Properties

Label 504.2
Level 504
Weight 2
Dimension 2860
Nonzero newspaces 30
Newform subspaces 81
Sturm bound 27648
Trace bound 25

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 30 \)
Newform subspaces: \( 81 \)
Sturm bound: \(27648\)
Trace bound: \(25\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(504))\).

Total New Old
Modular forms 7488 3040 4448
Cusp forms 6337 2860 3477
Eisenstein series 1151 180 971

Trace form

\( 2860q - 14q^{2} - 18q^{3} - 14q^{4} - 8q^{5} - 8q^{6} - 16q^{7} - 8q^{8} - 30q^{9} + O(q^{10}) \) \( 2860q - 14q^{2} - 18q^{3} - 14q^{4} - 8q^{5} - 8q^{6} - 16q^{7} - 8q^{8} - 30q^{9} - 6q^{10} + 10q^{11} + 4q^{12} - 2q^{13} - 4q^{14} + 2q^{16} - 2q^{17} - 24q^{18} - 10q^{19} - 20q^{20} + 12q^{21} - 34q^{22} + 36q^{23} - 72q^{24} - 2q^{25} - 44q^{26} - 24q^{27} - 14q^{28} - 12q^{29} - 116q^{30} + 56q^{31} - 64q^{32} - 10q^{33} + 46q^{34} + 18q^{35} - 148q^{36} + 30q^{37} - 76q^{38} - 60q^{39} - 8q^{40} + 46q^{41} - 74q^{42} - 38q^{43} - 126q^{44} + 44q^{45} - 116q^{46} - 12q^{47} - 64q^{48} + 56q^{49} - 134q^{50} - 6q^{51} - 20q^{52} + 82q^{53} - 24q^{54} + 32q^{55} - 28q^{56} - 38q^{57} - 28q^{58} + 16q^{59} + 72q^{60} + 16q^{61} + 56q^{62} - 56q^{63} - 110q^{64} + 32q^{65} + 112q^{66} + 26q^{67} + 30q^{68} - 80q^{69} - 140q^{70} - 160q^{71} + 48q^{72} - 102q^{73} - 50q^{74} - 230q^{75} - 166q^{76} - 138q^{77} - 68q^{78} - 160q^{79} - 168q^{80} - 106q^{81} - 310q^{82} - 286q^{83} - 176q^{84} - 160q^{85} - 242q^{86} - 168q^{87} - 262q^{88} - 146q^{89} - 224q^{90} - 258q^{91} - 402q^{92} - 52q^{93} - 318q^{94} - 368q^{95} - 288q^{96} - 114q^{97} - 326q^{98} - 180q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(504))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
504.2.a \(\chi_{504}(1, \cdot)\) 504.2.a.a 1 1
504.2.a.b 1
504.2.a.c 1
504.2.a.d 1
504.2.a.e 1
504.2.a.f 1
504.2.a.g 1
504.2.a.h 1
504.2.b \(\chi_{504}(55, \cdot)\) None 0 1
504.2.c \(\chi_{504}(253, \cdot)\) 504.2.c.a 2 1
504.2.c.b 4
504.2.c.c 4
504.2.c.d 4
504.2.c.e 8
504.2.c.f 8
504.2.h \(\chi_{504}(71, \cdot)\) None 0 1
504.2.i \(\chi_{504}(125, \cdot)\) 504.2.i.a 8 1
504.2.i.b 24
504.2.j \(\chi_{504}(323, \cdot)\) 504.2.j.a 24 1
504.2.k \(\chi_{504}(377, \cdot)\) 504.2.k.a 8 1
504.2.p \(\chi_{504}(307, \cdot)\) 504.2.p.a 2 1
504.2.p.b 4
504.2.p.c 4
504.2.p.d 4
504.2.p.e 4
504.2.p.f 4
504.2.p.g 16
504.2.q \(\chi_{504}(25, \cdot)\) 504.2.q.a 2 2
504.2.q.b 2
504.2.q.c 22
504.2.q.d 22
504.2.r \(\chi_{504}(169, \cdot)\) 504.2.r.a 2 2
504.2.r.b 2
504.2.r.c 6
504.2.r.d 8
504.2.r.e 8
504.2.r.f 10
504.2.s \(\chi_{504}(289, \cdot)\) 504.2.s.a 2 2
504.2.s.b 2
504.2.s.c 2
504.2.s.d 2
504.2.s.e 2
504.2.s.f 2
504.2.s.g 2
504.2.s.h 2
504.2.s.i 4
504.2.t \(\chi_{504}(193, \cdot)\) 504.2.t.a 2 2
504.2.t.b 2
504.2.t.c 22
504.2.t.d 22
504.2.w \(\chi_{504}(205, \cdot)\) 504.2.w.a 184 2
504.2.x \(\chi_{504}(31, \cdot)\) None 0 2
504.2.y \(\chi_{504}(173, \cdot)\) 504.2.y.a 184 2
504.2.z \(\chi_{504}(95, \cdot)\) None 0 2
504.2.be \(\chi_{504}(139, \cdot)\) 504.2.be.a 184 2
504.2.bf \(\chi_{504}(115, \cdot)\) 504.2.bf.a 4 2
504.2.bf.b 180
504.2.bk \(\chi_{504}(19, \cdot)\) 504.2.bk.a 12 2
504.2.bk.b 32
504.2.bk.c 32
504.2.bl \(\chi_{504}(17, \cdot)\) 504.2.bl.a 16 2
504.2.bm \(\chi_{504}(107, \cdot)\) 504.2.bm.a 8 2
504.2.bm.b 8
504.2.bm.c 48
504.2.br \(\chi_{504}(155, \cdot)\) 504.2.br.a 144 2
504.2.bs \(\chi_{504}(257, \cdot)\) 504.2.bs.a 48 2
504.2.bt \(\chi_{504}(11, \cdot)\) 504.2.bt.a 184 2
504.2.bu \(\chi_{504}(41, \cdot)\) 504.2.bu.a 48 2
504.2.bz \(\chi_{504}(239, \cdot)\) None 0 2
504.2.ca \(\chi_{504}(5, \cdot)\) 504.2.ca.a 184 2
504.2.cb \(\chi_{504}(23, \cdot)\) None 0 2
504.2.cc \(\chi_{504}(293, \cdot)\) 504.2.cc.a 16 2
504.2.cc.b 168
504.2.ch \(\chi_{504}(269, \cdot)\) 504.2.ch.a 8 2
504.2.ch.b 56
504.2.ci \(\chi_{504}(359, \cdot)\) None 0 2
504.2.cj \(\chi_{504}(37, \cdot)\) 504.2.cj.a 8 2
504.2.cj.b 8
504.2.cj.c 12
504.2.cj.d 16
504.2.cj.e 32
504.2.ck \(\chi_{504}(199, \cdot)\) None 0 2
504.2.cp \(\chi_{504}(223, \cdot)\) None 0 2
504.2.cq \(\chi_{504}(277, \cdot)\) 504.2.cq.a 184 2
504.2.cr \(\chi_{504}(103, \cdot)\) None 0 2
504.2.cs \(\chi_{504}(85, \cdot)\) 504.2.cs.a 72 2
504.2.cs.b 72
504.2.cx \(\chi_{504}(185, \cdot)\) 504.2.cx.a 48 2
504.2.cy \(\chi_{504}(347, \cdot)\) 504.2.cy.a 184 2
504.2.cz \(\chi_{504}(187, \cdot)\) 504.2.cz.a 4 2
504.2.cz.b 180

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(504))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(504)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(56))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(84))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(126))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(168))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(252))\)\(^{\oplus 2}\)