Properties

Label 775.2.ck.a.599.1
Level $775$
Weight $2$
Character 775.599
Analytic conductor $6.188$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [775,2,Mod(49,775)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(775, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([15, 26])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("775.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 775 = 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 775.ck (of order \(30\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.18840615665\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{30})\)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 599.1
Character \(\chi\) \(=\) 775.599
Dual form 775.2.ck.a.524.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.744490 + 1.02470i) q^{2} +(1.47618 - 0.155153i) q^{3} +(0.122284 + 0.376353i) q^{4} +(-0.940018 + 1.62816i) q^{6} +(-0.455117 + 2.14115i) q^{7} +(-2.88591 - 0.937688i) q^{8} +(-0.779397 + 0.165666i) q^{9} +(-0.636073 + 0.706430i) q^{11} +(0.238907 + 0.536593i) q^{12} +(-0.0683897 + 0.153606i) q^{13} +(-1.85522 - 2.06043i) q^{14} +(2.46909 - 1.79390i) q^{16} +(-4.88741 + 4.40064i) q^{17} +(0.410495 - 0.921986i) q^{18} +(1.05317 - 0.468903i) q^{19} +(-0.339629 + 3.23135i) q^{21} +(-0.250331 - 1.17772i) q^{22} +(-4.40197 - 1.43029i) q^{23} +(-4.40562 - 0.936443i) q^{24} +(-0.106485 - 0.184437i) q^{26} +(-5.35983 + 1.74151i) q^{27} +(-0.861483 + 0.0905455i) q^{28} +(1.08143 + 0.785701i) q^{29} +(5.56350 - 0.217815i) q^{31} -2.20322i q^{32} +(-0.829355 + 1.14151i) q^{33} +(-0.870722 - 8.28437i) q^{34} +(-0.157657 - 0.273070i) q^{36} +(-3.35295 - 1.93582i) q^{37} +(-0.303591 + 1.42828i) q^{38} +(-0.0771233 + 0.237361i) q^{39} +(-0.0343065 + 0.326405i) q^{41} +(-3.05832 - 2.75373i) q^{42} +(3.91711 + 8.79797i) q^{43} +(-0.343649 - 0.153002i) q^{44} +(4.74283 - 3.44587i) q^{46} +(3.31427 + 4.56170i) q^{47} +(3.36650 - 3.03121i) q^{48} +(2.01741 + 0.898207i) q^{49} +(-6.53194 + 7.25445i) q^{51} +(-0.0661729 - 0.00695505i) q^{52} +(1.52460 + 7.17270i) q^{53} +(2.20581 - 6.78877i) q^{54} +(3.32116 - 5.75242i) q^{56} +(1.48193 - 0.855590i) q^{57} +(-1.61022 + 0.523192i) q^{58} +(-0.277326 - 2.63859i) q^{59} -1.74967 q^{61} +(-3.91877 + 5.86309i) q^{62} -1.74421i q^{63} +(7.19583 + 5.22808i) q^{64} +(-0.552261 - 1.69968i) q^{66} +(-0.478052 + 0.276003i) q^{67} +(-2.25385 - 1.30126i) q^{68} +(-6.72002 - 1.42838i) q^{69} +(-1.11214 + 0.236393i) q^{71} +(2.40461 + 0.252735i) q^{72} +(-5.88764 - 5.30125i) q^{73} +(4.47988 - 1.99457i) q^{74} +(0.305260 + 0.339025i) q^{76} +(-1.22309 - 1.68344i) q^{77} +(-0.185807 - 0.255741i) q^{78} +(-3.03938 - 3.37557i) q^{79} +(-5.45813 + 2.43012i) q^{81} +(-0.308927 - 0.278159i) q^{82} +(-0.324608 - 0.0341177i) q^{83} +(-1.25766 + 0.267324i) q^{84} +(-11.9315 - 2.53613i) q^{86} +(1.71829 + 0.992053i) q^{87} +(2.49806 - 1.44225i) q^{88} +(4.54569 + 13.9902i) q^{89} +(-0.297768 - 0.216341i) q^{91} -1.83159i q^{92} +(8.17896 - 1.18473i) q^{93} -7.14183 q^{94} +(-0.341837 - 3.25236i) q^{96} +(14.7596 - 4.79569i) q^{97} +(-2.42233 + 1.39853i) q^{98} +(0.378722 - 0.655965i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 28 q^{4} + 22 q^{6} + 20 q^{9} - 14 q^{11} + 12 q^{14} - 4 q^{16} - 32 q^{19} + 18 q^{21} + 40 q^{24} + 18 q^{26} + 28 q^{29} + 30 q^{31} + 64 q^{34} + 2 q^{36} + 6 q^{39} - 16 q^{41} - 78 q^{44}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/775\mathbb{Z}\right)^\times\).

\(n\) \(251\) \(652\)
\(\chi(n)\) \(e\left(\frac{7}{15}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.744490 + 1.02470i −0.526434 + 0.724574i −0.986582 0.163268i \(-0.947796\pi\)
0.460148 + 0.887842i \(0.347796\pi\)
\(3\) 1.47618 0.155153i 0.852275 0.0895777i 0.331691 0.943388i \(-0.392381\pi\)
0.520584 + 0.853810i \(0.325714\pi\)
\(4\) 0.122284 + 0.376353i 0.0611422 + 0.188176i
\(5\) 0 0
\(6\) −0.940018 + 1.62816i −0.383761 + 0.664693i
\(7\) −0.455117 + 2.14115i −0.172018 + 0.809280i 0.804518 + 0.593928i \(0.202423\pi\)
−0.976536 + 0.215353i \(0.930910\pi\)
\(8\) −2.88591 0.937688i −1.02032 0.331523i
\(9\) −0.779397 + 0.165666i −0.259799 + 0.0552220i
\(10\) 0 0
\(11\) −0.636073 + 0.706430i −0.191783 + 0.212997i −0.831366 0.555726i \(-0.812441\pi\)
0.639583 + 0.768722i \(0.279107\pi\)
\(12\) 0.238907 + 0.536593i 0.0689664 + 0.154901i
\(13\) −0.0683897 + 0.153606i −0.0189679 + 0.0426026i −0.922781 0.385325i \(-0.874089\pi\)
0.903813 + 0.427927i \(0.140756\pi\)
\(14\) −1.85522 2.06043i −0.495827 0.550672i
\(15\) 0 0
\(16\) 2.46909 1.79390i 0.617273 0.448475i
\(17\) −4.88741 + 4.40064i −1.18537 + 1.06731i −0.189018 + 0.981974i \(0.560531\pi\)
−0.996352 + 0.0853387i \(0.972803\pi\)
\(18\) 0.410495 0.921986i 0.0967546 0.217314i
\(19\) 1.05317 0.468903i 0.241615 0.107574i −0.282357 0.959309i \(-0.591116\pi\)
0.523972 + 0.851736i \(0.324450\pi\)
\(20\) 0 0
\(21\) −0.339629 + 3.23135i −0.0741130 + 0.705139i
\(22\) −0.250331 1.17772i −0.0533708 0.251090i
\(23\) −4.40197 1.43029i −0.917873 0.298235i −0.188279 0.982116i \(-0.560291\pi\)
−0.729594 + 0.683880i \(0.760291\pi\)
\(24\) −4.40562 0.936443i −0.899293 0.191151i
\(25\) 0 0
\(26\) −0.106485 0.184437i −0.0208834 0.0361711i
\(27\) −5.35983 + 1.74151i −1.03150 + 0.335155i
\(28\) −0.861483 + 0.0905455i −0.162805 + 0.0171115i
\(29\) 1.08143 + 0.785701i 0.200816 + 0.145901i 0.683649 0.729811i \(-0.260392\pi\)
−0.482833 + 0.875713i \(0.660392\pi\)
\(30\) 0 0
\(31\) 5.56350 0.217815i 0.999234 0.0391208i
\(32\) 2.20322i 0.389479i
\(33\) −0.829355 + 1.14151i −0.144372 + 0.198711i
\(34\) −0.870722 8.28437i −0.149328 1.42076i
\(35\) 0 0
\(36\) −0.157657 0.273070i −0.0262762 0.0455116i
\(37\) −3.35295 1.93582i −0.551221 0.318248i 0.198393 0.980122i \(-0.436428\pi\)
−0.749614 + 0.661875i \(0.769761\pi\)
\(38\) −0.303591 + 1.42828i −0.0492489 + 0.231698i
\(39\) −0.0771233 + 0.237361i −0.0123496 + 0.0380082i
\(40\) 0 0
\(41\) −0.0343065 + 0.326405i −0.00535778 + 0.0509758i −0.996874 0.0790062i \(-0.974825\pi\)
0.991516 + 0.129982i \(0.0414920\pi\)
\(42\) −3.05832 2.75373i −0.471909 0.424909i
\(43\) 3.91711 + 8.79797i 0.597353 + 1.34168i 0.918790 + 0.394746i \(0.129167\pi\)
−0.321437 + 0.946931i \(0.604166\pi\)
\(44\) −0.343649 0.153002i −0.0518070 0.0230660i
\(45\) 0 0
\(46\) 4.74283 3.44587i 0.699293 0.508066i
\(47\) 3.31427 + 4.56170i 0.483436 + 0.665393i 0.979161 0.203087i \(-0.0650974\pi\)
−0.495725 + 0.868480i \(0.665097\pi\)
\(48\) 3.36650 3.03121i 0.485913 0.437518i
\(49\) 2.01741 + 0.898207i 0.288201 + 0.128315i
\(50\) 0 0
\(51\) −6.53194 + 7.25445i −0.914654 + 1.01583i
\(52\) −0.0661729 0.00695505i −0.00917653 0.000964493i
\(53\) 1.52460 + 7.17270i 0.209421 + 0.985246i 0.949752 + 0.313004i \(0.101335\pi\)
−0.740331 + 0.672242i \(0.765331\pi\)
\(54\) 2.20581 6.78877i 0.300172 0.923835i
\(55\) 0 0
\(56\) 3.32116 5.75242i 0.443809 0.768699i
\(57\) 1.48193 0.855590i 0.196286 0.113326i
\(58\) −1.61022 + 0.523192i −0.211432 + 0.0686985i
\(59\) −0.277326 2.63859i −0.0361048 0.343515i −0.997631 0.0687995i \(-0.978083\pi\)
0.961526 0.274715i \(-0.0885835\pi\)
\(60\) 0 0
\(61\) −1.74967 −0.224023 −0.112011 0.993707i \(-0.535729\pi\)
−0.112011 + 0.993707i \(0.535729\pi\)
\(62\) −3.91877 + 5.86309i −0.497685 + 0.744614i
\(63\) 1.74421i 0.219749i
\(64\) 7.19583 + 5.22808i 0.899479 + 0.653510i
\(65\) 0 0
\(66\) −0.552261 1.69968i −0.0679786 0.209217i
\(67\) −0.478052 + 0.276003i −0.0584033 + 0.0337192i −0.528917 0.848673i \(-0.677402\pi\)
0.470514 + 0.882393i \(0.344069\pi\)
\(68\) −2.25385 1.30126i −0.273319 0.157801i
\(69\) −6.72002 1.42838i −0.808996 0.171957i
\(70\) 0 0
\(71\) −1.11214 + 0.236393i −0.131987 + 0.0280547i −0.273431 0.961891i \(-0.588159\pi\)
0.141444 + 0.989946i \(0.454825\pi\)
\(72\) 2.40461 + 0.252735i 0.283386 + 0.0297851i
\(73\) −5.88764 5.30125i −0.689096 0.620465i 0.248319 0.968678i \(-0.420122\pi\)
−0.937415 + 0.348214i \(0.886788\pi\)
\(74\) 4.47988 1.99457i 0.520775 0.231864i
\(75\) 0 0
\(76\) 0.305260 + 0.339025i 0.0350157 + 0.0388888i
\(77\) −1.22309 1.68344i −0.139384 0.191846i
\(78\) −0.185807 0.255741i −0.0210385 0.0289570i
\(79\) −3.03938 3.37557i −0.341957 0.379782i 0.547496 0.836808i \(-0.315581\pi\)
−0.889453 + 0.457027i \(0.848914\pi\)
\(80\) 0 0
\(81\) −5.45813 + 2.43012i −0.606459 + 0.270013i
\(82\) −0.308927 0.278159i −0.0341152 0.0307175i
\(83\) −0.324608 0.0341177i −0.0356303 0.00374490i 0.0866965 0.996235i \(-0.472369\pi\)
−0.122327 + 0.992490i \(0.539036\pi\)
\(84\) −1.25766 + 0.267324i −0.137222 + 0.0291674i
\(85\) 0 0
\(86\) −11.9315 2.53613i −1.28661 0.273478i
\(87\) 1.71829 + 0.992053i 0.184220 + 0.106359i
\(88\) 2.49806 1.44225i 0.266294 0.153745i
\(89\) 4.54569 + 13.9902i 0.481842 + 1.48296i 0.836503 + 0.547962i \(0.184596\pi\)
−0.354661 + 0.934995i \(0.615404\pi\)
\(90\) 0 0
\(91\) −0.297768 0.216341i −0.0312146 0.0226787i
\(92\) 1.83159i 0.190957i
\(93\) 8.17896 1.18473i 0.848118 0.122851i
\(94\) −7.14183 −0.736623
\(95\) 0 0
\(96\) −0.341837 3.25236i −0.0348886 0.331943i
\(97\) 14.7596 4.79569i 1.49861 0.486929i 0.559000 0.829168i \(-0.311185\pi\)
0.939613 + 0.342239i \(0.111185\pi\)
\(98\) −2.42233 + 1.39853i −0.244692 + 0.141273i
\(99\) 0.378722 0.655965i 0.0380630 0.0659270i
\(100\) 0 0
\(101\) 1.50602 4.63507i 0.149855 0.461206i −0.847748 0.530399i \(-0.822042\pi\)
0.997603 + 0.0691923i \(0.0220422\pi\)
\(102\) −2.57069 12.0942i −0.254536 1.19750i
\(103\) −1.92004 0.201805i −0.189187 0.0198844i 0.00946083 0.999955i \(-0.496988\pi\)
−0.198648 + 0.980071i \(0.563655\pi\)
\(104\) 0.341401 0.379164i 0.0334771 0.0371801i
\(105\) 0 0
\(106\) −8.48494 3.77774i −0.824130 0.366926i
\(107\) 9.30976 8.38254i 0.900008 0.810371i −0.0824999 0.996591i \(-0.526290\pi\)
0.982508 + 0.186220i \(0.0596238\pi\)
\(108\) −1.31085 1.80423i −0.126136 0.173612i
\(109\) −8.30253 + 6.03214i −0.795238 + 0.577774i −0.909513 0.415675i \(-0.863545\pi\)
0.114275 + 0.993449i \(0.463545\pi\)
\(110\) 0 0
\(111\) −5.24991 2.33741i −0.498300 0.221857i
\(112\) 2.71729 + 6.10314i 0.256760 + 0.576692i
\(113\) −2.85586 2.57143i −0.268657 0.241900i 0.523780 0.851854i \(-0.324521\pi\)
−0.792437 + 0.609954i \(0.791188\pi\)
\(114\) −0.226553 + 2.15551i −0.0212187 + 0.201882i
\(115\) 0 0
\(116\) −0.163459 + 0.503076i −0.0151768 + 0.0467095i
\(117\) 0.0278555 0.131050i 0.00257524 0.0121155i
\(118\) 2.91023 + 1.68022i 0.267908 + 0.154677i
\(119\) −7.19811 12.4675i −0.659850 1.14289i
\(120\) 0 0
\(121\) 1.05536 + 10.0411i 0.0959416 + 0.912824i
\(122\) 1.30261 1.79289i 0.117933 0.162321i
\(123\) 0.487156i 0.0439254i
\(124\) 0.762305 + 2.06720i 0.0684570 + 0.185640i
\(125\) 0 0
\(126\) 1.78729 + 1.29854i 0.159225 + 0.115684i
\(127\) −7.30366 + 0.767645i −0.648095 + 0.0681175i −0.422871 0.906190i \(-0.638978\pi\)
−0.225223 + 0.974307i \(0.572311\pi\)
\(128\) −6.52366 + 2.11967i −0.576616 + 0.187354i
\(129\) 7.14740 + 12.3797i 0.629294 + 1.08997i
\(130\) 0 0
\(131\) −12.7489 2.70985i −1.11387 0.236761i −0.386017 0.922492i \(-0.626149\pi\)
−0.727855 + 0.685731i \(0.759483\pi\)
\(132\) −0.531027 0.172541i −0.0462200 0.0150178i
\(133\) 0.524677 + 2.46841i 0.0454953 + 0.214039i
\(134\) 0.0730834 0.695342i 0.00631345 0.0600684i
\(135\) 0 0
\(136\) 18.2310 8.11698i 1.56330 0.696025i
\(137\) −0.0546244 + 0.122689i −0.00466688 + 0.0104820i −0.915864 0.401489i \(-0.868493\pi\)
0.911197 + 0.411971i \(0.135159\pi\)
\(138\) 6.46666 5.82260i 0.550478 0.495653i
\(139\) 9.32593 6.77569i 0.791015 0.574706i −0.117249 0.993103i \(-0.537408\pi\)
0.908265 + 0.418396i \(0.137408\pi\)
\(140\) 0 0
\(141\) 5.60024 + 6.21969i 0.471625 + 0.523793i
\(142\) 0.585746 1.31561i 0.0491547 0.110403i
\(143\) −0.0650109 0.146017i −0.00543649 0.0122106i
\(144\) −1.62721 + 1.80720i −0.135601 + 0.150600i
\(145\) 0 0
\(146\) 9.81549 2.08635i 0.812336 0.172667i
\(147\) 3.11742 + 1.01291i 0.257120 + 0.0835435i
\(148\) 0.318540 1.49861i 0.0261838 0.123185i
\(149\) −2.72054 + 4.71211i −0.222875 + 0.386031i −0.955680 0.294408i \(-0.904878\pi\)
0.732805 + 0.680439i \(0.238211\pi\)
\(150\) 0 0
\(151\) 4.23019 + 13.0192i 0.344248 + 1.05949i 0.961985 + 0.273102i \(0.0880496\pi\)
−0.617737 + 0.786385i \(0.711950\pi\)
\(152\) −3.47905 + 0.365662i −0.282188 + 0.0296591i
\(153\) 3.08019 4.23952i 0.249019 0.342745i
\(154\) 2.63560 0.212383
\(155\) 0 0
\(156\) −0.0987625 −0.00790733
\(157\) 8.84931 12.1800i 0.706252 0.972072i −0.293618 0.955923i \(-0.594859\pi\)
0.999870 0.0161493i \(-0.00514071\pi\)
\(158\) 5.72174 0.601379i 0.455197 0.0478432i
\(159\) 3.36346 + 10.3517i 0.266740 + 0.820942i
\(160\) 0 0
\(161\) 5.06587 8.77434i 0.399246 0.691515i
\(162\) 1.57338 7.40215i 0.123616 0.581568i
\(163\) 16.2042 + 5.26506i 1.26921 + 0.412391i 0.864768 0.502172i \(-0.167466\pi\)
0.404443 + 0.914563i \(0.367466\pi\)
\(164\) −0.127038 + 0.0270028i −0.00992003 + 0.00210857i
\(165\) 0 0
\(166\) 0.276628 0.307226i 0.0214705 0.0238454i
\(167\) 6.58842 + 14.7978i 0.509827 + 1.14509i 0.966782 + 0.255601i \(0.0822732\pi\)
−0.456955 + 0.889490i \(0.651060\pi\)
\(168\) 4.01014 9.00692i 0.309389 0.694899i
\(169\) 8.67978 + 9.63987i 0.667675 + 0.741529i
\(170\) 0 0
\(171\) −0.743159 + 0.539937i −0.0568308 + 0.0412900i
\(172\) −2.83214 + 2.55007i −0.215948 + 0.194441i
\(173\) 0.948192 2.12967i 0.0720897 0.161916i −0.873906 0.486094i \(-0.838421\pi\)
0.945996 + 0.324178i \(0.105088\pi\)
\(174\) −2.29581 + 1.02216i −0.174045 + 0.0774896i
\(175\) 0 0
\(176\) −0.303256 + 2.88529i −0.0228588 + 0.217487i
\(177\) −0.818770 3.85201i −0.0615425 0.289535i
\(178\) −17.7200 5.75758i −1.32817 0.431549i
\(179\) −16.5998 3.52839i −1.24073 0.263724i −0.459616 0.888118i \(-0.652013\pi\)
−0.781110 + 0.624394i \(0.785346\pi\)
\(180\) 0 0
\(181\) 3.66788 + 6.35296i 0.272631 + 0.472211i 0.969535 0.244954i \(-0.0787727\pi\)
−0.696903 + 0.717165i \(0.745439\pi\)
\(182\) 0.443371 0.144060i 0.0328648 0.0106784i
\(183\) −2.58284 + 0.271467i −0.190929 + 0.0200674i
\(184\) 11.3625 + 8.25534i 0.837655 + 0.608592i
\(185\) 0 0
\(186\) −4.87515 + 9.26301i −0.357464 + 0.679197i
\(187\) 6.25174i 0.457173i
\(188\) −1.31153 + 1.80516i −0.0956528 + 0.131655i
\(189\) −1.28951 12.2688i −0.0937977 0.892425i
\(190\) 0 0
\(191\) −3.91138 6.77471i −0.283018 0.490201i 0.689109 0.724658i \(-0.258002\pi\)
−0.972127 + 0.234457i \(0.924669\pi\)
\(192\) 11.4335 + 6.60115i 0.825143 + 0.476397i
\(193\) −0.962944 + 4.53030i −0.0693142 + 0.326098i −0.999120 0.0419539i \(-0.986642\pi\)
0.929805 + 0.368052i \(0.119975\pi\)
\(194\) −6.07423 + 18.6946i −0.436104 + 1.34219i
\(195\) 0 0
\(196\) −0.0913453 + 0.869092i −0.00652466 + 0.0620780i
\(197\) 16.6348 + 14.9781i 1.18518 + 1.06714i 0.996370 + 0.0851305i \(0.0271307\pi\)
0.188813 + 0.982013i \(0.439536\pi\)
\(198\) 0.390215 + 0.876436i 0.0277313 + 0.0622856i
\(199\) 24.3037 + 10.8207i 1.72285 + 0.767061i 0.996845 + 0.0793670i \(0.0252899\pi\)
0.726001 + 0.687694i \(0.241377\pi\)
\(200\) 0 0
\(201\) −0.662869 + 0.481603i −0.0467552 + 0.0339696i
\(202\) 3.62834 + 4.99399i 0.255289 + 0.351376i
\(203\) −2.17448 + 1.95791i −0.152619 + 0.137419i
\(204\) −3.52899 1.57121i −0.247078 0.110006i
\(205\) 0 0
\(206\) 1.63624 1.81723i 0.114002 0.126612i
\(207\) 3.66783 + 0.385504i 0.254932 + 0.0267944i
\(208\) 0.106693 + 0.501951i 0.00739782 + 0.0348040i
\(209\) −0.338648 + 1.04225i −0.0234247 + 0.0720939i
\(210\) 0 0
\(211\) −0.663069 + 1.14847i −0.0456476 + 0.0790639i −0.887946 0.459947i \(-0.847868\pi\)
0.842299 + 0.539011i \(0.181202\pi\)
\(212\) −2.51303 + 1.45090i −0.172596 + 0.0996481i
\(213\) −1.60505 + 0.521512i −0.109976 + 0.0357334i
\(214\) 1.65859 + 15.7804i 0.113379 + 1.07873i
\(215\) 0 0
\(216\) 17.1010 1.16357
\(217\) −2.06567 + 12.0115i −0.140227 + 0.815390i
\(218\) 12.9985i 0.880368i
\(219\) −9.51374 6.91214i −0.642879 0.467079i
\(220\) 0 0
\(221\) −0.341716 1.05169i −0.0229863 0.0707445i
\(222\) 6.30366 3.63942i 0.423074 0.244262i
\(223\) 10.4962 + 6.05997i 0.702876 + 0.405806i 0.808418 0.588609i \(-0.200324\pi\)
−0.105542 + 0.994415i \(0.533658\pi\)
\(224\) 4.71744 + 1.00272i 0.315198 + 0.0669973i
\(225\) 0 0
\(226\) 4.76111 1.01201i 0.316704 0.0673176i
\(227\) −15.8150 1.66223i −1.04968 0.110326i −0.436053 0.899921i \(-0.643624\pi\)
−0.613628 + 0.789595i \(0.710291\pi\)
\(228\) 0.503220 + 0.453101i 0.0333266 + 0.0300074i
\(229\) 14.8895 6.62924i 0.983927 0.438073i 0.149242 0.988801i \(-0.452317\pi\)
0.834685 + 0.550728i \(0.185650\pi\)
\(230\) 0 0
\(231\) −2.06670 2.29530i −0.135979 0.151020i
\(232\) −2.38415 3.28150i −0.156527 0.215441i
\(233\) 3.01120 + 4.14456i 0.197270 + 0.271519i 0.896180 0.443691i \(-0.146331\pi\)
−0.698910 + 0.715210i \(0.746331\pi\)
\(234\) 0.113549 + 0.126109i 0.00742292 + 0.00824399i
\(235\) 0 0
\(236\) 0.959126 0.427030i 0.0624338 0.0277973i
\(237\) −5.01041 4.51140i −0.325461 0.293047i
\(238\) 18.1344 + 1.90600i 1.17548 + 0.123548i
\(239\) 8.38077 1.78139i 0.542107 0.115228i 0.0712838 0.997456i \(-0.477290\pi\)
0.470823 + 0.882228i \(0.343957\pi\)
\(240\) 0 0
\(241\) 6.69714 + 1.42352i 0.431401 + 0.0916971i 0.418494 0.908220i \(-0.362558\pi\)
0.0129071 + 0.999917i \(0.495891\pi\)
\(242\) −11.0748 6.39404i −0.711915 0.411024i
\(243\) 6.96171 4.01935i 0.446594 0.257841i
\(244\) −0.213958 0.658494i −0.0136972 0.0421558i
\(245\) 0 0
\(246\) −0.499190 0.362683i −0.0318272 0.0231238i
\(247\) 0.193842i 0.0123338i
\(248\) −16.2600 4.58824i −1.03251 0.291353i
\(249\) −0.484474 −0.0307023
\(250\) 0 0
\(251\) −2.36925 22.5419i −0.149546 1.42283i −0.769726 0.638375i \(-0.779607\pi\)
0.620180 0.784460i \(-0.287060\pi\)
\(252\) 0.656437 0.213289i 0.0413516 0.0134360i
\(253\) 3.81037 2.19992i 0.239556 0.138308i
\(254\) 4.65089 8.05558i 0.291823 0.505452i
\(255\) 0 0
\(256\) −2.81235 + 8.65553i −0.175772 + 0.540971i
\(257\) −3.46347 16.2943i −0.216045 1.01641i −0.943785 0.330560i \(-0.892763\pi\)
0.727740 0.685853i \(-0.240571\pi\)
\(258\) −18.0066 1.89257i −1.12104 0.117826i
\(259\) 5.67088 6.29815i 0.352371 0.391348i
\(260\) 0 0
\(261\) −0.973024 0.433218i −0.0602286 0.0268155i
\(262\) 12.2682 11.0463i 0.757931 0.682444i
\(263\) 14.4515 + 19.8908i 0.891118 + 1.22652i 0.973216 + 0.229894i \(0.0738380\pi\)
−0.0820979 + 0.996624i \(0.526162\pi\)
\(264\) 3.46382 2.51661i 0.213184 0.154887i
\(265\) 0 0
\(266\) −2.92000 1.30007i −0.179037 0.0797124i
\(267\) 8.88089 + 19.9468i 0.543502 + 1.22073i
\(268\) −0.162333 0.146165i −0.00991606 0.00892846i
\(269\) 1.30808 12.4456i 0.0797553 0.758821i −0.879427 0.476033i \(-0.842074\pi\)
0.959182 0.282788i \(-0.0912592\pi\)
\(270\) 0 0
\(271\) −8.39516 + 25.8376i −0.509969 + 1.56952i 0.282283 + 0.959331i \(0.408908\pi\)
−0.792252 + 0.610194i \(0.791092\pi\)
\(272\) −4.17314 + 19.6331i −0.253034 + 1.19043i
\(273\) −0.473127 0.273160i −0.0286349 0.0165324i
\(274\) −0.0850519 0.147314i −0.00513817 0.00889957i
\(275\) 0 0
\(276\) −0.284177 2.70377i −0.0171055 0.162748i
\(277\) 8.90926 12.2625i 0.535305 0.736785i −0.452622 0.891703i \(-0.649511\pi\)
0.987927 + 0.154918i \(0.0495113\pi\)
\(278\) 14.6007i 0.875694i
\(279\) −4.30009 + 1.09145i −0.257440 + 0.0653433i
\(280\) 0 0
\(281\) −24.4709 17.7792i −1.45981 1.06062i −0.983412 0.181387i \(-0.941941\pi\)
−0.476401 0.879228i \(-0.658059\pi\)
\(282\) −10.5426 + 1.10808i −0.627806 + 0.0659850i
\(283\) −2.99138 + 0.971958i −0.177819 + 0.0577769i −0.396573 0.918003i \(-0.629801\pi\)
0.218754 + 0.975780i \(0.429801\pi\)
\(284\) −0.224965 0.389651i −0.0133492 0.0231215i
\(285\) 0 0
\(286\) 0.198024 + 0.0420913i 0.0117094 + 0.00248891i
\(287\) −0.683269 0.222008i −0.0403321 0.0131047i
\(288\) 0.364999 + 1.71719i 0.0215078 + 0.101186i
\(289\) 2.74412 26.1086i 0.161419 1.53580i
\(290\) 0 0
\(291\) 21.0438 9.36932i 1.23361 0.549239i
\(292\) 1.27517 2.86409i 0.0746239 0.167608i
\(293\) −1.41204 + 1.27140i −0.0824920 + 0.0742761i −0.709345 0.704861i \(-0.751009\pi\)
0.626853 + 0.779137i \(0.284343\pi\)
\(294\) −3.35882 + 2.44033i −0.195890 + 0.142323i
\(295\) 0 0
\(296\) 7.86109 + 8.73063i 0.456917 + 0.507458i
\(297\) 2.17898 4.89408i 0.126437 0.283983i
\(298\) −2.80310 6.29586i −0.162379 0.364709i
\(299\) 0.520749 0.578350i 0.0301157 0.0334469i
\(300\) 0 0
\(301\) −20.6205 + 4.38303i −1.18855 + 0.252634i
\(302\) −16.4901 5.35797i −0.948900 0.308316i
\(303\) 1.50402 7.07588i 0.0864039 0.406498i
\(304\) 1.75922 3.04705i 0.100898 0.174760i
\(305\) 0 0
\(306\) 2.05108 + 6.31256i 0.117252 + 0.360865i
\(307\) −22.6036 + 2.37573i −1.29005 + 0.135590i −0.724589 0.689181i \(-0.757970\pi\)
−0.565466 + 0.824772i \(0.691304\pi\)
\(308\) 0.484002 0.666171i 0.0275786 0.0379586i
\(309\) −2.86565 −0.163021
\(310\) 0 0
\(311\) 15.8754 0.900213 0.450106 0.892975i \(-0.351386\pi\)
0.450106 + 0.892975i \(0.351386\pi\)
\(312\) 0.445142 0.612685i 0.0252012 0.0346865i
\(313\) 6.31457 0.663688i 0.356920 0.0375138i 0.0756284 0.997136i \(-0.475904\pi\)
0.281292 + 0.959622i \(0.409237\pi\)
\(314\) 5.89268 + 18.1358i 0.332543 + 1.02346i
\(315\) 0 0
\(316\) 0.898737 1.55666i 0.0505579 0.0875689i
\(317\) 3.18126 14.9666i 0.178677 0.840610i −0.793903 0.608044i \(-0.791954\pi\)
0.972581 0.232566i \(-0.0747122\pi\)
\(318\) −13.1115 4.26017i −0.735254 0.238898i
\(319\) −1.24291 + 0.264188i −0.0695895 + 0.0147917i
\(320\) 0 0
\(321\) 12.4423 13.8186i 0.694463 0.771280i
\(322\) 5.21960 + 11.7234i 0.290877 + 0.653320i
\(323\) −3.08381 + 6.92636i −0.171588 + 0.385393i
\(324\) −1.58202 1.75702i −0.0878903 0.0976120i
\(325\) 0 0
\(326\) −17.4590 + 12.6847i −0.966963 + 0.702540i
\(327\) −11.3201 + 10.1927i −0.626006 + 0.563658i
\(328\) 0.405071 0.909805i 0.0223663 0.0502356i
\(329\) −11.2757 + 5.02026i −0.621649 + 0.276776i
\(330\) 0 0
\(331\) 0.937407 8.91883i 0.0515245 0.490223i −0.938081 0.346416i \(-0.887399\pi\)
0.989606 0.143808i \(-0.0459346\pi\)
\(332\) −0.0268542 0.126339i −0.00147382 0.00693376i
\(333\) 2.93398 + 0.953307i 0.160781 + 0.0522409i
\(334\) −20.0684 4.26566i −1.09809 0.233407i
\(335\) 0 0
\(336\) 4.95814 + 8.58776i 0.270489 + 0.468501i
\(337\) −4.15495 + 1.35002i −0.226334 + 0.0735405i −0.419989 0.907529i \(-0.637966\pi\)
0.193654 + 0.981070i \(0.437966\pi\)
\(338\) −16.3400 + 1.71740i −0.888779 + 0.0934144i
\(339\) −4.61474 3.35281i −0.250638 0.182100i
\(340\) 0 0
\(341\) −3.38492 + 4.06877i −0.183304 + 0.220336i
\(342\) 1.16349i 0.0629145i
\(343\) −11.8479 + 16.3073i −0.639729 + 0.880511i
\(344\) −3.05466 29.0631i −0.164696 1.56698i
\(345\) 0 0
\(346\) 1.47636 + 2.55713i 0.0793697 + 0.137472i
\(347\) 21.1356 + 12.2026i 1.13462 + 0.655073i 0.945092 0.326803i \(-0.105971\pi\)
0.189526 + 0.981876i \(0.439305\pi\)
\(348\) −0.163242 + 0.767994i −0.00875070 + 0.0411688i
\(349\) −4.03079 + 12.4055i −0.215763 + 0.664051i 0.783335 + 0.621599i \(0.213517\pi\)
−0.999099 + 0.0424515i \(0.986483\pi\)
\(350\) 0 0
\(351\) 0.0990505 0.942403i 0.00528692 0.0503017i
\(352\) 1.55642 + 1.40141i 0.0829577 + 0.0746955i
\(353\) 4.40285 + 9.88896i 0.234340 + 0.526336i 0.991989 0.126326i \(-0.0403187\pi\)
−0.757649 + 0.652662i \(0.773652\pi\)
\(354\) 4.55673 + 2.02879i 0.242187 + 0.107829i
\(355\) 0 0
\(356\) −4.70938 + 3.42156i −0.249597 + 0.181343i
\(357\) −12.5601 17.2875i −0.664752 0.914952i
\(358\) 15.9739 14.3830i 0.844248 0.760164i
\(359\) −30.8627 13.7409i −1.62887 0.725220i −0.630183 0.776447i \(-0.717020\pi\)
−0.998687 + 0.0512273i \(0.983687\pi\)
\(360\) 0 0
\(361\) −11.8242 + 13.1321i −0.622325 + 0.691162i
\(362\) −9.24059 0.971225i −0.485674 0.0510464i
\(363\) 3.11580 + 14.6587i 0.163537 + 0.769382i
\(364\) 0.0450082 0.138521i 0.00235907 0.00726048i
\(365\) 0 0
\(366\) 1.64472 2.84875i 0.0859711 0.148906i
\(367\) −19.5993 + 11.3157i −1.02308 + 0.590673i −0.914993 0.403469i \(-0.867804\pi\)
−0.108082 + 0.994142i \(0.534471\pi\)
\(368\) −13.4346 + 4.36518i −0.700329 + 0.227551i
\(369\) −0.0273357 0.260082i −0.00142304 0.0135393i
\(370\) 0 0
\(371\) −16.0517 −0.833365
\(372\) 1.44604 + 2.93330i 0.0749734 + 0.152084i
\(373\) 32.9720i 1.70723i −0.520908 0.853613i \(-0.674407\pi\)
0.520908 0.853613i \(-0.325593\pi\)
\(374\) 6.40617 + 4.65436i 0.331255 + 0.240671i
\(375\) 0 0
\(376\) −5.28723 16.2724i −0.272668 0.839185i
\(377\) −0.194647 + 0.112379i −0.0100248 + 0.00578783i
\(378\) 13.5319 + 7.81265i 0.696006 + 0.401840i
\(379\) −31.7818 6.75544i −1.63252 0.347004i −0.701700 0.712472i \(-0.747575\pi\)
−0.930824 + 0.365469i \(0.880909\pi\)
\(380\) 0 0
\(381\) −10.6624 + 2.26637i −0.546253 + 0.116110i
\(382\) 9.85404 + 1.03570i 0.504177 + 0.0529911i
\(383\) −19.9017 17.9196i −1.01693 0.915649i −0.0204773 0.999790i \(-0.506519\pi\)
−0.996454 + 0.0841414i \(0.973185\pi\)
\(384\) −9.30125 + 4.14118i −0.474652 + 0.211329i
\(385\) 0 0
\(386\) −3.92530 4.35949i −0.199793 0.221892i
\(387\) −4.51050 6.20818i −0.229282 0.315579i
\(388\) 3.60974 + 4.96838i 0.183257 + 0.252232i
\(389\) 11.8687 + 13.1815i 0.601767 + 0.668330i 0.964659 0.263501i \(-0.0848772\pi\)
−0.362892 + 0.931831i \(0.618211\pi\)
\(390\) 0 0
\(391\) 27.8084 12.3811i 1.40633 0.626138i
\(392\) −4.97981 4.48384i −0.251518 0.226468i
\(393\) −19.2401 2.02222i −0.970534 0.102007i
\(394\) −27.7325 + 5.89473i −1.39714 + 0.296972i
\(395\) 0 0
\(396\) 0.293186 + 0.0623186i 0.0147332 + 0.00313163i
\(397\) 8.61654 + 4.97476i 0.432452 + 0.249676i 0.700391 0.713760i \(-0.253009\pi\)
−0.267939 + 0.963436i \(0.586342\pi\)
\(398\) −29.1819 + 16.8482i −1.46276 + 0.844523i
\(399\) 1.15750 + 3.56243i 0.0579476 + 0.178344i
\(400\) 0 0
\(401\) −16.0959 11.6943i −0.803789 0.583987i 0.108234 0.994125i \(-0.465480\pi\)
−0.912023 + 0.410138i \(0.865480\pi\)
\(402\) 1.03779i 0.0517604i
\(403\) −0.347028 + 0.869482i −0.0172867 + 0.0433120i
\(404\) 1.92858 0.0959506
\(405\) 0 0
\(406\) −0.387398 3.68584i −0.0192262 0.182925i
\(407\) 3.50024 1.13730i 0.173501 0.0563738i
\(408\) 25.6530 14.8108i 1.27001 0.733242i
\(409\) −12.1628 + 21.0665i −0.601410 + 1.04167i 0.391198 + 0.920306i \(0.372061\pi\)
−0.992608 + 0.121365i \(0.961273\pi\)
\(410\) 0 0
\(411\) −0.0616002 + 0.189586i −0.00303851 + 0.00935159i
\(412\) −0.158842 0.747291i −0.00782556 0.0368164i
\(413\) 5.77584 + 0.607065i 0.284210 + 0.0298717i
\(414\) −3.12569 + 3.47143i −0.153619 + 0.170611i
\(415\) 0 0
\(416\) 0.338428 + 0.150678i 0.0165928 + 0.00738759i
\(417\) 12.7155 11.4491i 0.622682 0.560665i
\(418\) −0.815876 1.12296i −0.0399058 0.0549256i
\(419\) −3.56513 + 2.59022i −0.174168 + 0.126541i −0.671454 0.741046i \(-0.734330\pi\)
0.497286 + 0.867587i \(0.334330\pi\)
\(420\) 0 0
\(421\) −11.3496 5.05316i −0.553145 0.246276i 0.111076 0.993812i \(-0.464570\pi\)
−0.664222 + 0.747536i \(0.731237\pi\)
\(422\) −0.683191 1.53447i −0.0332572 0.0746969i
\(423\) −3.33885 3.00632i −0.162341 0.146172i
\(424\) 2.32589 22.1294i 0.112955 1.07470i
\(425\) 0 0
\(426\) 0.660548 2.03296i 0.0320037 0.0984972i
\(427\) 0.796305 3.74632i 0.0385359 0.181297i
\(428\) 4.29323 + 2.47870i 0.207521 + 0.119812i
\(429\) −0.118623 0.205461i −0.00572718 0.00991976i
\(430\) 0 0
\(431\) 1.94060 + 18.4636i 0.0934755 + 0.889360i 0.936307 + 0.351183i \(0.114220\pi\)
−0.842831 + 0.538178i \(0.819113\pi\)
\(432\) −10.1098 + 13.9150i −0.486408 + 0.669484i
\(433\) 36.1204i 1.73584i −0.496708 0.867918i \(-0.665458\pi\)
0.496708 0.867918i \(-0.334542\pi\)
\(434\) −10.7703 11.0591i −0.516991 0.530853i
\(435\) 0 0
\(436\) −3.28548 2.38704i −0.157346 0.114319i
\(437\) −5.30670 + 0.557756i −0.253854 + 0.0266811i
\(438\) 14.1658 4.60274i 0.676866 0.219927i
\(439\) −9.50469 16.4626i −0.453634 0.785718i 0.544974 0.838453i \(-0.316539\pi\)
−0.998609 + 0.0527352i \(0.983206\pi\)
\(440\) 0 0
\(441\) −1.72116 0.365844i −0.0819601 0.0174212i
\(442\) 1.33208 + 0.432817i 0.0633603 + 0.0205870i
\(443\) −2.58934 12.1819i −0.123023 0.578779i −0.995870 0.0907852i \(-0.971062\pi\)
0.872847 0.487993i \(-0.162271\pi\)
\(444\) 0.237709 2.26165i 0.0112812 0.107333i
\(445\) 0 0
\(446\) −14.0240 + 6.24387i −0.664054 + 0.295656i
\(447\) −3.28492 + 7.37804i −0.155371 + 0.348969i
\(448\) −14.4691 + 13.0280i −0.683599 + 0.615515i
\(449\) 20.5786 14.9513i 0.971166 0.705593i 0.0154490 0.999881i \(-0.495082\pi\)
0.955717 + 0.294287i \(0.0950822\pi\)
\(450\) 0 0
\(451\) −0.208761 0.231852i −0.00983016 0.0109175i
\(452\) 0.618537 1.38926i 0.0290935 0.0653452i
\(453\) 8.26451 + 18.5624i 0.388300 + 0.872137i
\(454\) 13.4774 14.9682i 0.632527 0.702492i
\(455\) 0 0
\(456\) −5.07898 + 1.07957i −0.237845 + 0.0505555i
\(457\) −30.4090 9.88049i −1.42247 0.462190i −0.506087 0.862482i \(-0.668909\pi\)
−0.916388 + 0.400292i \(0.868909\pi\)
\(458\) −4.29210 + 20.1927i −0.200556 + 0.943544i
\(459\) 18.5319 32.0982i 0.864995 1.49822i
\(460\) 0 0
\(461\) 5.97950 + 18.4030i 0.278493 + 0.857114i 0.988274 + 0.152691i \(0.0487940\pi\)
−0.709781 + 0.704423i \(0.751206\pi\)
\(462\) 3.89063 0.408922i 0.181008 0.0190248i
\(463\) 0.0243710 0.0335439i 0.00113262 0.00155892i −0.808450 0.588564i \(-0.799693\pi\)
0.809583 + 0.587006i \(0.199693\pi\)
\(464\) 4.07961 0.189391
\(465\) 0 0
\(466\) −6.48875 −0.300586
\(467\) −14.8758 + 20.4748i −0.688372 + 0.947462i −0.999996 0.00274297i \(-0.999127\pi\)
0.311625 + 0.950205i \(0.399127\pi\)
\(468\) 0.0527272 0.00554185i 0.00243732 0.000256172i
\(469\) −0.373397 1.14920i −0.0172419 0.0530650i
\(470\) 0 0
\(471\) 11.1734 19.3530i 0.514845 0.891737i
\(472\) −1.67383 + 7.87476i −0.0770444 + 0.362465i
\(473\) −8.70671 2.82898i −0.400335 0.130077i
\(474\) 8.35304 1.77549i 0.383668 0.0815511i
\(475\) 0 0
\(476\) 3.81196 4.23361i 0.174721 0.194047i
\(477\) −2.37655 5.33781i −0.108815 0.244401i
\(478\) −4.41400 + 9.91401i −0.201892 + 0.453456i
\(479\) 14.2131 + 15.7852i 0.649413 + 0.721246i 0.974487 0.224442i \(-0.0720559\pi\)
−0.325074 + 0.945689i \(0.605389\pi\)
\(480\) 0 0
\(481\) 0.526661 0.382641i 0.0240137 0.0174469i
\(482\) −6.44464 + 5.80278i −0.293545 + 0.264309i
\(483\) 6.11679 13.7385i 0.278323 0.625125i
\(484\) −3.64993 + 1.62505i −0.165906 + 0.0738660i
\(485\) 0 0
\(486\) −1.06429 + 10.1260i −0.0482772 + 0.459327i
\(487\) 5.56413 + 26.1772i 0.252135 + 1.18620i 0.903888 + 0.427769i \(0.140700\pi\)
−0.651753 + 0.758431i \(0.725966\pi\)
\(488\) 5.04940 + 1.64065i 0.228575 + 0.0742687i
\(489\) 24.7373 + 5.25807i 1.11866 + 0.237778i
\(490\) 0 0
\(491\) 6.28320 + 10.8828i 0.283557 + 0.491135i 0.972258 0.233910i \(-0.0751522\pi\)
−0.688701 + 0.725045i \(0.741819\pi\)
\(492\) −0.183342 + 0.0595716i −0.00826572 + 0.00268569i
\(493\) −8.74296 + 0.918922i −0.393763 + 0.0413861i
\(494\) −0.198630 0.144313i −0.00893678 0.00649295i
\(495\) 0 0
\(496\) 13.3461 10.5182i 0.599255 0.472280i
\(497\) 2.48886i 0.111640i
\(498\) 0.360686 0.496442i 0.0161627 0.0222461i
\(499\) −2.40733 22.9042i −0.107767 1.02533i −0.906085 0.423097i \(-0.860943\pi\)
0.798318 0.602236i \(-0.205724\pi\)
\(500\) 0 0
\(501\) 12.0216 + 20.8221i 0.537087 + 0.930263i
\(502\) 24.8626 + 14.3545i 1.10967 + 0.640671i
\(503\) 0.137550 0.647121i 0.00613305 0.0288537i −0.974975 0.222316i \(-0.928638\pi\)
0.981108 + 0.193462i \(0.0619717\pi\)
\(504\) −1.63552 + 5.03362i −0.0728520 + 0.224215i
\(505\) 0 0
\(506\) −0.582520 + 5.54231i −0.0258962 + 0.246386i
\(507\) 14.3086 + 12.8835i 0.635468 + 0.572178i
\(508\) −1.18203 2.65488i −0.0524440 0.117791i
\(509\) 10.6587 + 4.74556i 0.472439 + 0.210343i 0.629124 0.777305i \(-0.283414\pi\)
−0.156685 + 0.987649i \(0.550081\pi\)
\(510\) 0 0
\(511\) 14.0304 10.1937i 0.620667 0.450941i
\(512\) −14.8393 20.4245i −0.655809 0.902644i
\(513\) −4.82823 + 4.34736i −0.213172 + 0.191941i
\(514\) 19.2754 + 8.58194i 0.850200 + 0.378533i
\(515\) 0 0
\(516\) −3.78510 + 4.20378i −0.166630 + 0.185061i
\(517\) −5.33064 0.560273i −0.234441 0.0246408i
\(518\) 2.23182 + 10.4999i 0.0980604 + 0.461338i
\(519\) 1.06928 3.29090i 0.0469362 0.144455i
\(520\) 0 0
\(521\) 15.9592 27.6422i 0.699186 1.21103i −0.269563 0.962983i \(-0.586879\pi\)
0.968749 0.248043i \(-0.0797874\pi\)
\(522\) 1.16833 0.674533i 0.0511362 0.0295235i
\(523\) 0.00394726 0.00128254i 0.000172602 5.60817e-5i −0.308931 0.951085i \(-0.599971\pi\)
0.309103 + 0.951028i \(0.399971\pi\)
\(524\) −0.539126 5.12944i −0.0235518 0.224081i
\(525\) 0 0
\(526\) −31.1411 −1.35782
\(527\) −26.2326 + 25.5475i −1.14271 + 1.11287i
\(528\) 4.30627i 0.187406i
\(529\) −1.27581 0.926929i −0.0554699 0.0403013i
\(530\) 0 0
\(531\) 0.653271 + 2.01056i 0.0283496 + 0.0872510i
\(532\) −0.864834 + 0.499312i −0.0374953 + 0.0216479i
\(533\) −0.0477914 0.0275924i −0.00207008 0.00119516i
\(534\) −27.0513 5.74993i −1.17062 0.248824i
\(535\) 0 0
\(536\) 1.63842 0.348257i 0.0707689 0.0150424i
\(537\) −25.0518 2.63305i −1.08106 0.113624i
\(538\) 11.7792 + 10.6060i 0.507836 + 0.457258i
\(539\) −1.91774 + 0.853831i −0.0826028 + 0.0367771i
\(540\) 0 0
\(541\) 19.5888 + 21.7556i 0.842189 + 0.935346i 0.998629 0.0523416i \(-0.0166685\pi\)
−0.156440 + 0.987687i \(0.550002\pi\)
\(542\) −20.2258 27.8384i −0.868771 1.19576i
\(543\) 6.40015 + 8.80905i 0.274657 + 0.378032i
\(544\) 9.69560 + 10.7681i 0.415695 + 0.461677i
\(545\) 0 0
\(546\) 0.632146 0.281449i 0.0270533 0.0120449i
\(547\) −30.5918 27.5450i −1.30801 1.17774i −0.971762 0.235964i \(-0.924175\pi\)
−0.336248 0.941773i \(-0.609158\pi\)
\(548\) −0.0528539 0.00555517i −0.00225781 0.000237305i
\(549\) 1.36369 0.289861i 0.0582009 0.0123710i
\(550\) 0 0
\(551\) 1.50735 + 0.320396i 0.0642151 + 0.0136493i
\(552\) 18.0540 + 10.4235i 0.768429 + 0.443653i
\(553\) 8.61089 4.97150i 0.366172 0.211410i
\(554\) 5.93260 + 18.2587i 0.252052 + 0.775737i
\(555\) 0 0
\(556\) 3.69046 + 2.68128i 0.156511 + 0.113712i
\(557\) 5.73810i 0.243131i 0.992583 + 0.121566i \(0.0387915\pi\)
−0.992583 + 0.121566i \(0.961209\pi\)
\(558\) 2.08297 5.21889i 0.0881790 0.220933i
\(559\) −1.61931 −0.0684894
\(560\) 0 0
\(561\) −0.969977 9.22872i −0.0409525 0.389637i
\(562\) 36.4367 11.8390i 1.53699 0.499398i
\(563\) −12.3791 + 7.14710i −0.521718 + 0.301214i −0.737637 0.675197i \(-0.764059\pi\)
0.215919 + 0.976411i \(0.430725\pi\)
\(564\) −1.65598 + 2.86823i −0.0697292 + 0.120774i
\(565\) 0 0
\(566\) 1.23108 3.78889i 0.0517463 0.159259i
\(567\) −2.71917 12.7927i −0.114194 0.537242i
\(568\) 3.43121 + 0.360634i 0.143970 + 0.0151319i
\(569\) −9.60991 + 10.6729i −0.402869 + 0.447431i −0.910106 0.414375i \(-0.864000\pi\)
0.507237 + 0.861806i \(0.330667\pi\)
\(570\) 0 0
\(571\) 30.4932 + 13.5765i 1.27610 + 0.568157i 0.929142 0.369722i \(-0.120547\pi\)
0.346960 + 0.937880i \(0.387214\pi\)
\(572\) 0.0470040 0.0423226i 0.00196534 0.00176960i
\(573\) −6.82503 9.39385i −0.285120 0.392434i
\(574\) 0.736179 0.534865i 0.0307275 0.0223248i
\(575\) 0 0
\(576\) −6.47452 2.88264i −0.269772 0.120110i
\(577\) 9.14328 + 20.5361i 0.380640 + 0.854931i 0.997685 + 0.0680033i \(0.0216628\pi\)
−0.617045 + 0.786928i \(0.711670\pi\)
\(578\) 24.7105 + 22.2495i 1.02782 + 0.925456i
\(579\) −0.718593 + 6.83695i −0.0298637 + 0.284134i
\(580\) 0 0
\(581\) 0.220786 0.679508i 0.00915973 0.0281908i
\(582\) −6.06616 + 28.5390i −0.251450 + 1.18298i
\(583\) −6.03677 3.48533i −0.250018 0.144348i
\(584\) 12.0203 + 20.8197i 0.497402 + 0.861525i
\(585\) 0 0
\(586\) −0.251563 2.39346i −0.0103920 0.0988730i
\(587\) 3.77133 5.19079i 0.155659 0.214247i −0.724064 0.689733i \(-0.757728\pi\)
0.879723 + 0.475486i \(0.157728\pi\)
\(588\) 1.29711i 0.0534920i
\(589\) 5.75720 2.83814i 0.237221 0.116944i
\(590\) 0 0
\(591\) 26.8800 + 19.5294i 1.10569 + 0.803334i
\(592\) −11.7514 + 1.23512i −0.482980 + 0.0507632i
\(593\) 19.8392 6.44614i 0.814697 0.264711i 0.128111 0.991760i \(-0.459109\pi\)
0.686586 + 0.727049i \(0.259109\pi\)
\(594\) 3.39274 + 5.87640i 0.139206 + 0.241112i
\(595\) 0 0
\(596\) −2.10610 0.447664i −0.0862690 0.0183370i
\(597\) 37.5557 + 12.2026i 1.53705 + 0.499418i
\(598\) 0.204945 + 0.964189i 0.00838081 + 0.0394286i
\(599\) −1.20818 + 11.4951i −0.0493649 + 0.469676i 0.941715 + 0.336410i \(0.109213\pi\)
−0.991080 + 0.133265i \(0.957454\pi\)
\(600\) 0 0
\(601\) 3.94416 1.75605i 0.160885 0.0716308i −0.324714 0.945812i \(-0.605268\pi\)
0.485599 + 0.874181i \(0.338601\pi\)
\(602\) 10.8605 24.3930i 0.442640 0.994186i
\(603\) 0.326868 0.294313i 0.0133111 0.0119854i
\(604\) −4.38252 + 3.18409i −0.178322 + 0.129559i
\(605\) 0 0
\(606\) 6.13093 + 6.80909i 0.249052 + 0.276600i
\(607\) 18.2662 41.0266i 0.741404 1.66522i −0.00523163 0.999986i \(-0.501665\pi\)
0.746635 0.665234i \(-0.231668\pi\)
\(608\) −1.03310 2.32038i −0.0418977 0.0941037i
\(609\) −2.90616 + 3.22762i −0.117764 + 0.130790i
\(610\) 0 0
\(611\) −0.927366 + 0.197118i −0.0375172 + 0.00797453i
\(612\) 1.97222 + 0.640812i 0.0797221 + 0.0259033i
\(613\) −0.541644 + 2.54823i −0.0218768 + 0.102922i −0.987731 0.156163i \(-0.950088\pi\)
0.965855 + 0.259085i \(0.0834209\pi\)
\(614\) 14.3937 24.9306i 0.580883 1.00612i
\(615\) 0 0
\(616\) 1.95118 + 6.00512i 0.0786154 + 0.241953i
\(617\) 24.8499 2.61183i 1.00042 0.105148i 0.409865 0.912146i \(-0.365576\pi\)
0.590555 + 0.806998i \(0.298909\pi\)
\(618\) 2.13344 2.93643i 0.0858197 0.118121i
\(619\) −31.9083 −1.28250 −0.641252 0.767330i \(-0.721585\pi\)
−0.641252 + 0.767330i \(0.721585\pi\)
\(620\) 0 0
\(621\) 26.0847 1.04674
\(622\) −11.8191 + 16.2676i −0.473902 + 0.652271i
\(623\) −32.0240 + 3.36586i −1.28301 + 0.134850i
\(624\) 0.235378 + 0.724418i 0.00942264 + 0.0289999i
\(625\) 0 0
\(626\) −4.02105 + 6.96466i −0.160713 + 0.278364i
\(627\) −0.338198 + 1.59109i −0.0135063 + 0.0635422i
\(628\) 5.66612 + 1.84103i 0.226103 + 0.0734652i
\(629\) 24.9061 5.29395i 0.993071 0.211084i
\(630\) 0 0
\(631\) −0.240720 + 0.267347i −0.00958293 + 0.0106429i −0.747917 0.663792i \(-0.768946\pi\)
0.738334 + 0.674435i \(0.235613\pi\)
\(632\) 5.60613 + 12.5916i 0.223000 + 0.500866i
\(633\) −0.800623 + 1.79823i −0.0318219 + 0.0714732i
\(634\) 12.9679 + 14.4024i 0.515022 + 0.571990i
\(635\) 0 0
\(636\) −3.48458 + 2.53170i −0.138173 + 0.100388i
\(637\) −0.275939 + 0.248457i −0.0109331 + 0.00984422i
\(638\) 0.654618 1.47030i 0.0259166 0.0582096i
\(639\) 0.827639 0.368488i 0.0327409 0.0145772i
\(640\) 0 0
\(641\) 3.22020 30.6382i 0.127190 1.21013i −0.725688 0.688024i \(-0.758478\pi\)
0.852878 0.522110i \(-0.174855\pi\)
\(642\) 4.89677 + 23.0375i 0.193260 + 0.909218i
\(643\) −1.66609 0.541347i −0.0657044 0.0213486i 0.275980 0.961163i \(-0.410998\pi\)
−0.341685 + 0.939815i \(0.610998\pi\)
\(644\) 3.92172 + 0.833588i 0.154538 + 0.0328480i
\(645\) 0 0
\(646\) −4.80159 8.31659i −0.188916 0.327212i
\(647\) −23.4439 + 7.61739i −0.921675 + 0.299470i −0.731154 0.682213i \(-0.761018\pi\)
−0.190521 + 0.981683i \(0.561018\pi\)
\(648\) 18.0304 1.89507i 0.708299 0.0744452i
\(649\) 2.04038 + 1.48242i 0.0800918 + 0.0581901i
\(650\) 0 0
\(651\) −1.18569 + 18.0516i −0.0464707 + 0.707498i
\(652\) 6.74233i 0.264050i
\(653\) −0.167909 + 0.231107i −0.00657080 + 0.00904393i −0.812290 0.583254i \(-0.801779\pi\)
0.805719 + 0.592298i \(0.201779\pi\)
\(654\) −2.01676 19.1881i −0.0788614 0.750316i
\(655\) 0 0
\(656\) 0.500831 + 0.867465i 0.0195542 + 0.0338688i
\(657\) 5.46704 + 3.15640i 0.213290 + 0.123143i
\(658\) 3.25036 15.2918i 0.126712 0.596135i
\(659\) −11.5649 + 35.5930i −0.450503 + 1.38651i 0.425832 + 0.904802i \(0.359982\pi\)
−0.876335 + 0.481703i \(0.840018\pi\)
\(660\) 0 0
\(661\) −0.438139 + 4.16861i −0.0170416 + 0.162140i −0.999733 0.0231105i \(-0.992643\pi\)
0.982691 + 0.185251i \(0.0593097\pi\)
\(662\) 8.44125 + 7.60054i 0.328079 + 0.295403i
\(663\) −0.667608 1.49947i −0.0259278 0.0582347i
\(664\) 0.904797 + 0.402841i 0.0351129 + 0.0156333i
\(665\) 0 0
\(666\) −3.16117 + 2.29673i −0.122493 + 0.0889963i
\(667\) −3.63662 5.00538i −0.140810 0.193809i
\(668\) −4.76354 + 4.28911i −0.184307 + 0.165951i
\(669\) 16.4345 + 7.31712i 0.635395 + 0.282896i
\(670\) 0 0
\(671\) 1.11292 1.23602i 0.0429638 0.0477161i
\(672\) 7.11939 + 0.748278i 0.274636 + 0.0288655i
\(673\) −2.07343 9.75474i −0.0799250 0.376018i 0.919947 0.392044i \(-0.128232\pi\)
−0.999872 + 0.0160261i \(0.994899\pi\)
\(674\) 1.70994 5.26266i 0.0658645 0.202710i
\(675\) 0 0
\(676\) −2.56659 + 4.44546i −0.0987150 + 0.170979i
\(677\) 41.3594 23.8788i 1.58957 0.917738i 0.596192 0.802842i \(-0.296680\pi\)
0.993377 0.114896i \(-0.0366536\pi\)
\(678\) 6.87126 2.23261i 0.263889 0.0857428i
\(679\) 3.55097 + 33.7852i 0.136274 + 1.29656i
\(680\) 0 0
\(681\) −23.6038 −0.904500
\(682\) −1.64924 6.49769i −0.0631527 0.248810i
\(683\) 27.7600i 1.06221i 0.847307 + 0.531104i \(0.178223\pi\)
−0.847307 + 0.531104i \(0.821777\pi\)
\(684\) −0.294083 0.213664i −0.0112446 0.00816965i
\(685\) 0 0
\(686\) −7.88945 24.2812i −0.301221 0.927062i
\(687\) 20.9511 12.0961i 0.799335 0.461496i
\(688\) 25.4544 + 14.6961i 0.970438 + 0.560283i
\(689\) −1.20604 0.256351i −0.0459463 0.00976619i
\(690\) 0 0
\(691\) −37.1999 + 7.90708i −1.41515 + 0.300800i −0.851127 0.524959i \(-0.824081\pi\)
−0.564023 + 0.825759i \(0.690747\pi\)
\(692\) 0.917457 + 0.0964286i 0.0348765 + 0.00366567i
\(693\) 1.23216 + 1.10944i 0.0468059 + 0.0421442i
\(694\) −28.2393 + 12.5730i −1.07195 + 0.477263i
\(695\) 0 0
\(696\) −4.02858 4.47419i −0.152703 0.169594i
\(697\) −1.26872 1.74624i −0.0480562 0.0661437i
\(698\) −9.71106 13.3661i −0.367569 0.505915i
\(699\) 5.08813 + 5.65094i 0.192451 + 0.213738i
\(700\) 0 0
\(701\) 37.5067 16.6991i 1.41661 0.630716i 0.451431 0.892306i \(-0.350914\pi\)
0.965179 + 0.261590i \(0.0842469\pi\)
\(702\) 0.891940 + 0.803106i 0.0336641 + 0.0303113i
\(703\) −4.43895 0.466552i −0.167418 0.0175963i
\(704\) −8.27034 + 1.75792i −0.311700 + 0.0662539i
\(705\) 0 0
\(706\) −13.4111 2.85062i −0.504734 0.107284i
\(707\) 9.23898 + 5.33413i 0.347468 + 0.200611i
\(708\) 1.34959 0.779187i 0.0507207 0.0292836i
\(709\) −12.9990 40.0069i −0.488188 1.50249i −0.827309 0.561747i \(-0.810130\pi\)
0.339121 0.940743i \(-0.389870\pi\)
\(710\) 0 0
\(711\) 2.92810 + 2.12739i 0.109812 + 0.0797833i
\(712\) 44.6368i 1.67284i
\(713\) −24.8019 6.99858i −0.928838 0.262099i
\(714\) 27.0654 1.01290
\(715\) 0 0
\(716\) −0.701974 6.67884i −0.0262340 0.249600i
\(717\) 12.0952 3.92996i 0.451702 0.146767i
\(718\) 37.0573 21.3951i 1.38297 0.798456i
\(719\) −16.6345 + 28.8118i −0.620362 + 1.07450i 0.369056 + 0.929407i \(0.379681\pi\)
−0.989418 + 0.145092i \(0.953652\pi\)
\(720\) 0 0
\(721\) 1.30594 4.01926i 0.0486357 0.149685i
\(722\) −4.65349 21.8930i −0.173185 0.814772i
\(723\) 10.1071 + 1.06230i 0.375886 + 0.0395072i
\(724\) −1.94243 + 2.15728i −0.0721897 + 0.0801748i
\(725\) 0 0
\(726\) −17.3405 7.72048i −0.643566 0.286534i
\(727\) −24.3179 + 21.8959i −0.901899 + 0.812074i −0.982805 0.184648i \(-0.940885\pi\)
0.0809055 + 0.996722i \(0.474219\pi\)
\(728\) 0.656471 + 0.903555i 0.0243305 + 0.0334880i
\(729\) 24.1540 17.5489i 0.894592 0.649959i
\(730\) 0 0
\(731\) −57.8612 25.7615i −2.14007 0.952822i
\(732\) −0.418008 0.938862i −0.0154500 0.0347014i
\(733\) −7.40463 6.66715i −0.273496 0.246257i 0.520956 0.853583i \(-0.325575\pi\)
−0.794452 + 0.607326i \(0.792242\pi\)
\(734\) 2.99629 28.5078i 0.110595 1.05224i
\(735\) 0 0
\(736\) −3.15124 + 9.69852i −0.116156 + 0.357492i
\(737\) 0.109099 0.513268i 0.00401870 0.0189065i
\(738\) 0.286858 + 0.165618i 0.0105594 + 0.00609647i
\(739\) 15.4792 + 26.8108i 0.569412 + 0.986251i 0.996624 + 0.0820995i \(0.0261625\pi\)
−0.427212 + 0.904152i \(0.640504\pi\)
\(740\) 0 0
\(741\) 0.0300751 + 0.286146i 0.00110484 + 0.0105118i
\(742\) 11.9504 16.4483i 0.438711 0.603834i
\(743\) 1.11003i 0.0407231i 0.999793 + 0.0203615i \(0.00648173\pi\)
−0.999793 + 0.0203615i \(0.993518\pi\)
\(744\) −24.7146 4.25029i −0.906082 0.155823i
\(745\) 0 0
\(746\) 33.7865 + 24.5473i 1.23701 + 0.898741i
\(747\) 0.258651 0.0271853i 0.00946353 0.000994657i
\(748\) 2.35286 0.764490i 0.0860290 0.0279525i
\(749\) 13.7113 + 23.7487i 0.501000 + 0.867757i
\(750\) 0 0
\(751\) −27.5400 5.85382i −1.00495 0.213609i −0.324093 0.946025i \(-0.605059\pi\)
−0.680857 + 0.732416i \(0.738393\pi\)
\(752\) 16.3665 + 5.31779i 0.596824 + 0.193920i
\(753\) −6.99490 32.9084i −0.254908 1.19925i
\(754\) 0.0297571 0.283120i 0.00108369 0.0103106i
\(755\) 0 0
\(756\) 4.45972 1.98559i 0.162198 0.0722154i
\(757\) 15.7498 35.3746i 0.572436 1.28571i −0.362860 0.931844i \(-0.618200\pi\)
0.935295 0.353868i \(-0.115134\pi\)
\(758\) 30.5836 27.5376i 1.11085 1.00021i
\(759\) 5.28348 3.83867i 0.191778 0.139335i
\(760\) 0 0
\(761\) 29.0649 + 32.2799i 1.05360 + 1.17014i 0.985010 + 0.172500i \(0.0551845\pi\)
0.0685936 + 0.997645i \(0.478149\pi\)
\(762\) 5.61572 12.6131i 0.203436 0.456925i
\(763\) −9.13713 20.5223i −0.330786 0.742958i
\(764\) 2.07138 2.30050i 0.0749399 0.0832292i
\(765\) 0 0
\(766\) 33.1789 7.05239i 1.19880 0.254813i
\(767\) 0.424268 + 0.137853i 0.0153194 + 0.00497759i
\(768\) −2.80862 + 13.2135i −0.101347 + 0.476801i
\(769\) −1.55509 + 2.69350i −0.0560781 + 0.0971302i −0.892702 0.450648i \(-0.851193\pi\)
0.836624 + 0.547778i \(0.184526\pi\)
\(770\) 0 0
\(771\) −7.64083 23.5161i −0.275178 0.846910i
\(772\) −1.82274 + 0.191578i −0.0656019 + 0.00689504i
\(773\) 12.7198 17.5073i 0.457499 0.629693i −0.516489 0.856294i \(-0.672761\pi\)
0.973988 + 0.226601i \(0.0727613\pi\)
\(774\) 9.71956 0.349362
\(775\) 0 0
\(776\) −47.0918 −1.69050
\(777\) 7.39408 10.1771i 0.265261 0.365101i
\(778\) −22.3433 + 2.34837i −0.801045 + 0.0841932i
\(779\) 0.116921 + 0.359847i 0.00418914 + 0.0128929i
\(780\) 0 0
\(781\) 0.540408 0.936015i 0.0193373 0.0334932i
\(782\) −8.01612 + 37.7129i −0.286656 + 1.34861i
\(783\) −7.16457 2.32791i −0.256041 0.0831927i
\(784\) 6.59245 1.40127i 0.235445 0.0500453i
\(785\) 0 0
\(786\) 16.3962 18.2098i 0.584834 0.649524i
\(787\) 3.20368 + 7.19557i 0.114199 + 0.256494i 0.961598 0.274462i \(-0.0884996\pi\)
−0.847399 + 0.530956i \(0.821833\pi\)
\(788\) −3.60286 + 8.09215i −0.128346 + 0.288271i
\(789\) 24.4192 + 27.1203i 0.869346 + 0.965507i
\(790\) 0 0
\(791\) 6.80558 4.94454i 0.241979 0.175808i
\(792\) −1.70805 + 1.53793i −0.0606928 + 0.0546481i
\(793\) 0.119660 0.268760i 0.00424924 0.00954395i
\(794\) −11.5126 + 5.12573i −0.408566 + 0.181905i
\(795\) 0 0
\(796\) −1.10044 + 10.4700i −0.0390040 + 0.371099i
\(797\) 6.13717 + 28.8731i 0.217390 + 1.02274i 0.942526 + 0.334133i \(0.108443\pi\)
−0.725136 + 0.688605i \(0.758223\pi\)
\(798\) −4.51217 1.46609i −0.159729 0.0518992i
\(799\) −36.2726 7.70998i −1.28323 0.272760i
\(800\) 0 0
\(801\) −5.86059 10.1508i −0.207074 0.358663i
\(802\) 23.9664 7.78716i 0.846283 0.274974i
\(803\) 7.48993 0.787223i 0.264314 0.0277805i
\(804\) −0.262311 0.190580i −0.00925100 0.00672124i
\(805\) 0 0
\(806\) −0.632601 1.00292i −0.0222824 0.0353264i
\(807\) 18.5749i 0.653869i
\(808\) −8.69250 + 11.9642i −0.305801 + 0.420899i
\(809\) −0.222387 2.11587i −0.00781871 0.0743901i 0.989917 0.141650i \(-0.0452409\pi\)
−0.997735 + 0.0672603i \(0.978574\pi\)
\(810\) 0 0
\(811\) −3.60252 6.23975i −0.126502 0.219107i 0.795817 0.605537i \(-0.207042\pi\)
−0.922319 + 0.386430i \(0.873708\pi\)
\(812\) −1.00277 0.578950i −0.0351904 0.0203172i
\(813\) −8.38400 + 39.4436i −0.294040 + 1.38335i
\(814\) −1.44050 + 4.43341i −0.0504896 + 0.155391i
\(815\) 0 0
\(816\) −3.11419 + 29.6295i −0.109018 + 1.03724i
\(817\) 8.25078 + 7.42904i 0.288658 + 0.259909i
\(818\) −12.5319 28.1470i −0.438166 0.984137i
\(819\) 0.267920 + 0.119286i 0.00936189 + 0.00416818i
\(820\) 0 0
\(821\) −34.0270 + 24.7221i −1.18755 + 0.862807i −0.993003 0.118086i \(-0.962324\pi\)
−0.194548 + 0.980893i \(0.562324\pi\)
\(822\) −0.148408 0.204267i −0.00517634 0.00712462i
\(823\) 22.4229 20.1897i 0.781613 0.703767i −0.178328 0.983971i \(-0.557069\pi\)
0.959940 + 0.280204i \(0.0904021\pi\)
\(824\) 5.35184 + 2.38279i 0.186440 + 0.0830085i
\(825\) 0 0
\(826\) −4.92211 + 5.46656i −0.171262 + 0.190206i
\(827\) −3.84925 0.404573i −0.133852 0.0140684i 0.0373657 0.999302i \(-0.488103\pi\)
−0.171217 + 0.985233i \(0.554770\pi\)
\(828\) 0.303433 + 1.42754i 0.0105450 + 0.0496104i
\(829\) −4.07025 + 12.5269i −0.141366 + 0.435079i −0.996526 0.0832851i \(-0.973459\pi\)
0.855160 + 0.518364i \(0.173459\pi\)
\(830\) 0 0
\(831\) 11.2491 19.4841i 0.390228 0.675895i
\(832\) −1.29518 + 0.747774i −0.0449024 + 0.0259244i
\(833\) −13.8126 + 4.48797i −0.478577 + 0.155499i
\(834\) 2.26535 + 21.5534i 0.0784427 + 0.746332i
\(835\) 0 0
\(836\) −0.433665 −0.0149986
\(837\) −29.4401 + 10.8564i −1.01760 + 0.375251i
\(838\) 5.58159i 0.192813i
\(839\) −27.7080 20.1311i −0.956588 0.695002i −0.00423187 0.999991i \(-0.501347\pi\)
−0.952356 + 0.304989i \(0.901347\pi\)
\(840\) 0 0
\(841\) −8.40934 25.8813i −0.289977 0.892458i
\(842\) 13.6276 7.86792i 0.469640 0.271147i
\(843\) −38.8821 22.4486i −1.33917 0.773170i
\(844\) −0.513313 0.109108i −0.0176689 0.00375565i
\(845\) 0 0
\(846\) 5.56632 1.18316i 0.191374 0.0406778i
\(847\) −21.9798 2.31017i −0.755234 0.0793783i
\(848\) 16.6315 + 14.9751i 0.571128 + 0.514246i
\(849\) −4.26502 + 1.89891i −0.146375 + 0.0651704i
\(850\) 0 0
\(851\) 11.9908 + 13.3171i 0.411038 + 0.456504i
\(852\) −0.392545 0.540292i −0.0134484 0.0185101i
\(853\) 8.49225 + 11.6886i 0.290769 + 0.400209i 0.929264 0.369417i \(-0.120443\pi\)
−0.638495 + 0.769626i \(0.720443\pi\)
\(854\) 3.24602 + 3.60507i 0.111077 + 0.123363i
\(855\) 0 0
\(856\) −34.7273 + 15.4616i −1.18696 + 0.528466i
\(857\) −20.6840 18.6239i −0.706552 0.636182i 0.235413 0.971896i \(-0.424356\pi\)
−0.941964 + 0.335714i \(0.891023\pi\)
\(858\) 0.298850 + 0.0314104i 0.0102026 + 0.00107233i
\(859\) −46.2861 + 9.83842i −1.57926 + 0.335682i −0.912336 0.409442i \(-0.865723\pi\)
−0.666925 + 0.745124i \(0.732390\pi\)
\(860\) 0 0
\(861\) −1.04308 0.221713i −0.0355479 0.00755595i
\(862\) −20.3644 11.7574i −0.693616 0.400459i
\(863\) 22.5629 13.0267i 0.768049 0.443434i −0.0641289 0.997942i \(-0.520427\pi\)
0.832178 + 0.554508i \(0.187094\pi\)
\(864\) 3.83695 + 11.8089i 0.130536 + 0.401747i
\(865\) 0 0
\(866\) 37.0127 + 26.8913i 1.25774 + 0.913802i
\(867\) 38.9668i 1.32338i
\(868\) −4.77314 + 0.691394i −0.162011 + 0.0234675i
\(869\) 4.31787 0.146474
\(870\) 0 0
\(871\) −0.00970189 0.0923073i −0.000328736 0.00312771i
\(872\) 29.6166 9.62302i 1.00294 0.325876i
\(873\) −10.7091 + 6.18291i −0.362449 + 0.209260i
\(874\) 3.37925 5.85303i 0.114305 0.197982i
\(875\) 0 0
\(876\) 1.43802 4.42577i 0.0485862 0.149533i
\(877\) −7.13584 33.5715i −0.240960 1.13363i −0.917659 0.397368i \(-0.869924\pi\)
0.676699 0.736260i \(-0.263410\pi\)
\(878\) 23.9454 + 2.51676i 0.808119 + 0.0849367i
\(879\) −1.88716 + 2.09591i −0.0636524 + 0.0706931i
\(880\) 0 0
\(881\) −3.32044 1.47835i −0.111868 0.0498070i 0.350039 0.936735i \(-0.386168\pi\)
−0.461908 + 0.886928i \(0.652835\pi\)
\(882\) 1.65627 1.49131i 0.0557695 0.0502151i
\(883\) −23.1925 31.9217i −0.780489 1.07425i −0.995228 0.0975789i \(-0.968890\pi\)
0.214739 0.976671i \(-0.431110\pi\)
\(884\) 0.354021 0.257211i 0.0119070 0.00865095i
\(885\) 0 0
\(886\) 14.4105 + 6.41598i 0.484131 + 0.215549i
\(887\) 17.2061 + 38.6455i 0.577723 + 1.29759i 0.932004 + 0.362449i \(0.118059\pi\)
−0.354280 + 0.935139i \(0.615274\pi\)
\(888\) 12.9590 + 11.6683i 0.434876 + 0.391564i
\(889\) 1.68037 15.9876i 0.0563577 0.536208i
\(890\) 0 0
\(891\) 1.75506 5.40152i 0.0587967 0.180958i
\(892\) −0.997168 + 4.69131i −0.0333876 + 0.157077i
\(893\) 5.62950 + 3.25019i 0.188384 + 0.108764i
\(894\) −5.11471 8.85894i −0.171062 0.296287i
\(895\) 0 0
\(896\) −1.56951 14.9329i −0.0524336 0.498872i
\(897\) 0.678988 0.934547i 0.0226708 0.0312036i
\(898\) 32.2180i 1.07513i
\(899\) 6.18765 + 4.13570i 0.206370 + 0.137933i
\(900\) 0 0
\(901\) −39.0159 28.3467i −1.29981 0.944365i
\(902\) 0.393000 0.0413059i 0.0130855 0.00137534i
\(903\) −29.7597 + 9.66950i −0.990340 + 0.321781i
\(904\) 5.83056 + 10.0988i 0.193921 + 0.335882i
\(905\) 0 0
\(906\) −25.1738 5.35085i −0.836342 0.177770i
\(907\) 30.7838 + 10.0023i 1.02216 + 0.332120i 0.771686 0.636003i \(-0.219414\pi\)
0.250474 + 0.968123i \(0.419414\pi\)
\(908\) −1.30835 6.15530i −0.0434191 0.204271i
\(909\) −0.405918 + 3.86206i −0.0134635 + 0.128096i
\(910\) 0 0
\(911\) −24.7212 + 11.0066i −0.819051 + 0.364665i −0.773104 0.634279i \(-0.781297\pi\)
−0.0459464 + 0.998944i \(0.514630\pi\)
\(912\) 2.12417 4.77095i 0.0703382 0.157982i
\(913\) 0.230576 0.207612i 0.00763095 0.00687094i
\(914\) 32.7638 23.8043i 1.08373 0.787376i
\(915\) 0 0
\(916\) 4.31569 + 4.79306i 0.142594 + 0.158367i
\(917\) 11.6044 26.0640i 0.383212 0.860708i
\(918\) 19.0943 + 42.8864i 0.630205 + 1.41546i
\(919\) −13.8945 + 15.4314i −0.458336 + 0.509033i −0.927369 0.374147i \(-0.877936\pi\)
0.469034 + 0.883180i \(0.344602\pi\)
\(920\) 0 0
\(921\) −32.9984 + 7.01403i −1.08734 + 0.231120i
\(922\) −23.3093 7.57365i −0.767651 0.249425i
\(923\) 0.0397477 0.186998i 0.00130831 0.00615513i
\(924\) 0.611117 1.05849i 0.0201043 0.0348216i
\(925\) 0 0
\(926\) 0.0162285 + 0.0499461i 0.000533301 + 0.00164133i
\(927\) 1.52991 0.160800i 0.0502488 0.00528136i
\(928\) 1.73108 2.38262i 0.0568254 0.0782134i
\(929\) 20.6589 0.677798 0.338899 0.940823i \(-0.389945\pi\)
0.338899 + 0.940823i \(0.389945\pi\)
\(930\) 0 0
\(931\) 2.54585 0.0834368
\(932\) −1.19159 + 1.64009i −0.0390320 + 0.0537229i
\(933\) 23.4350 2.46312i 0.767229 0.0806390i
\(934\) −9.90570 30.4866i −0.324124 0.997552i
\(935\) 0 0
\(936\) −0.203272 + 0.352078i −0.00664416 + 0.0115080i
\(937\) −0.607227 + 2.85678i −0.0198372 + 0.0933269i −0.986953 0.161012i \(-0.948524\pi\)
0.967115 + 0.254338i \(0.0818577\pi\)
\(938\) 1.45557 + 0.472945i 0.0475262 + 0.0154422i
\(939\) 9.21849 1.95945i 0.300834 0.0639442i
\(940\) 0 0
\(941\) 21.9810 24.4124i 0.716560 0.795821i −0.269360 0.963040i \(-0.586812\pi\)
0.985920 + 0.167219i \(0.0534787\pi\)
\(942\) 11.5125 + 25.8575i 0.375098 + 0.842484i
\(943\) 0.617868 1.38775i 0.0201205 0.0451915i
\(944\) −5.41810 6.01741i −0.176344 0.195850i
\(945\) 0 0
\(946\) 9.38092 6.81564i 0.305000 0.221596i
\(947\) 29.0753 26.1796i 0.944822 0.850721i −0.0441199 0.999026i \(-0.514048\pi\)
0.988942 + 0.148305i \(0.0473817\pi\)
\(948\) 1.08518 2.43736i 0.0352450 0.0791616i
\(949\) 1.21696 0.541824i 0.0395041 0.0175883i
\(950\) 0 0
\(951\) 2.37400 22.5871i 0.0769822 0.732437i
\(952\) 9.08247 + 42.7296i 0.294364 + 1.38488i
\(953\) 5.72512 + 1.86020i 0.185455 + 0.0602579i 0.400272 0.916396i \(-0.368916\pi\)
−0.214817 + 0.976654i \(0.568916\pi\)
\(954\) 7.23898 + 1.53869i 0.234371 + 0.0498170i
\(955\) 0 0
\(956\) 1.69527 + 2.93629i 0.0548288 + 0.0949663i
\(957\) −1.79377 + 0.582832i −0.0579844 + 0.0188403i
\(958\) −26.7567 + 2.81224i −0.864469 + 0.0908594i
\(959\) −0.237835 0.172797i −0.00768008 0.00557991i
\(960\) 0 0
\(961\) 30.9051 2.42363i 0.996939 0.0781816i
\(962\) 0.824543i 0.0265843i
\(963\) −5.86729 + 8.07564i −0.189071 + 0.260234i
\(964\) 0.283210 + 2.69456i 0.00912158 + 0.0867860i
\(965\) 0 0
\(966\) 9.52401 + 16.4961i 0.306430 + 0.530753i
\(967\) 22.7854 + 13.1552i 0.732730 + 0.423042i 0.819420 0.573194i \(-0.194296\pi\)
−0.0866903 + 0.996235i \(0.527629\pi\)
\(968\) 6.36972 29.9672i 0.204731 0.963181i
\(969\) −3.47763 + 10.7030i −0.111718 + 0.343831i
\(970\) 0 0
\(971\) 0.495033 4.70993i 0.0158864 0.151149i −0.983703 0.179801i \(-0.942455\pi\)
0.999589 + 0.0286519i \(0.00912142\pi\)
\(972\) 2.36400 + 2.12856i 0.0758254 + 0.0682735i
\(973\) 10.2634 + 23.0520i 0.329030 + 0.739013i
\(974\) −30.9662 13.7870i −0.992222 0.441766i
\(975\) 0 0
\(976\) −4.32010 + 3.13874i −0.138283 + 0.100469i
\(977\) −10.1569 13.9798i −0.324950 0.447255i 0.615021 0.788511i \(-0.289148\pi\)
−0.939970 + 0.341256i \(0.889148\pi\)
\(978\) −23.8046 + 21.4337i −0.761187 + 0.685376i
\(979\) −12.7745 5.68757i −0.408274 0.181775i
\(980\) 0 0
\(981\) 5.47165 6.07688i 0.174696 0.194020i
\(982\) −15.8294 1.66374i −0.505137 0.0530921i
\(983\) 8.51742 + 40.0713i 0.271663 + 1.27808i 0.876374 + 0.481631i \(0.159955\pi\)
−0.604711 + 0.796445i \(0.706711\pi\)
\(984\) 0.456801 1.40589i 0.0145623 0.0448181i
\(985\) 0 0
\(986\) 5.56742 9.64305i 0.177303 0.307097i
\(987\) −15.8661 + 9.16029i −0.505023 + 0.291575i
\(988\) −0.0729528 + 0.0237038i −0.00232094 + 0.000754118i
\(989\) −4.65937 44.3309i −0.148159 1.40964i
\(990\) 0 0
\(991\) 14.1338 0.448975 0.224487 0.974477i \(-0.427929\pi\)
0.224487 + 0.974477i \(0.427929\pi\)
\(992\) −0.479896 12.2576i −0.0152367 0.389181i
\(993\) 13.3113i 0.422420i
\(994\) 2.55034 + 1.85293i 0.0808918 + 0.0587713i
\(995\) 0 0
\(996\) −0.0592436 0.182333i −0.00187721 0.00577745i
\(997\) −13.3834 + 7.72692i −0.423857 + 0.244714i −0.696726 0.717337i \(-0.745361\pi\)
0.272869 + 0.962051i \(0.412027\pi\)
\(998\) 25.2622 + 14.5852i 0.799662 + 0.461685i
\(999\) 21.3425 + 4.53649i 0.675247 + 0.143528i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 775.2.ck.a.599.1 32
5.2 odd 4 31.2.g.a.10.1 16
5.3 odd 4 775.2.bl.a.351.2 16
5.4 even 2 inner 775.2.ck.a.599.4 32
15.2 even 4 279.2.y.c.10.2 16
20.7 even 4 496.2.bg.c.289.2 16
31.28 even 15 inner 775.2.ck.a.524.4 32
155.2 odd 20 961.2.g.t.846.2 16
155.7 odd 60 961.2.c.j.521.6 16
155.12 even 60 961.2.g.m.448.2 16
155.17 even 60 961.2.g.n.844.2 16
155.22 even 60 961.2.d.q.531.3 16
155.27 even 20 961.2.c.i.439.6 16
155.28 odd 60 775.2.bl.a.276.2 16
155.37 even 12 961.2.g.j.732.1 16
155.42 even 60 961.2.a.j.1.6 8
155.47 odd 20 961.2.g.k.235.1 16
155.52 even 60 961.2.d.q.628.3 16
155.57 even 12 961.2.d.n.374.2 16
155.59 even 30 inner 775.2.ck.a.524.1 32
155.67 odd 12 961.2.d.o.374.2 16
155.72 odd 60 961.2.d.p.628.3 16
155.77 even 20 961.2.g.j.235.1 16
155.82 odd 60 961.2.a.i.1.6 8
155.87 odd 12 961.2.g.k.732.1 16
155.92 even 4 961.2.g.l.816.1 16
155.97 odd 20 961.2.c.j.439.6 16
155.102 odd 60 961.2.d.p.531.3 16
155.107 odd 60 961.2.g.t.844.2 16
155.112 odd 60 961.2.g.s.448.2 16
155.117 even 60 961.2.c.i.521.6 16
155.122 even 20 961.2.g.n.846.2 16
155.127 even 60 961.2.g.l.338.1 16
155.132 odd 20 961.2.g.s.547.2 16
155.137 even 60 961.2.d.n.388.2 16
155.142 odd 60 961.2.d.o.388.2 16
155.147 even 20 961.2.g.m.547.2 16
155.152 odd 60 31.2.g.a.28.1 yes 16
465.152 even 60 279.2.y.c.28.2 16
465.197 odd 60 8649.2.a.be.1.3 8
465.392 even 60 8649.2.a.bf.1.3 8
620.307 even 60 496.2.bg.c.369.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.10.1 16 5.2 odd 4
31.2.g.a.28.1 yes 16 155.152 odd 60
279.2.y.c.10.2 16 15.2 even 4
279.2.y.c.28.2 16 465.152 even 60
496.2.bg.c.289.2 16 20.7 even 4
496.2.bg.c.369.2 16 620.307 even 60
775.2.bl.a.276.2 16 155.28 odd 60
775.2.bl.a.351.2 16 5.3 odd 4
775.2.ck.a.524.1 32 155.59 even 30 inner
775.2.ck.a.524.4 32 31.28 even 15 inner
775.2.ck.a.599.1 32 1.1 even 1 trivial
775.2.ck.a.599.4 32 5.4 even 2 inner
961.2.a.i.1.6 8 155.82 odd 60
961.2.a.j.1.6 8 155.42 even 60
961.2.c.i.439.6 16 155.27 even 20
961.2.c.i.521.6 16 155.117 even 60
961.2.c.j.439.6 16 155.97 odd 20
961.2.c.j.521.6 16 155.7 odd 60
961.2.d.n.374.2 16 155.57 even 12
961.2.d.n.388.2 16 155.137 even 60
961.2.d.o.374.2 16 155.67 odd 12
961.2.d.o.388.2 16 155.142 odd 60
961.2.d.p.531.3 16 155.102 odd 60
961.2.d.p.628.3 16 155.72 odd 60
961.2.d.q.531.3 16 155.22 even 60
961.2.d.q.628.3 16 155.52 even 60
961.2.g.j.235.1 16 155.77 even 20
961.2.g.j.732.1 16 155.37 even 12
961.2.g.k.235.1 16 155.47 odd 20
961.2.g.k.732.1 16 155.87 odd 12
961.2.g.l.338.1 16 155.127 even 60
961.2.g.l.816.1 16 155.92 even 4
961.2.g.m.448.2 16 155.12 even 60
961.2.g.m.547.2 16 155.147 even 20
961.2.g.n.844.2 16 155.17 even 60
961.2.g.n.846.2 16 155.122 even 20
961.2.g.s.448.2 16 155.112 odd 60
961.2.g.s.547.2 16 155.132 odd 20
961.2.g.t.844.2 16 155.107 odd 60
961.2.g.t.846.2 16 155.2 odd 20
8649.2.a.be.1.3 8 465.197 odd 60
8649.2.a.bf.1.3 8 465.392 even 60