Defining parameters
| Level: | \( N \) | = | \( 171 = 3^{2} \cdot 19 \) |
| Weight: | \( k \) | = | \( 2 \) |
| Nonzero newspaces: | \( 16 \) | ||
| Newform subspaces: | \( 32 \) | ||
| Sturm bound: | \(4320\) | ||
| Trace bound: | \(4\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(171))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1224 | 926 | 298 |
| Cusp forms | 937 | 774 | 163 |
| Eisenstein series | 287 | 152 | 135 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(171))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(171))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(171)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(57))\)\(^{\oplus 2}\)