Properties

Label 1368.2
Level 1368
Weight 2
Dimension 22651
Nonzero newspaces 48
Sturm bound 207360
Trace bound 11

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1368 = 2^{3} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 48 \)
Sturm bound: \(207360\)
Trace bound: \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1368))\).

Total New Old
Modular forms 53568 23263 30305
Cusp forms 50113 22651 27462
Eisenstein series 3455 612 2843

Trace form

\( 22651q - 50q^{2} - 66q^{3} - 50q^{4} - 8q^{5} - 56q^{6} - 50q^{7} - 26q^{8} - 126q^{9} + O(q^{10}) \) \( 22651q - 50q^{2} - 66q^{3} - 50q^{4} - 8q^{5} - 56q^{6} - 50q^{7} - 26q^{8} - 126q^{9} - 114q^{10} - 20q^{11} - 44q^{12} + 4q^{13} - 26q^{14} - 24q^{15} - 34q^{16} - 68q^{17} - 72q^{18} - 140q^{19} - 128q^{20} + 24q^{21} - 82q^{22} - 18q^{23} - 120q^{24} - 92q^{25} - 110q^{26} - 72q^{27} - 178q^{28} - 30q^{29} - 164q^{30} - 40q^{31} - 130q^{32} - 130q^{33} - 26q^{34} - 162q^{35} - 172q^{36} - 30q^{37} - 92q^{38} - 216q^{39} - 74q^{40} - 116q^{41} - 172q^{42} - 140q^{43} - 138q^{44} - 4q^{45} - 194q^{46} - 156q^{47} - 112q^{48} - 22q^{49} - 110q^{50} - 90q^{51} - 2q^{52} + 28q^{53} - 48q^{54} - 130q^{55} + 10q^{56} - 115q^{57} - 88q^{58} - 56q^{59} + 60q^{60} + 34q^{61} + 164q^{62} - 136q^{63} + 22q^{64} + 14q^{65} + 136q^{66} + 104q^{67} + 240q^{68} - 44q^{69} + 254q^{70} - 16q^{71} + 132q^{72} - 195q^{73} + 310q^{74} - 170q^{75} + 160q^{76} + 30q^{77} + 76q^{78} + 80q^{79} + 282q^{80} - 166q^{81} + 68q^{82} - 64q^{83} + 56q^{84} - 16q^{85} + 172q^{86} - 108q^{87} + 62q^{88} - 98q^{89} - 44q^{90} - 138q^{91} - 72q^{92} + 20q^{93} - 66q^{94} - 10q^{95} - 240q^{96} - 102q^{97} - 246q^{98} - 6q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1368))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1368.2.a \(\chi_{1368}(1, \cdot)\) 1368.2.a.a 1 1
1368.2.a.b 1
1368.2.a.c 1
1368.2.a.d 1
1368.2.a.e 1
1368.2.a.f 1
1368.2.a.g 1
1368.2.a.h 1
1368.2.a.i 1
1368.2.a.j 1
1368.2.a.k 2
1368.2.a.l 2
1368.2.a.m 3
1368.2.a.n 3
1368.2.a.o 3
1368.2.d \(\chi_{1368}(647, \cdot)\) None 0 1
1368.2.e \(\chi_{1368}(379, \cdot)\) 1368.2.e.a 2 1
1368.2.e.b 4
1368.2.e.c 8
1368.2.e.d 8
1368.2.e.e 12
1368.2.e.f 24
1368.2.e.g 40
1368.2.f \(\chi_{1368}(1025, \cdot)\) 1368.2.f.a 2 1
1368.2.f.b 2
1368.2.f.c 8
1368.2.f.d 8
1368.2.g \(\chi_{1368}(685, \cdot)\) 1368.2.g.a 2 1
1368.2.g.b 16
1368.2.g.c 18
1368.2.g.d 18
1368.2.g.e 36
1368.2.j \(\chi_{1368}(1331, \cdot)\) 1368.2.j.a 4 1
1368.2.j.b 4
1368.2.j.c 28
1368.2.j.d 36
1368.2.k \(\chi_{1368}(1063, \cdot)\) None 0 1
1368.2.p \(\chi_{1368}(341, \cdot)\) 1368.2.p.a 80 1
1368.2.q \(\chi_{1368}(457, \cdot)\) n/a 108 2
1368.2.r \(\chi_{1368}(49, \cdot)\) n/a 120 2
1368.2.s \(\chi_{1368}(505, \cdot)\) 1368.2.s.a 2 2
1368.2.s.b 2
1368.2.s.c 2
1368.2.s.d 2
1368.2.s.e 2
1368.2.s.f 2
1368.2.s.g 2
1368.2.s.h 4
1368.2.s.i 4
1368.2.s.j 6
1368.2.s.k 6
1368.2.s.l 8
1368.2.s.m 8
1368.2.t \(\chi_{1368}(121, \cdot)\) n/a 120 2
1368.2.w \(\chi_{1368}(277, \cdot)\) n/a 472 2
1368.2.x \(\chi_{1368}(65, \cdot)\) n/a 120 2
1368.2.y \(\chi_{1368}(331, \cdot)\) n/a 472 2
1368.2.z \(\chi_{1368}(311, \cdot)\) None 0 2
1368.2.be \(\chi_{1368}(487, \cdot)\) None 0 2
1368.2.bf \(\chi_{1368}(467, \cdot)\) n/a 160 2
1368.2.bi \(\chi_{1368}(797, \cdot)\) n/a 472 2
1368.2.bl \(\chi_{1368}(293, \cdot)\) n/a 472 2
1368.2.bm \(\chi_{1368}(103, \cdot)\) None 0 2
1368.2.bn \(\chi_{1368}(83, \cdot)\) n/a 472 2
1368.2.bq \(\chi_{1368}(419, \cdot)\) n/a 432 2
1368.2.br \(\chi_{1368}(151, \cdot)\) None 0 2
1368.2.bu \(\chi_{1368}(1133, \cdot)\) n/a 160 2
1368.2.bx \(\chi_{1368}(1171, \cdot)\) n/a 196 2
1368.2.by \(\chi_{1368}(1151, \cdot)\) None 0 2
1368.2.cb \(\chi_{1368}(349, \cdot)\) n/a 472 2
1368.2.cc \(\chi_{1368}(977, \cdot)\) n/a 120 2
1368.2.cf \(\chi_{1368}(113, \cdot)\) n/a 120 2
1368.2.cg \(\chi_{1368}(229, \cdot)\) n/a 432 2
1368.2.cl \(\chi_{1368}(191, \cdot)\) None 0 2
1368.2.cm \(\chi_{1368}(835, \cdot)\) n/a 472 2
1368.2.cp \(\chi_{1368}(259, \cdot)\) n/a 472 2
1368.2.cq \(\chi_{1368}(239, \cdot)\) None 0 2
1368.2.ct \(\chi_{1368}(1189, \cdot)\) n/a 196 2
1368.2.cu \(\chi_{1368}(449, \cdot)\) 1368.2.cu.a 20 2
1368.2.cu.b 20
1368.2.cv \(\chi_{1368}(221, \cdot)\) n/a 472 2
1368.2.da \(\chi_{1368}(31, \cdot)\) None 0 2
1368.2.db \(\chi_{1368}(11, \cdot)\) n/a 472 2
1368.2.dc \(\chi_{1368}(73, \cdot)\) n/a 150 6
1368.2.dd \(\chi_{1368}(25, \cdot)\) n/a 360 6
1368.2.de \(\chi_{1368}(169, \cdot)\) n/a 360 6
1368.2.dg \(\chi_{1368}(67, \cdot)\) n/a 1416 6
1368.2.di \(\chi_{1368}(23, \cdot)\) None 0 6
1368.2.dj \(\chi_{1368}(79, \cdot)\) None 0 6
1368.2.dl \(\chi_{1368}(275, \cdot)\) n/a 1416 6
1368.2.dn \(\chi_{1368}(41, \cdot)\) n/a 360 6
1368.2.dp \(\chi_{1368}(61, \cdot)\) n/a 1416 6
1368.2.dt \(\chi_{1368}(53, \cdot)\) n/a 480 6
1368.2.du \(\chi_{1368}(253, \cdot)\) n/a 588 6
1368.2.dw \(\chi_{1368}(89, \cdot)\) n/a 120 6
1368.2.dz \(\chi_{1368}(29, \cdot)\) n/a 1416 6
1368.2.eb \(\chi_{1368}(131, \cdot)\) n/a 1416 6
1368.2.ed \(\chi_{1368}(295, \cdot)\) None 0 6
1368.2.eg \(\chi_{1368}(91, \cdot)\) n/a 588 6
1368.2.ei \(\chi_{1368}(215, \cdot)\) None 0 6
1368.2.ej \(\chi_{1368}(127, \cdot)\) None 0 6
1368.2.el \(\chi_{1368}(35, \cdot)\) n/a 480 6
1368.2.eo \(\chi_{1368}(47, \cdot)\) None 0 6
1368.2.eq \(\chi_{1368}(211, \cdot)\) n/a 1416 6
1368.2.et \(\chi_{1368}(173, \cdot)\) n/a 1416 6
1368.2.eu \(\chi_{1368}(85, \cdot)\) n/a 1416 6
1368.2.ew \(\chi_{1368}(257, \cdot)\) n/a 360 6

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1368))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1368)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(38))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(57))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(76))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(114))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(152))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(171))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(228))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(342))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(456))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(684))\)\(^{\oplus 2}\)