# Properties

 Label 9576.2 Level 9576 Weight 2 Dimension 1052950 Nonzero newspaces 276 Sturm bound 9953280

## Defining parameters

 Level: $$N$$ = $$9576 = 2^{3} \cdot 3^{2} \cdot 7 \cdot 19$$ Weight: $$k$$ = $$2$$ Nonzero newspaces: $$276$$ Sturm bound: $$9953280$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(\Gamma_1(9576))$$.

Total New Old
Modular forms 2509056 1059070 1449986
Cusp forms 2467585 1052950 1414635
Eisenstein series 41471 6120 35351

## Decomposition of $$S_{2}^{\mathrm{new}}(\Gamma_1(9576))$$

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space $$S_k^{\mathrm{new}}(N, \chi)$$ we list the newforms together with their dimension.

Label $$\chi$$ Newforms Dimension $$\chi$$ degree
9576.2.a $$\chi_{9576}(1, \cdot)$$ 9576.2.a.a 1 1
9576.2.a.b 1
9576.2.a.c 1
9576.2.a.d 1
9576.2.a.e 1
9576.2.a.f 1
9576.2.a.g 1
9576.2.a.h 1
9576.2.a.i 1
9576.2.a.j 1
9576.2.a.k 1
9576.2.a.l 1
9576.2.a.m 1
9576.2.a.n 1
9576.2.a.o 1
9576.2.a.p 1
9576.2.a.q 1
9576.2.a.r 1
9576.2.a.s 1
9576.2.a.t 1
9576.2.a.u 1
9576.2.a.v 1
9576.2.a.w 1
9576.2.a.x 1
9576.2.a.y 1
9576.2.a.z 1
9576.2.a.ba 1
9576.2.a.bb 1
9576.2.a.bc 2
9576.2.a.bd 2
9576.2.a.be 2
9576.2.a.bf 2
9576.2.a.bg 2
9576.2.a.bh 2
9576.2.a.bi 2
9576.2.a.bj 2
9576.2.a.bk 2
9576.2.a.bl 2
9576.2.a.bm 2
9576.2.a.bn 2
9576.2.a.bo 2
9576.2.a.bp 2
9576.2.a.bq 2
9576.2.a.br 2
9576.2.a.bs 2
9576.2.a.bt 2
9576.2.a.bu 2
9576.2.a.bv 2
9576.2.a.bw 2
9576.2.a.bx 2
9576.2.a.by 2
9576.2.a.bz 3
9576.2.a.ca 3
9576.2.a.cb 3
9576.2.a.cc 3
9576.2.a.cd 3
9576.2.a.ce 3
9576.2.a.cf 3
9576.2.a.cg 4
9576.2.a.ch 4
9576.2.a.ci 4
9576.2.a.cj 4
9576.2.a.ck 4
9576.2.a.cl 4
9576.2.a.cm 5
9576.2.a.cn 5
9576.2.a.co 5
9576.2.b $$\chi_{9576}(6497, \cdot)$$ n/a 120 1
9576.2.c $$\chi_{9576}(3079, \cdot)$$ None 0 1
9576.2.d $$\chi_{9576}(4787, \cdot)$$ n/a 640 1
9576.2.e $$\chi_{9576}(4789, \cdot)$$ n/a 540 1
9576.2.n $$\chi_{9576}(6119, \cdot)$$ None 0 1
9576.2.o $$\chi_{9576}(3457, \cdot)$$ n/a 200 1
9576.2.p $$\chi_{9576}(9197, \cdot)$$ n/a 576 1
9576.2.q $$\chi_{9576}(379, \cdot)$$ n/a 600 1
9576.2.r $$\chi_{9576}(1331, \cdot)$$ n/a 432 1
9576.2.s $$\chi_{9576}(8245, \cdot)$$ n/a 796 1
9576.2.t $$\chi_{9576}(4409, \cdot)$$ n/a 144 1
9576.2.u $$\chi_{9576}(5167, \cdot)$$ None 0 1
9576.2.bd $$\chi_{9576}(1709, \cdot)$$ n/a 480 1
9576.2.be $$\chi_{9576}(7867, \cdot)$$ n/a 720 1
9576.2.bf $$\chi_{9576}(9575, \cdot)$$ None 0 1
9576.2.bg $$\chi_{9576}(3649, \cdot)$$ n/a 864 2
9576.2.bh $$\chi_{9576}(121, \cdot)$$ n/a 960 2
9576.2.bi $$\chi_{9576}(3193, \cdot)$$ n/a 648 2
9576.2.bj $$\chi_{9576}(7345, \cdot)$$ n/a 400 2
9576.2.bk $$\chi_{9576}(1369, \cdot)$$ n/a 360 2
9576.2.bl $$\chi_{9576}(6889, \cdot)$$ n/a 720 2
9576.2.bm $$\chi_{9576}(505, \cdot)$$ n/a 300 2
9576.2.bn $$\chi_{9576}(961, \cdot)$$ n/a 960 2
9576.2.bo $$\chi_{9576}(6505, \cdot)$$ n/a 960 2
9576.2.bp $$\chi_{9576}(1873, \cdot)$$ n/a 400 2
9576.2.bq $$\chi_{9576}(2857, \cdot)$$ n/a 720 2
9576.2.br $$\chi_{9576}(1033, \cdot)$$ n/a 960 2
9576.2.bs $$\chi_{9576}(457, \cdot)$$ n/a 864 2
9576.2.bx $$\chi_{9576}(2965, \cdot)$$ n/a 3456 2
9576.2.by $$\chi_{9576}(4331, \cdot)$$ n/a 3824 2
9576.2.bz $$\chi_{9576}(8095, \cdot)$$ None 0 2
9576.2.ca $$\chi_{9576}(569, \cdot)$$ n/a 960 2
9576.2.cf $$\chi_{9576}(1171, \cdot)$$ n/a 1592 2
9576.2.cg $$\chi_{9576}(8333, \cdot)$$ n/a 1280 2
9576.2.ch $$\chi_{9576}(715, \cdot)$$ n/a 2880 2
9576.2.ci $$\chi_{9576}(6509, \cdot)$$ n/a 3824 2
9576.2.cj $$\chi_{9576}(3793, \cdot)$$ n/a 960 2
9576.2.ck $$\chi_{9576}(3431, \cdot)$$ None 0 2
9576.2.cl $$\chi_{9576}(145, \cdot)$$ n/a 400 2
9576.2.cm $$\chi_{9576}(7991, \cdot)$$ None 0 2
9576.2.cv $$\chi_{9576}(767, \cdot)$$ None 0 2
9576.2.cw $$\chi_{9576}(2497, \cdot)$$ n/a 960 2
9576.2.cx $$\chi_{9576}(1109, \cdot)$$ n/a 3824 2
9576.2.cy $$\chi_{9576}(3523, \cdot)$$ n/a 3824 2
9576.2.cz $$\chi_{9576}(6449, \cdot)$$ n/a 960 2
9576.2.da $$\chi_{9576}(1375, \cdot)$$ None 0 2
9576.2.db $$\chi_{9576}(635, \cdot)$$ n/a 3824 2
9576.2.dc $$\chi_{9576}(5821, \cdot)$$ n/a 3824 2
9576.2.dl $$\chi_{9576}(7645, \cdot)$$ n/a 2880 2
9576.2.dm $$\chi_{9576}(1091, \cdot)$$ n/a 3824 2
9576.2.dn $$\chi_{9576}(6661, \cdot)$$ n/a 1592 2
9576.2.do $$\chi_{9576}(1475, \cdot)$$ n/a 1280 2
9576.2.dp $$\chi_{9576}(2215, \cdot)$$ None 0 2
9576.2.dq $$\chi_{9576}(7289, \cdot)$$ n/a 320 2
9576.2.dr $$\chi_{9576}(5935, \cdot)$$ None 0 2
9576.2.ds $$\chi_{9576}(2801, \cdot)$$ n/a 720 2
9576.2.dx $$\chi_{9576}(835, \cdot)$$ n/a 3824 2
9576.2.dy $$\chi_{9576}(1445, \cdot)$$ n/a 3456 2
9576.2.dz $$\chi_{9576}(8473, \cdot)$$ n/a 960 2
9576.2.ea $$\chi_{9576}(191, \cdot)$$ None 0 2
9576.2.ef $$\chi_{9576}(2839, \cdot)$$ None 0 2
9576.2.eg $$\chi_{9576}(425, \cdot)$$ n/a 960 2
9576.2.eh $$\chi_{9576}(3181, \cdot)$$ n/a 3824 2
9576.2.ei $$\chi_{9576}(1451, \cdot)$$ n/a 3824 2
9576.2.er $$\chi_{9576}(4093, \cdot)$$ n/a 3824 2
9576.2.es $$\chi_{9576}(2363, \cdot)$$ n/a 3824 2
9576.2.et $$\chi_{9576}(881, \cdot)$$ n/a 320 2
9576.2.eu $$\chi_{9576}(4663, \cdot)$$ None 0 2
9576.2.ev $$\chi_{9576}(1835, \cdot)$$ n/a 960 2
9576.2.ew $$\chi_{9576}(2197, \cdot)$$ n/a 1592 2
9576.2.ex $$\chi_{9576}(5119, \cdot)$$ None 0 2
9576.2.ey $$\chi_{9576}(2705, \cdot)$$ n/a 960 2
9576.2.fl $$\chi_{9576}(1531, \cdot)$$ n/a 1592 2
9576.2.fm $$\chi_{9576}(6605, \cdot)$$ n/a 1280 2
9576.2.fn $$\chi_{9576}(1483, \cdot)$$ n/a 3456 2
9576.2.fo $$\chi_{9576}(4901, \cdot)$$ n/a 2880 2
9576.2.fp $$\chi_{9576}(5015, \cdot)$$ None 0 2
9576.2.fq $$\chi_{9576}(4511, \cdot)$$ None 0 2
9576.2.fr $$\chi_{9576}(5693, \cdot)$$ n/a 3824 2
9576.2.fs $$\chi_{9576}(619, \cdot)$$ n/a 3824 2
9576.2.ft $$\chi_{9576}(2165, \cdot)$$ n/a 3824 2
9576.2.fu $$\chi_{9576}(115, \cdot)$$ n/a 3456 2
9576.2.fv $$\chi_{9576}(3191, \cdot)$$ None 0 2
9576.2.fw $$\chi_{9576}(2159, \cdot)$$ None 0 2
9576.2.gn $$\chi_{9576}(2735, \cdot)$$ None 0 2
9576.2.go $$\chi_{9576}(335, \cdot)$$ None 0 2
9576.2.gp $$\chi_{9576}(5179, \cdot)$$ n/a 3824 2
9576.2.gq $$\chi_{9576}(2045, \cdot)$$ n/a 2880 2
9576.2.gr $$\chi_{9576}(1027, \cdot)$$ n/a 1440 2
9576.2.gs $$\chi_{9576}(3077, \cdot)$$ n/a 1280 2
9576.2.gt $$\chi_{9576}(1471, \cdot)$$ None 0 2
9576.2.gu $$\chi_{9576}(7265, \cdot)$$ n/a 960 2
9576.2.gv $$\chi_{9576}(2431, \cdot)$$ None 0 2
9576.2.gw $$\chi_{9576}(3041, \cdot)$$ n/a 288 2
9576.2.gx $$\chi_{9576}(1405, \cdot)$$ n/a 1592 2
9576.2.gy $$\chi_{9576}(2699, \cdot)$$ n/a 1152 2
9576.2.gz $$\chi_{9576}(4549, \cdot)$$ n/a 3824 2
9576.2.ha $$\chi_{9576}(4187, \cdot)$$ n/a 2880 2
9576.2.hr $$\chi_{9576}(1861, \cdot)$$ n/a 3824 2
9576.2.hs $$\chi_{9576}(4523, \cdot)$$ n/a 2592 2
9576.2.ht $$\chi_{9576}(829, \cdot)$$ n/a 1592 2
9576.2.hu $$\chi_{9576}(8675, \cdot)$$ n/a 1280 2
9576.2.hv $$\chi_{9576}(353, \cdot)$$ n/a 960 2
9576.2.hw $$\chi_{9576}(2767, \cdot)$$ None 0 2
9576.2.hx $$\chi_{9576}(761, \cdot)$$ n/a 864 2
9576.2.hy $$\chi_{9576}(151, \cdot)$$ None 0 2
9576.2.hz $$\chi_{9576}(1787, \cdot)$$ n/a 3456 2
9576.2.ia $$\chi_{9576}(493, \cdot)$$ n/a 3824 2
9576.2.ib $$\chi_{9576}(11, \cdot)$$ n/a 3824 2
9576.2.ic $$\chi_{9576}(1741, \cdot)$$ n/a 3824 2
9576.2.id $$\chi_{9576}(487, \cdot)$$ None 0 2
9576.2.ie $$\chi_{9576}(7649, \cdot)$$ n/a 320 2
9576.2.if $$\chi_{9576}(1975, \cdot)$$ None 0 2
9576.2.ig $$\chi_{9576}(1217, \cdot)$$ n/a 864 2
9576.2.it $$\chi_{9576}(4723, \cdot)$$ n/a 3824 2
9576.2.iu $$\chi_{9576}(221, \cdot)$$ n/a 3824 2
9576.2.iv $$\chi_{9576}(3527, \cdot)$$ None 0 2
9576.2.iw $$\chi_{9576}(1205, \cdot)$$ n/a 960 2
9576.2.ix $$\chi_{9576}(4339, \cdot)$$ n/a 1592 2
9576.2.iy $$\chi_{9576}(5351, \cdot)$$ None 0 2
9576.2.jh $$\chi_{9576}(1319, \cdot)$$ None 0 2
9576.2.ji $$\chi_{9576}(691, \cdot)$$ n/a 3824 2
9576.2.jj $$\chi_{9576}(5765, \cdot)$$ n/a 3824 2
9576.2.jk $$\chi_{9576}(1717, \cdot)$$ n/a 3824 2
9576.2.jl $$\chi_{9576}(6107, \cdot)$$ n/a 3824 2
9576.2.jm $$\chi_{9576}(5479, \cdot)$$ None 0 2
9576.2.jn $$\chi_{9576}(977, \cdot)$$ n/a 960 2
9576.2.jw $$\chi_{9576}(4567, \cdot)$$ None 0 2
9576.2.jx $$\chi_{9576}(65, \cdot)$$ n/a 960 2
9576.2.jy $$\chi_{9576}(4283, \cdot)$$ n/a 1280 2
9576.2.jz $$\chi_{9576}(1261, \cdot)$$ n/a 1200 2
9576.2.ka $$\chi_{9576}(449, \cdot)$$ n/a 240 2
9576.2.kb $$\chi_{9576}(3583, \cdot)$$ None 0 2
9576.2.kc $$\chi_{9576}(5749, \cdot)$$ n/a 3824 2
9576.2.kd $$\chi_{9576}(563, \cdot)$$ n/a 3824 2
9576.2.kq $$\chi_{9576}(265, \cdot)$$ n/a 960 2
9576.2.kr $$\chi_{9576}(2927, \cdot)$$ None 0 2
9576.2.ks $$\chi_{9576}(5617, \cdot)$$ n/a 400 2
9576.2.kt $$\chi_{9576}(3887, \cdot)$$ None 0 2
9576.2.ku $$\chi_{9576}(2021, \cdot)$$ n/a 3824 2
9576.2.kv $$\chi_{9576}(4435, \cdot)$$ n/a 3824 2
9576.2.kw $$\chi_{9576}(4637, \cdot)$$ n/a 3456 2
9576.2.kx $$\chi_{9576}(4027, \cdot)$$ n/a 3824 2
9576.2.ky $$\chi_{9576}(4295, \cdot)$$ None 0 2
9576.2.kz $$\chi_{9576}(3001, \cdot)$$ n/a 960 2
9576.2.la $$\chi_{9576}(3047, \cdot)$$ None 0 2
9576.2.lb $$\chi_{9576}(4777, \cdot)$$ n/a 960 2
9576.2.lc $$\chi_{9576}(5275, \cdot)$$ n/a 1592 2
9576.2.ld $$\chi_{9576}(2861, \cdot)$$ n/a 1280 2
9576.2.le $$\chi_{9576}(3571, \cdot)$$ n/a 2880 2
9576.2.lf $$\chi_{9576}(2813, \cdot)$$ n/a 3456 2
9576.2.lw $$\chi_{9576}(6259, \cdot)$$ n/a 2880 2
9576.2.lx $$\chi_{9576}(2477, \cdot)$$ n/a 3824 2
9576.2.ly $$\chi_{9576}(1747, \cdot)$$ n/a 1592 2
9576.2.lz $$\chi_{9576}(2357, \cdot)$$ n/a 1152 2
9576.2.ma $$\chi_{9576}(2089, \cdot)$$ n/a 400 2
9576.2.mb $$\chi_{9576}(3383, \cdot)$$ None 0 2
9576.2.mc $$\chi_{9576}(601, \cdot)$$ n/a 960 2
9576.2.md $$\chi_{9576}(239, \cdot)$$ None 0 2
9576.2.me $$\chi_{9576}(2053, \cdot)$$ n/a 1440 2
9576.2.mf $$\chi_{9576}(3419, \cdot)$$ n/a 1280 2
9576.2.mg $$\chi_{9576}(2101, \cdot)$$ n/a 2880 2
9576.2.mh $$\chi_{9576}(5123, \cdot)$$ n/a 3824 2
9576.2.mi $$\chi_{9576}(391, \cdot)$$ None 0 2
9576.2.mj $$\chi_{9576}(6833, \cdot)$$ n/a 720 2
9576.2.mk $$\chi_{9576}(1711, \cdot)$$ None 0 2
9576.2.ml $$\chi_{9576}(3761, \cdot)$$ n/a 320 2
9576.2.nc $$\chi_{9576}(6319, \cdot)$$ None 0 2
9576.2.nd $$\chi_{9576}(1817, \cdot)$$ n/a 320 2
9576.2.ne $$\chi_{9576}(6271, \cdot)$$ None 0 2
9576.2.nf $$\chi_{9576}(113, \cdot)$$ n/a 720 2
9576.2.ng $$\chi_{9576}(227, \cdot)$$ n/a 3824 2
9576.2.nh $$\chi_{9576}(8437, \cdot)$$ n/a 3456 2
9576.2.ni $$\chi_{9576}(4667, \cdot)$$ n/a 3824 2
9576.2.nj $$\chi_{9576}(277, \cdot)$$ n/a 3824 2
9576.2.nk $$\chi_{9576}(905, \cdot)$$ n/a 960 2
9576.2.nl $$\chi_{9576}(5407, \cdot)$$ None 0 2
9576.2.nm $$\chi_{9576}(4673, \cdot)$$ n/a 960 2
9576.2.nn $$\chi_{9576}(2623, \cdot)$$ None 0 2
9576.2.no $$\chi_{9576}(1597, \cdot)$$ n/a 2592 2
9576.2.np $$\chi_{9576}(1595, \cdot)$$ n/a 3824 2
9576.2.nq $$\chi_{9576}(2557, \cdot)$$ n/a 1592 2
9576.2.nr $$\chi_{9576}(6947, \cdot)$$ n/a 1280 2
9576.2.oe $$\chi_{9576}(2425, \cdot)$$ n/a 960 2
9576.2.of $$\chi_{9576}(695, \cdot)$$ None 0 2
9576.2.og $$\chi_{9576}(125, \cdot)$$ n/a 1280 2
9576.2.oh $$\chi_{9576}(3907, \cdot)$$ n/a 1200 2
9576.2.oi $$\chi_{9576}(2591, \cdot)$$ None 0 2
9576.2.oj $$\chi_{9576}(2953, \cdot)$$ n/a 400 2
9576.2.ok $$\chi_{9576}(331, \cdot)$$ n/a 3824 2
9576.2.ol $$\chi_{9576}(7493, \cdot)$$ n/a 3824 2
9576.2.ou $$\chi_{9576}(4363, \cdot)$$ n/a 3824 2
9576.2.ov $$\chi_{9576}(1949, \cdot)$$ n/a 3824 2
9576.2.ow $$\chi_{9576}(3337, \cdot)$$ n/a 960 2
9576.2.ox $$\chi_{9576}(1607, \cdot)$$ None 0 2
9576.2.pc $$\chi_{9576}(3343, \cdot)$$ None 0 2
9576.2.pd $$\chi_{9576}(3953, \cdot)$$ n/a 864 2
9576.2.pe $$\chi_{9576}(3685, \cdot)$$ n/a 3824 2
9576.2.pf $$\chi_{9576}(4979, \cdot)$$ n/a 3456 2
9576.2.pk $$\chi_{9576}(6263, \cdot)$$ None 0 2
9576.2.pl $$\chi_{9576}(5879, \cdot)$$ None 0 2
9576.2.pm $$\chi_{9576}(1147, \cdot)$$ n/a 3824 2
9576.2.pn $$\chi_{9576}(7589, \cdot)$$ n/a 2880 2
9576.2.po $$\chi_{9576}(7003, \cdot)$$ n/a 1592 2
9576.2.pp $$\chi_{9576}(2501, \cdot)$$ n/a 1280 2
9576.2.py $$\chi_{9576}(1661, \cdot)$$ n/a 3824 2
9576.2.pz $$\chi_{9576}(6163, \cdot)$$ n/a 3824 2
9576.2.qa $$\chi_{9576}(5423, \cdot)$$ None 0 2
9576.2.qb $$\chi_{9576}(2291, \cdot)$$ n/a 3824 2
9576.2.qc $$\chi_{9576}(4021, \cdot)$$ n/a 3824 2
9576.2.qd $$\chi_{9576}(1265, \cdot)$$ n/a 960 2
9576.2.qe $$\chi_{9576}(3679, \cdot)$$ None 0 2
9576.2.qn $$\chi_{9576}(5503, \cdot)$$ None 0 2
9576.2.qo $$\chi_{9576}(1721, \cdot)$$ n/a 960 2
9576.2.qp $$\chi_{9576}(5959, \cdot)$$ None 0 2
9576.2.qq $$\chi_{9576}(3545, \cdot)$$ n/a 320 2
9576.2.qr $$\chi_{9576}(4933, \cdot)$$ n/a 1592 2
9576.2.qs $$\chi_{9576}(3203, \cdot)$$ n/a 1280 2
9576.2.qt $$\chi_{9576}(1357, \cdot)$$ n/a 3824 2
9576.2.qu $$\chi_{9576}(995, \cdot)$$ n/a 2880 2
9576.2.qz $$\chi_{9576}(1823, \cdot)$$ None 0 2
9576.2.ra $$\chi_{9576}(3307, \cdot)$$ n/a 3456 2
9576.2.rb $$\chi_{9576}(5357, \cdot)$$ n/a 3824 2
9576.2.rg $$\chi_{9576}(2209, \cdot)$$ n/a 2880 6
9576.2.rh $$\chi_{9576}(25, \cdot)$$ n/a 2880 6
9576.2.ri $$\chi_{9576}(3025, \cdot)$$ n/a 900 6
9576.2.rj $$\chi_{9576}(169, \cdot)$$ n/a 2160 6
9576.2.rk $$\chi_{9576}(289, \cdot)$$ n/a 1200 6
9576.2.rl $$\chi_{9576}(1201, \cdot)$$ n/a 2880 6
9576.2.rm $$\chi_{9576}(1297, \cdot)$$ n/a 1200 6
9576.2.rn $$\chi_{9576}(529, \cdot)$$ n/a 2880 6
9576.2.ro $$\chi_{9576}(841, \cdot)$$ n/a 2160 6
9576.2.rq $$\chi_{9576}(491, \cdot)$$ n/a 8640 6
9576.2.rs $$\chi_{9576}(281, \cdot)$$ n/a 2160 6
9576.2.rt $$\chi_{9576}(2057, \cdot)$$ n/a 2880 6
9576.2.rv $$\chi_{9576}(1427, \cdot)$$ n/a 11472 6
9576.2.ry $$\chi_{9576}(199, \cdot)$$ None 0 6
9576.2.sa $$\chi_{9576}(871, \cdot)$$ None 0 6
9576.2.sc $$\chi_{9576}(1837, \cdot)$$ n/a 4776 6
9576.2.se $$\chi_{9576}(2749, \cdot)$$ n/a 11472 6
9576.2.sf $$\chi_{9576}(1885, \cdot)$$ n/a 11472 6
9576.2.sh $$\chi_{9576}(1621, \cdot)$$ n/a 4776 6
9576.2.sj $$\chi_{9576}(751, \cdot)$$ None 0 6
9576.2.sl $$\chi_{9576}(1495, \cdot)$$ None 0 6
9576.2.so $$\chi_{9576}(395, \cdot)$$ n/a 3840 6
9576.2.sq $$\chi_{9576}(2651, \cdot)$$ n/a 11472 6
9576.2.ss $$\chi_{9576}(1529, \cdot)$$ n/a 960 6
9576.2.su $$\chi_{9576}(3785, \cdot)$$ n/a 2880 6
9576.2.sv $$\chi_{9576}(641, \cdot)$$ n/a 2880 6
9576.2.sx $$\chi_{9576}(2825, \cdot)$$ n/a 960 6
9576.2.sz $$\chi_{9576}(275, \cdot)$$ n/a 11472 6
9576.2.tb $$\chi_{9576}(1187, \cdot)$$ n/a 3840 6
9576.2.te $$\chi_{9576}(295, \cdot)$$ None 0 6
9576.2.tg $$\chi_{9576}(1429, \cdot)$$ n/a 8640 6
9576.2.th $$\chi_{9576}(1021, \cdot)$$ n/a 11472 6
9576.2.tj $$\chi_{9576}(1735, \cdot)$$ None 0 6
9576.2.tm $$\chi_{9576}(1871, \cdot)$$ None 0 6
9576.2.to $$\chi_{9576}(4127, \cdot)$$ None 0 6
9576.2.tq $$\chi_{9576}(485, \cdot)$$ n/a 3840 6
9576.2.ts $$\chi_{9576}(1229, \cdot)$$ n/a 11472 6
9576.2.tt $$\chi_{9576}(3197, \cdot)$$ n/a 11472 6
9576.2.tv $$\chi_{9576}(845, \cdot)$$ n/a 3840 6
9576.2.tx $$\chi_{9576}(2567, \cdot)$$ None 0 6
9576.2.tz $$\chi_{9576}(1655, \cdot)$$ None 0 6
9576.2.ub $$\chi_{9576}(139, \cdot)$$ n/a 11472 6
9576.2.ud $$\chi_{9576}(1315, \cdot)$$ n/a 4776 6
9576.2.uf $$\chi_{9576}(97, \cdot)$$ n/a 2880 6
9576.2.uh $$\chi_{9576}(433, \cdot)$$ n/a 1200 6
9576.2.ul $$\chi_{9576}(1579, \cdot)$$ n/a 11472 6
9576.2.um $$\chi_{9576}(1915, \cdot)$$ n/a 11472 6
9576.2.ur $$\chi_{9576}(283, \cdot)$$ n/a 11472 6
9576.2.us $$\chi_{9576}(1867, \cdot)$$ n/a 11472 6
9576.2.uv $$\chi_{9576}(1321, \cdot)$$ n/a 2880 6
9576.2.uw $$\chi_{9576}(241, \cdot)$$ n/a 2880 6
9576.2.va $$\chi_{9576}(1891, \cdot)$$ n/a 3600 6
9576.2.vc $$\chi_{9576}(1723, \cdot)$$ n/a 8640 6
9576.2.vd $$\chi_{9576}(167, \cdot)$$ None 0 6
9576.2.vf $$\chi_{9576}(1511, \cdot)$$ None 0 6
9576.2.vh $$\chi_{9576}(461, \cdot)$$ n/a 11472 6
9576.2.vj $$\chi_{9576}(2645, \cdot)$$ n/a 3840 6
9576.2.vl $$\chi_{9576}(1397, \cdot)$$ n/a 11472 6
9576.2.vm $$\chi_{9576}(317, \cdot)$$ n/a 11472 6
9576.2.vp $$\chi_{9576}(1031, \cdot)$$ None 0 6
9576.2.vq $$\chi_{9576}(3215, \cdot)$$ None 0 6
9576.2.vv $$\chi_{9576}(383, \cdot)$$ None 0 6
9576.2.vw $$\chi_{9576}(1055, \cdot)$$ None 0 6
9576.2.vz $$\chi_{9576}(5, \cdot)$$ n/a 11472 6
9576.2.wa $$\chi_{9576}(2189, \cdot)$$ n/a 11472 6
9576.2.wc $$\chi_{9576}(3221, \cdot)$$ n/a 2880 6
9576.2.we $$\chi_{9576}(1541, \cdot)$$ n/a 8640 6
9576.2.wg $$\chi_{9576}(575, \cdot)$$ None 0 6
9576.2.wi $$\chi_{9576}(2759, \cdot)$$ None 0 6
9576.2.wk $$\chi_{9576}(2179, \cdot)$$ n/a 4776 6
9576.2.wm $$\chi_{9576}(67, \cdot)$$ n/a 11472 6
9576.2.wp $$\chi_{9576}(409, \cdot)$$ n/a 2880 6
9576.2.wr $$\chi_{9576}(1153, \cdot)$$ n/a 1200 6
9576.2.wt $$\chi_{9576}(187, \cdot)$$ n/a 11472 6
9576.2.wv $$\chi_{9576}(955, \cdot)$$ n/a 4776 6
9576.2.wy $$\chi_{9576}(17, \cdot)$$ n/a 960 6
9576.2.xa $$\chi_{9576}(929, \cdot)$$ n/a 2880 6
9576.2.xc $$\chi_{9576}(2483, \cdot)$$ n/a 3840 6
9576.2.xe $$\chi_{9576}(299, \cdot)$$ n/a 11472 6
9576.2.xf $$\chi_{9576}(947, \cdot)$$ n/a 11472 6
9576.2.xh $$\chi_{9576}(1619, \cdot)$$ n/a 3840 6
9576.2.xj $$\chi_{9576}(2993, \cdot)$$ n/a 2880 6
9576.2.xl $$\chi_{9576}(737, \cdot)$$ n/a 960 6
9576.2.xn $$\chi_{9576}(85, \cdot)$$ n/a 8640 6
9576.2.xp $$\chi_{9576}(253, \cdot)$$ n/a 3600 6
9576.2.xr $$\chi_{9576}(1807, \cdot)$$ None 0 6
9576.2.xt $$\chi_{9576}(127, \cdot)$$ None 0 6
9576.2.xv $$\chi_{9576}(2455, \cdot)$$ None 0 6
9576.2.xw $$\chi_{9576}(367, \cdot)$$ None 0 6
9576.2.xz $$\chi_{9576}(1573, \cdot)$$ n/a 11472 6
9576.2.ya $$\chi_{9576}(1237, \cdot)$$ n/a 11472 6
9576.2.yf $$\chi_{9576}(709, \cdot)$$ n/a 11472 6
9576.2.yg $$\chi_{9576}(2797, \cdot)$$ n/a 11472 6
9576.2.yj $$\chi_{9576}(583, \cdot)$$ None 0 6
9576.2.yk $$\chi_{9576}(1663, \cdot)$$ None 0 6
9576.2.ym $$\chi_{9576}(55, \cdot)$$ None 0 6
9576.2.yo $$\chi_{9576}(727, \cdot)$$ None 0 6
9576.2.yq $$\chi_{9576}(181, \cdot)$$ n/a 4776 6
9576.2.ys $$\chi_{9576}(13, \cdot)$$ n/a 11472 6
9576.2.yt $$\chi_{9576}(1625, \cdot)$$ n/a 2160 6
9576.2.yv $$\chi_{9576}(953, \cdot)$$ n/a 720 6
9576.2.yx $$\chi_{9576}(2171, \cdot)$$ n/a 8640 6
9576.2.yz $$\chi_{9576}(4355, \cdot)$$ n/a 2880 6
9576.2.zb $$\chi_{9576}(1739, \cdot)$$ n/a 11472 6
9576.2.zc $$\chi_{9576}(59, \cdot)$$ n/a 11472 6
9576.2.zf $$\chi_{9576}(2873, \cdot)$$ n/a 2880 6
9576.2.zg $$\chi_{9576}(689, \cdot)$$ n/a 2880 6
9576.2.zl $$\chi_{9576}(401, \cdot)$$ n/a 2880 6
9576.2.zm $$\chi_{9576}(2081, \cdot)$$ n/a 2880 6
9576.2.zp $$\chi_{9576}(2531, \cdot)$$ n/a 11472 6
9576.2.zq $$\chi_{9576}(347, \cdot)$$ n/a 11472 6
9576.2.zs $$\chi_{9576}(755, \cdot)$$ n/a 3840 6
9576.2.zu $$\chi_{9576}(2939, \cdot)$$ n/a 11472 6
9576.2.zw $$\chi_{9576}(377, \cdot)$$ n/a 960 6
9576.2.zy $$\chi_{9576}(1049, \cdot)$$ n/a 2880 6
9576.2.baa $$\chi_{9576}(325, \cdot)$$ n/a 4776 6
9576.2.bac $$\chi_{9576}(565, \cdot)$$ n/a 11472 6
9576.2.bae $$\chi_{9576}(1279, \cdot)$$ None 0 6
9576.2.bag $$\chi_{9576}(1543, \cdot)$$ None 0 6
9576.2.bah $$\chi_{9576}(79, \cdot)$$ None 0 6
9576.2.baj $$\chi_{9576}(991, \cdot)$$ None 0 6
9576.2.bal $$\chi_{9576}(1213, \cdot)$$ n/a 11472 6
9576.2.ban $$\chi_{9576}(541, \cdot)$$ n/a 4776 6
9576.2.baq $$\chi_{9576}(1469, \cdot)$$ n/a 11472 6
9576.2.bas $$\chi_{9576}(1343, \cdot)$$ None 0 6
9576.2.bat $$\chi_{9576}(1415, \cdot)$$ None 0 6
9576.2.bav $$\chi_{9576}(29, \cdot)$$ n/a 8640 6
9576.2.bba $$\chi_{9576}(667, \cdot)$$ n/a 4776 6
9576.2.bbc $$\chi_{9576}(907, \cdot)$$ n/a 11472 6
9576.2.bbd $$\chi_{9576}(859, \cdot)$$ n/a 11472 6
9576.2.bbf $$\chi_{9576}(1963, \cdot)$$ n/a 4776 6
9576.2.bbh $$\chi_{9576}(1249, \cdot)$$ n/a 2880 6
9576.2.bbj $$\chi_{9576}(649, \cdot)$$ n/a 1200 6
9576.2.bbm $$\chi_{9576}(53, \cdot)$$ n/a 3840 6
9576.2.bbo $$\chi_{9576}(2909, \cdot)$$ n/a 11472 6
9576.2.bbq $$\chi_{9576}(359, \cdot)$$ None 0 6
9576.2.bbs $$\chi_{9576}(23, \cdot)$$ None 0 6
9576.2.bbt $$\chi_{9576}(887, \cdot)$$ None 0 6
9576.2.bbv $$\chi_{9576}(143, \cdot)$$ None 0 6
9576.2.bbx $$\chi_{9576}(605, \cdot)$$ n/a 11472 6
9576.2.bbz $$\chi_{9576}(1277, \cdot)$$ n/a 3840 6
9576.2.bcc $$\chi_{9576}(1609, \cdot)$$ n/a 2880 6
9576.2.bce $$\chi_{9576}(643, \cdot)$$ n/a 11472 6
9576.2.bcf $$\chi_{9576}(211, \cdot)$$ n/a 8640 6

"n/a" means that newforms for that character have not been added to the database yet

## Decomposition of $$S_{2}^{\mathrm{old}}(\Gamma_1(9576))$$ into lower level spaces

$$S_{2}^{\mathrm{old}}(\Gamma_1(9576)) \cong$$ $$S_{2}^{\mathrm{new}}(\Gamma_1(14))$$$$^{\oplus 18}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(18))$$$$^{\oplus 12}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(19))$$$$^{\oplus 24}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(21))$$$$^{\oplus 16}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(24))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(28))$$$$^{\oplus 12}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(36))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(38))$$$$^{\oplus 18}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(42))$$$$^{\oplus 12}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(56))$$$$^{\oplus 6}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(57))$$$$^{\oplus 16}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(63))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(72))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(76))$$$$^{\oplus 12}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(84))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(114))$$$$^{\oplus 12}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(126))$$$$^{\oplus 6}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(133))$$$$^{\oplus 12}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(152))$$$$^{\oplus 6}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(168))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(171))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(228))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(252))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(266))$$$$^{\oplus 9}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(342))$$$$^{\oplus 6}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(399))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(456))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(504))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(532))$$$$^{\oplus 6}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(684))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(798))$$$$^{\oplus 6}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(1064))$$$$^{\oplus 3}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(1197))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(1368))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(1596))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(2394))$$$$^{\oplus 3}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(3192))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(4788))$$$$^{\oplus 2}$$