Properties

Label 24.2
Level 24
Weight 2
Dimension 5
Nonzero newspaces 3
Newform subspaces 3
Sturm bound 64
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 24 = 2^{3} \cdot 3 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 3 \)
Sturm bound: \(64\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(24))\).

Total New Old
Modular forms 28 9 19
Cusp forms 5 5 0
Eisenstein series 23 4 19

Trace form

\( 5 q - 2 q^{2} - 3 q^{3} - 4 q^{4} - 2 q^{5} + 2 q^{6} - 4 q^{7} + 4 q^{8} - 3 q^{9} + 4 q^{10} + 4 q^{11} + 8 q^{12} - 2 q^{13} + 4 q^{14} + 6 q^{15} - 2 q^{17} - 6 q^{18} - 8 q^{20} - 8 q^{22} - 12 q^{24}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(24))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
24.2.a \(\chi_{24}(1, \cdot)\) 24.2.a.a 1 1
24.2.c \(\chi_{24}(23, \cdot)\) None 0 1
24.2.d \(\chi_{24}(13, \cdot)\) 24.2.d.a 2 1
24.2.f \(\chi_{24}(11, \cdot)\) 24.2.f.a 2 1