Defining parameters
| Level: | \( N \) | = | \( 152 = 2^{3} \cdot 19 \) |
| Weight: | \( k \) | = | \( 2 \) |
| Nonzero newspaces: | \( 9 \) | ||
| Newform subspaces: | \( 21 \) | ||
| Sturm bound: | \(2880\) | ||
| Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(152))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 828 | 437 | 391 |
| Cusp forms | 613 | 369 | 244 |
| Eisenstein series | 215 | 68 | 147 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(152))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(152))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(152)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(38))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(76))\)\(^{\oplus 2}\)