Properties

Label 38.2
Level 38
Weight 2
Dimension 14
Nonzero newspaces 3
Newform subspaces 5
Sturm bound 180
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 38 = 2 \cdot 19 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 5 \)
Sturm bound: \(180\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(38))\).

Total New Old
Modular forms 63 14 49
Cusp forms 28 14 14
Eisenstein series 35 0 35

Trace form

\( 14 q - q^{2} - 4 q^{3} - q^{4} - 6 q^{5} - 4 q^{6} - 8 q^{7} - q^{8} - 13 q^{9} - 6 q^{10} - 12 q^{11} + 2 q^{12} + 10 q^{13} + 10 q^{14} + 12 q^{15} - q^{16} + 14 q^{18} + 23 q^{19} + 12 q^{20} + 10 q^{21}+ \cdots + 51 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(38))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
38.2.a \(\chi_{38}(1, \cdot)\) 38.2.a.a 1 1
38.2.a.b 1
38.2.c \(\chi_{38}(7, \cdot)\) 38.2.c.a 2 2
38.2.c.b 4
38.2.e \(\chi_{38}(5, \cdot)\) 38.2.e.a 6 6

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(38))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(38)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 2}\)