340 + 0.249600i
\(717\) 12.0952 + 3.92996i 0.451702 + 0.146767i
\(718\) 37.0573 + 21.3951i 1.38297 + 0.798456i
\(719\) −16.6345 28.8118i −0.620362 1.07450i −0.989418 0.145092i \(-0.953652\pi\)
0.369056 0.929407i \(-0.379681\pi\)
\(720\) 0 0
\(721\) 1.30594 + 4.01926i 0.0486357 + 0.149685i
\(722\) −4.65349 + 21.8930i −0.173185 + 0.814772i
\(723\) 10.1071 1.06230i 0.375886 0.0395072i
\(724\) −1.94243 2.15728i −0.0721897 0.0801748i
\(725\) 0 0
\(726\) −17.3405 + 7.72048i −0.643566 + 0.286534i
\(727\) −24.3179 21.8959i −0.901899 0.812074i 0.0809055 0.996722i \(-0.474219\pi\)
−0.982805 + 0.184648i \(0.940885\pi\)
\(728\) 0.656471 0.903555i 0.0243305 0.0334880i
\(729\) 24.1540 + 17.5489i 0.894592 + 0.649959i
\(730\) 0 0
\(731\) −57.8612 + 25.7615i −2.14007 + 0.952822i
\(732\) −0.418008 + 0.938862i −0.0154500 + 0.0347014i
\(733\) −7.40463 + 6.66715i −0.273496 + 0.246257i −0.794452 0.607326i \(-0.792242\pi\)
0.520956 + 0.853583i \(0.325575\pi\)
\(734\) 2.99629 + 28.5078i 0.110595 + 1.05224i
\(735\) 0 0
\(736\) −3.15124 9.69852i −0.116156 0.357492i
\(737\) 0.109099 + 0.513268i 0.00401870 + 0.0189065i
\(738\) 0.286858 0.165618i 0.0105594 0.00609647i
\(739\) 15.4792 26.8108i 0.569412 0.986251i −0.427212 0.904152i \(-0.640504\pi\)
0.996624 0.0820995i \(-0.0261625\pi\)
\(740\) 0 0
\(741\) 0.0300751 0.286146i 0.00110484 0.0105118i
\(742\) 11.9504 + 16.4483i 0.438711 + 0.603834i
\(743\) 1.11003i 0.0407231i −0.999793 0.0203615i \(-0.993518\pi\)
0.999793 0.0203615i \(-0.00648173\pi\)
\(744\) −24.7146 + 4.25029i −0.906082 + 0.155823i
\(745\) 0 0
\(746\) 33.7865 24.5473i 1.23701 0.898741i
\(747\) 0.258651 + 0.0271853i 0.00946353 + 0.000994657i
\(748\) 2.35286 + 0.764490i 0.0860290 + 0.0279525i
\(749\) 13.7113 23.7487i 0.501000 0.867757i
\(750\) 0 0
\(751\) −27.5400 + 5.85382i −1.00495 + 0.213609i −0.680857 0.732416i \(-0.738393\pi\)
−0.324093 + 0.946025i \(0.605059\pi\)
\(752\) 16.3665 5.31779i 0.596824 0.193920i
\(753\) −6.99490 + 32.9084i −0.254908 + 1.19925i
\(754\) 0.0297571 + 0.283120i 0.00108369 + 0.0103106i
\(755\) 0 0
\(756\) 4.45972 + 1.98559i 0.162198 + 0.0722154i
\(757\) 15.7498 + 35.3746i 0.572436 + 1.28571i 0.935295 + 0.353868i \(0.115134\pi\)
−0.362860 + 0.931844i \(0.618200\pi\)
\(758\) 30.5836 + 27.5376i 1.11085 + 1.00021i
\(759\) 5.28348 + 3.83867i 0.191778 + 0.139335i
\(760\) 0 0
\(761\) 29.0649 32.2799i 1.05360 1.17014i 0.0685936 0.997645i \(-0.478149\pi\)
0.985010 0.172500i \(-0.0551845\pi\)
\(762\) 5.61572 + 12.6131i 0.203436 + 0.456925i
\(763\) −9.13713 + 20.5223i −0.330786 + 0.742958i
\(764\) 2.07138 + 2.30050i 0.0749399 + 0.0832292i
\(765\) 0 0
\(766\) 33.1789 + 7.05239i 1.19880 + 0.254813i
\(767\) 0.424268 0.137853i 0.0153194 0.00497759i
\(768\) −2.80862 13.2135i −0.101347 0.476801i
\(769\) −1.55509 2.69350i −0.0560781 0.0971302i 0.836624 0.547778i \(-0.184526\pi\)
−0.892702 + 0.450648i \(0.851193\pi\)
\(770\) 0 0
\(771\) −7.64083 + 23.5161i −0.275178 + 0.846910i
\(772\) −1.82274 0.191578i −0.0656019 0.00689504i
\(773\) 12.7198 + 17.5073i 0.457499 + 0.629693i 0.973988 0.226601i \(-0.0727613\pi\)
−0.516489 + 0.856294i \(0.672761\pi\)
\(774\) 9.71956 0.349362
\(775\) 0 0
\(776\) −47.0918 −1.69050
\(777\) 7.39408 + 10.1771i 0.265261 + 0.365101i
\(778\) −22.3433 2.34837i −0.801045 0.0841932i
\(779\) 0.116921 0.359847i 0.00418914 0.0128929i
\(780\) 0 0
\(781\) 0.540408 + 0.936015i 0.0193373 + 0.0334932i
\(782\) −8.01612 37.7129i −0.286656 1.34861i
\(783\) −7.16457 + 2.32791i −0.256041 + 0.0831927i
\(784\) 6.59245 + 1.40127i 0.235445 + 0.0500453i
\(785\) 0 0
\(786\) 16.3962 + 18.2098i 0.584834 + 0.649524i
\(787\) 3.20368 7.19557i 0.114199 0.256494i −0.847399 0.530956i \(-0.821833\pi\)
0.961598 + 0.274462i \(0.0884996\pi\)
\(788\) −3.60286 8.09215i −0.128346 0.288271i
\(789\) 24.4192 27.1203i 0.869346 0.965507i
\(790\) 0 0
\(791\) 6.80558 + 4.94454i 0.241979 + 0.175808i
\(792\) −1.70805 1.53793i −0.0606928 0.0546481i
\(793\) 0.119660 + 0.268760i 0.00424924 + 0.00954395i
\(794\) −11.5126 5.12573i −0.408566 0.181905i
\(795\) 0 0
\(796\) −1.10044 10.4700i −0.0390040 0.371099i
\(797\) 6.13717 28.8731i 0.217390 1.02274i −0.725136 0.688605i \(-0.758223\pi\)
0.942526 0.334133i \(-0.108443\pi\)
\(798\) −4.51217 + 1.46609i −0.159729 + 0.0518992i
\(799\) −36.2726 + 7.70998i −1.28323 + 0.272760i
\(800\) 0 0
\(801\) −5.86059 + 10.1508i −0.207074 + 0.358663i
\(802\) 23.9664 + 7.78716i 0.846283 + 0.274974i
\(803\) 7.48993 + 0.787223i 0.264314 + 0.0277805i
\(804\) −0.262311 + 0.190580i −0.00925100 + 0.00672124i
\(805\) 0 0
\(806\) −0.632601 + 1.00292i −0.0222824 + 0.0353264i
\(807\) 18.5749i 0.653869i
\(808\) −8.69250 11.9642i −0.305801 0.420899i
\(809\) −0.222387 + 2.11587i −0.00781871 + 0.0743901i −0.997735 0.0672603i \(-0.978574\pi\)
0.989917 + 0.141650i \(0.0452409\pi\)
\(810\) 0 0
\(811\) −3.60252 + 6.23975i −0.126502 + 0.219107i −0.922319 0.386430i \(-0.873708\pi\)
0.795817 + 0.605537i \(0.207042\pi\)
\(812\) −1.00277 + 0.578950i −0.0351904 + 0.0203172i
\(813\) −8.38400 39.4436i −0.294040 1.38335i
\(814\) −1.44050 4.43341i −0.0504896 0.155391i
\(815\) 0 0
\(816\) −3.11419 29.6295i −0.109018 1.03724i
\(817\) 8.25078 7.42904i 0.288658 0.259909i
\(818\) −12.5319 + 28.1470i −0.438166 + 0.984137i
\(819\) 0.267920 0.119286i 0.00936189 0.00416818i
\(820\) 0 0
\(821\) −34.0270 24.7221i −1.18755 0.862807i −0.194548 0.980893i \(-0.562324\pi\)
−0.993003 + 0.118086i \(0.962324\pi\)
\(822\) −0.148408 + 0.204267i −0.00517634 + 0.00712462i
\(823\) 22.4229 + 20.1897i 0.781613 + 0.703767i 0.959940 0.280204i \(-0.0904021\pi\)
−0.178328 + 0.983971i \(0.557069\pi\)
\(824\) 5.35184 2.38279i 0.186440 0.0830085i
\(825\) 0 0
\(826\) −4.92211 5.46656i −0.171262 0.190206i
\(827\) −3.84925 + 0.404573i −0.133852 + 0.0140684i −0.171217 0.985233i \(-0.554770\pi\)
0.0373657 + 0.999302i \(0.488103\pi\)
\(828\) 0.303433 1.42754i 0.0105450 0.0496104i
\(829\) −4.07025 12.5269i −0.141366 0.435079i 0.855160 0.518364i \(-0.173459\pi\)
−0.996526 + 0.0832851i \(0.973459\pi\)
\(830\) 0 0
\(831\) 11.2491 + 19.4841i 0.390228 + 0.675895i
\(832\) −1.29518 0.747774i −0.0449024 0.0259244i
\(833\) −13.8126 4.48797i −0.478577 0.155499i
\(834\) 2.26535 21.5534i 0.0784427 0.746332i
\(835\) 0 0
\(836\) −0.433665 −0.0149986
\(837\) −29.4401 10.8564i −1.01760 0.375251i
\(838\) 5.58159i 0.192813i
\(839\) −27.7080 + 20.1311i −0.956588 + 0.695002i −0.952356 0.304989i \(-0.901347\pi\)
−0.00423187 + 0.999991i \(0.501347\pi\)
\(840\) 0 0
\(841\) −8.40934 + 25.8813i −0.289977 + 0.892458i
\(842\) 13.6276 + 7.86792i 0.469640 + 0.271147i
\(843\) −38.8821 + 22.4486i −1.33917 + 0.773170i
\(844\) −0.513313 + 0.109108i −0.0176689 + 0.00375565i
\(845\) 0 0
\(846\) 5.56632 + 1.18316i 0.191374 + 0.0406778i
\(847\) −21.9798 + 2.31017i −0.755234 + 0.0793783i
\(848\) 16.6315 14.9751i 0.571128 0.514246i
\(849\) −4.26502 1.89891i −0.146375 0.0651704i
\(850\) 0 0
\(851\) 11.9908 13.3171i 0.411038 0.456504i
\(852\) −0.392545 + 0.540292i −0.0134484 + 0.0185101i
\(853\) 8.49225 11.6886i 0.290769 0.400209i −0.638495 0.769626i \(-0.720443\pi\)
0.929264 + 0.369417i \(0.120443\pi\)
\(854\) 3.24602 3.60507i 0.111077 0.123363i
\(855\) 0 0
\(856\) −34.7273 15.4616i −1.18696 0.528466i
\(857\) −20.6840 + 18.6239i −0.706552 + 0.636182i −0.941964 0.335714i \(-0.891023\pi\)
0.235413 + 0.971896i \(0.424356\pi\)
\(858\) 0.298850 0.0314104i 0.0102026 0.00107233i
\(859\) −46.2861 9.83842i −1.57926 0.335682i −0.666925 0.745124i \(-0.732390\pi\)
−0.912336 + 0.409442i \(0.865723\pi\)
\(860\) 0 0
\(861\) −1.04308 + 0.221713i −0.0355479 + 0.00755595i
\(862\) −20.3644 + 11.7574i −0.693616 + 0.400459i
\(863\) 22.5629 + 13.0267i 0.768049 + 0.443434i 0.832178 0.554508i \(-0.187094\pi\)
−0.0641289 + 0.997942i \(0.520427\pi\)
\(864\) 3.83695 11.8089i 0.130536 0.401747i
\(865\) 0 0
\(866\) 37.0127 26.8913i 1.25774 0.913802i
\(867\) 38.9668i 1.32338i
\(868\) −4.77314 0.691394i −0.162011 0.0234675i
\(869\) 4.31787 0.146474
\(870\) 0 0
\(871\) −0.00970189 + 0.0923073i −0.000328736 + 0.00312771i
\(872\) 29.6166 + 9.62302i 1.00294 + 0.325876i
\(873\) −10.7091 6.18291i −0.362449 0.209260i
\(874\) 3.37925 + 5.85303i 0.114305 + 0.197982i
\(875\) 0 0
\(876\) 1.43802 + 4.42577i 0.0485862 + 0.149533i
\(877\) −7.13584 + 33.5715i −0.240960 + 1.13363i 0.676699 + 0.736260i \(0.263410\pi\)
−0.917659 + 0.397368i \(0.869924\pi\)
\(878\) 23.9454 2.51676i 0.808119 0.0849367i
\(879\) −1.88716 2.09591i −0.0636524 0.0706931i
\(880\) 0 0
\(881\) −3.32044 + 1.47835i −0.111868 + 0.0498070i −0.461908 0.886928i \(-0.652835\pi\)
0.350039 + 0.936735i \(0.386168\pi\)
\(882\) 1.65627 + 1.49131i 0.0557695 + 0.0502151i
\(883\) −23.1925 + 31.9217i −0.780489 + 1.07425i 0.214739 + 0.976671i \(0.431110\pi\)
−0.995228 + 0.0975789i \(0.968890\pi\)
\(884\) 0.354021 + 0.257211i 0.0119070 + 0.00865095i
\(885\) 0 0
\(886\) 14.4105 6.41598i 0.484131 0.215549i
\(887\) 17.2061 38.6455i 0.577723 1.29759i −0.354280 0.935139i \(-0.615274\pi\)
0.932004 0.362449i \(-0.118059\pi\)
\(888\) 12.9590 11.6683i 0.434876 0.391564i
\(889\) 1.68037 + 15.9876i 0.0563577 + 0.536208i
\(890\) 0 0
\(891\) 1.75506 + 5.40152i 0.0587967 + 0.180958i
\(892\) −0.997168 4.69131i −0.0333876 0.157077i
\(893\) 5.62950 3.25019i 0.188384 0.108764i
\(894\) −5.11471 + 8.85894i −0.171062 + 0.296287i
\(895\) 0 0
\(896\) −1.56951 + 14.9329i −0.0524336 + 0.498872i
\(897\) 0.678988 + 0.934547i 0.0226708 + 0.0312036i
\(898\) 32.2180i 1.07513i
\(899\) 6.18765 4.13570i 0.206370 0.137933i
\(900\) 0 0
\(901\) −39.0159 + 28.3467i −1.29981 + 0.944365i
\(902\) 0.393000 + 0.0413059i 0.0130855 + 0.00137534i
\(903\) −29.7597 9.66950i −0.990340 0.321781i
\(904\) 5.83056 10.0988i 0.193921 0.335882i
\(905\) 0 0
\(906\) −25.1738 + 5.35085i −0.836342 + 0.177770i
\(907\) 30.7838 10.0023i 1.02216 0.332120i 0.250474 0.968123i \(-0.419414\pi\)
0.771686 + 0.636003i \(0.219414\pi\)
\(908\) −1.30835 + 6.15530i −0.0434191 + 0.204271i
\(909\) −0.405918 3.86206i −0.0134635 0.128096i
\(910\) 0 0
\(911\) −24.7212 11.0066i −0.819051 0.364665i −0.0459464 0.998944i \(-0.514630\pi\)
−0.773104 + 0.634279i \(0.781297\pi\)
\(912\) 2.12417 + 4.77095i 0.0703382 + 0.157982i
\(913\) 0.230576 + 0.207612i 0.00763095 + 0.00687094i
\(914\) 32.7638 + 23.8043i 1.08373 + 0.787376i
\(915\) 0 0
\(916\) 4.31569 4.79306i 0.142594 0.158367i
\(917\) 11.6044 + 26.0640i 0.383212 + 0.860708i
\(918\) 19.0943 42.8864i 0.630205 1.41546i
\(919\) −13.8945 15.4314i −0.458336 0.509033i 0.469034 0.883180i \(-0.344602\pi\)
−0.927369 + 0.374147i \(0.877936\pi\)
\(920\) 0 0
\(921\) −32.9984 7.01403i −1.08734 0.231120i
\(922\) −23.3093 + 7.57365i −0.767651 + 0.249425i
\(923\) 0.0397477 + 0.186998i 0.00130831 + 0.00615513i
\(924\) 0.611117 + 1.05849i 0.0201043 + 0.0348216i
\(925\) 0 0
\(926\) 0.0162285 0.0499461i 0.000533301 0.00164133i
\(927\) 1.52991 + 0.160800i 0.0502488 + 0.00528136i
\(928\) 1.73108 + 2.38262i 0.0568254 + 0.0782134i
\(929\) 20.6589 0.677798 0.338899 0.940823i \(-0.389945\pi\)
0.338899 + 0.940823i \(0.389945\pi\)
\(930\) 0 0
\(931\) 2.54585 0.0834368
\(932\) −1.19159 1.64009i −0.0390320 0.0537229i
\(933\) 23.4350 + 2.46312i 0.767229 + 0.0806390i
\(934\) −9.90570 + 30.4866i −0.324124 + 0.997552i
\(935\) 0 0
\(936\) −0.203272 0.352078i −0.00664416 0.0115080i
\(937\) −0.607227 2.85678i −0.0198372 0.0933269i 0.967115 0.254338i \(-0.0818577\pi\)
−0.986953 + 0.161012i \(0.948524\pi\)
\(938\) 1.45557 0.472945i 0.0475262 0.0154422i
\(939\) 9.21849 + 1.95945i 0.300834 + 0.0639442i
\(940\) 0 0
\(941\) 21.9810 + 24.4124i 0.716560 + 0.795821i 0.985920 0.167219i \(-0.0534787\pi\)
−0.269360 + 0.963040i \(0.586812\pi\)
\(942\) 11.5125 25.8575i 0.375098 0.842484i
\(943\) 0.617868 + 1.38775i 0.0201205 + 0.0451915i
\(944\) −5.41810 + 6.01741i −0.176344 + 0.195850i
\(945\) 0 0
\(946\) 9.38092 + 6.81564i 0.305000 + 0.221596i
\(947\) 29.0753 + 26.1796i 0.944822 + 0.850721i 0.988942 0.148305i \(-0.0473817\pi\)
−0.0441199 + 0.999026i \(0.514048\pi\)
\(948\) 1.08518 + 2.43736i 0.0352450 + 0.0791616i
\(949\) 1.21696 + 0.541824i 0.0395041 + 0.0175883i
\(950\) 0 0
\(951\) 2.37400 + 22.5871i 0.0769822 + 0.732437i
\(952\) 9.08247 42.7296i 0.294364 1.38488i
\(953\) 5.72512 1.86020i 0.185455 0.0602579i −0.214817 0.976654i \(-0.568916\pi\)
0.400272 + 0.916396i \(0.368916\pi\)
\(954\) 7.23898 1.53869i 0.234371 0.0498170i
\(955\) 0 0
\(956\) 1.69527 2.93629i 0.0548288 0.0949663i
\(957\) −1.79377 0.582832i −0.0579844 0.0188403i
\(958\) −26.7567 2.81224i −0.864469 0.0908594i
\(959\) −0.237835 + 0.172797i −0.00768008 + 0.00557991i
\(960\) 0 0
\(961\) 30.9051 + 2.42363i 0.996939 + 0.0781816i
\(962\) 0.824543i 0.0265843i
\(963\) −5.86729 8.07564i −0.189071 0.260234i
\(964\) 0.283210 2.69456i 0.00912158 0.0867860i
\(965\) 0 0
\(966\) 9.52401 16.4961i 0.306430 0.530753i
\(967\) 22.7854 13.1552i 0.732730 0.423042i −0.0866903 0.996235i \(-0.527629\pi\)
0.819420 + 0.573194i \(0.194296\pi\)
\(968\) 6.36972 + 29.9672i 0.204731 + 0.963181i
\(969\) −3.47763 10.7030i −0.111718 0.343831i
\(970\) 0 0
\(971\) 0.495033 + 4.70993i 0.0158864 + 0.151149i 0.999589 0.0286519i \(-0.00912142\pi\)
−0.983703 + 0.179801i \(0.942455\pi\)
\(972\) 2.36400 2.12856i 0.0758254 0.0682735i
\(973\) 10.2634 23.0520i 0.329030 0.739013i
\(974\) −30.9662 + 13.7870i −0.992222 + 0.441766i
\(975\) 0 0
\(976\) −4.32010 3.13874i −0.138283 0.100469i
\(977\) −10.1569 + 13.9798i −0.324950 + 0.447255i −0.939970 0.341256i \(-0.889148\pi\)
0.615021 + 0.788511i \(0.289148\pi\)
\(978\) −23.8046 21.4337i −0.761187 0.685376i
\(979\) −12.7745 + 5.68757i −0.408274 + 0.181775i
\(980\) 0 0
\(981\) 5.47165 + 6.07688i 0.174696 + 0.194020i
\(982\) −15.8294 + 1.66374i −0.505137 + 0.0530921i
\(983\) 8.51742 40.0713i 0.271663 1.27808i −0.604711 0.796445i \(-0.706711\pi\)
0.876374 0.481631i \(-0.159955\pi\)
\(984\) 0.456801 + 1.40589i 0.0145623 + 0.0448181i
\(985\) 0 0
\(986\) 5.56742 + 9.64305i 0.177303 + 0.307097i
\(987\) −15.8661 9.16029i −0.505023 0.291575i
\(988\) −0.0729528 0.0237038i −0.00232094 0.000754118i
\(989\) −4.65937 + 44.3309i −0.148159 + 1.40964i
\(990\) 0 0
\(991\) 14.1338 0.448975 0.224487 0.974477i \(-0.427929\pi\)
0.224487 + 0.974477i \(0.427929\pi\)
\(992\) −0.479896 + 12.2576i −0.0152367 + 0.389181i
\(993\) 13.3113i 0.422420i
\(994\) 2.55034 1.85293i 0.0808918 0.0587713i
\(995\) 0 0
\(996\) −0.0592436 + 0.182333i −0.00187721 + 0.00577745i
\(997\) −13.3834 7.72692i −0.423857 0.244714i 0.272869 0.962051i \(-0.412027\pi\)
−0.696726 + 0.717337i \(0.745361\pi\)
\(998\) 25.2622 14.5852i 0.799662 0.461685i
\(999\) 21.3425 4.53649i 0.675247 0.143528i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 775.2.ck.a.524.1 32
5.2 odd 4 775.2.bl.a.276.2 16
5.3 odd 4 31.2.g.a.28.1 yes 16
5.4 even 2 inner 775.2.ck.a.524.4 32
15.8 even 4 279.2.y.c.28.2 16
20.3 even 4 496.2.bg.c.369.2 16
31.10 even 15 inner 775.2.ck.a.599.4 32
155.3 even 60 961.2.d.q.531.3 16
155.8 odd 20 961.2.c.j.521.6 16
155.13 even 60 961.2.g.m.547.2 16
155.18 odd 60 961.2.g.s.547.2 16
155.23 even 20 961.2.c.i.521.6 16
155.28 odd 60 961.2.d.p.531.3 16
155.33 odd 20 961.2.g.k.732.1 16
155.38 odd 60 961.2.d.p.628.3 16
155.43 even 60 961.2.d.n.374.2 16
155.48 even 60 961.2.a.j.1.6 8
155.53 even 60 961.2.c.i.439.6 16
155.58 even 20 961.2.g.m.448.2 16
155.68 even 12 961.2.d.n.388.2 16
155.72 odd 60 775.2.bl.a.351.2 16
155.73 even 60 961.2.g.n.846.2 16
155.78 odd 20 961.2.g.t.844.2 16
155.83 even 60 961.2.g.l.816.1 16
155.88 even 12 961.2.g.j.235.1 16
155.98 odd 12 961.2.g.k.235.1 16
155.103 odd 60 31.2.g.a.10.1 16
155.108 even 20 961.2.g.n.844.2 16
155.113 odd 60 961.2.g.t.846.2 16
155.118 odd 12 961.2.d.o.388.2 16
155.123 even 4 961.2.g.l.338.1 16
155.128 odd 20 961.2.g.s.448.2 16
155.133 odd 60 961.2.c.j.439.6 16
155.134 even 30 inner 775.2.ck.a.599.1 32
155.138 odd 60 961.2.a.i.1.6 8
155.143 odd 60 961.2.d.o.374.2 16
155.148 even 60 961.2.d.q.628.3 16
155.153 even 20 961.2.g.j.732.1 16
465.203 odd 60 8649.2.a.be.1.3 8
465.293 even 60 8649.2.a.bf.1.3 8
465.413 even 60 279.2.y.c.10.2 16
620.103 even 60 496.2.bg.c.289.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.10.1 16 155.103 odd 60
31.2.g.a.28.1 yes 16 5.3 odd 4
279.2.y.c.10.2 16 465.413 even 60
279.2.y.c.28.2 16 15.8 even 4
496.2.bg.c.289.2 16 620.103 even 60
496.2.bg.c.369.2 16 20.3 even 4
775.2.bl.a.276.2 16 5.2 odd 4
775.2.bl.a.351.2 16 155.72 odd 60
775.2.ck.a.524.1 32 1.1 even 1 trivial
775.2.ck.a.524.4 32 5.4 even 2 inner
775.2.ck.a.599.1 32 155.134 even 30 inner
775.2.ck.a.599.4 32 31.10 even 15 inner
961.2.a.i.1.6 8 155.138 odd 60
961.2.a.j.1.6 8 155.48 even 60
961.2.c.i.439.6 16 155.53 even 60
961.2.c.i.521.6 16 155.23 even 20
961.2.c.j.439.6 16 155.133 odd 60
961.2.c.j.521.6 16 155.8 odd 20
961.2.d.n.374.2 16 155.43 even 60
961.2.d.n.388.2 16 155.68 even 12
961.2.d.o.374.2 16 155.143 odd 60
961.2.d.o.388.2 16 155.118 odd 12
961.2.d.p.531.3 16 155.28 odd 60
961.2.d.p.628.3 16 155.38 odd 60
961.2.d.q.531.3 16 155.3 even 60
961.2.d.q.628.3 16 155.148 even 60
961.2.g.j.235.1 16 155.88 even 12
961.2.g.j.732.1 16 155.153 even 20
961.2.g.k.235.1 16 155.98 odd 12
961.2.g.k.732.1 16 155.33 odd 20
961.2.g.l.338.1 16 155.123 even 4
961.2.g.l.816.1 16 155.83 even 60
961.2.g.m.448.2 16 155.58 even 20
961.2.g.m.547.2 16 155.13 even 60
961.2.g.n.844.2 16 155.108 even 20
961.2.g.n.846.2 16 155.73 even 60
961.2.g.s.448.2 16 155.128 odd 20
961.2.g.s.547.2 16 155.18 odd 60
961.2.g.t.844.2 16 155.78 odd 20
961.2.g.t.846.2 16 155.113 odd 60
8649.2.a.be.1.3 8 465.203 odd 60
8649.2.a.bf.1.3 8 465.293 even 60