Properties

Label 57.2
Level 57
Weight 2
Dimension 71
Nonzero newspaces 6
Newform subspaces 11
Sturm bound 480
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 57 = 3 \cdot 19 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 11 \)
Sturm bound: \(480\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(57))\).

Total New Old
Modular forms 156 107 49
Cusp forms 85 71 14
Eisenstein series 71 36 35

Trace form

\( 71 q - 3 q^{2} - 10 q^{3} - 25 q^{4} - 6 q^{5} - 12 q^{6} - 26 q^{7} - 15 q^{8} - 10 q^{9} - 36 q^{10} - 12 q^{11} - 4 q^{12} - 8 q^{13} + 12 q^{14} + 3 q^{15} + 23 q^{16} - 3 q^{18} + 5 q^{19} + 30 q^{20}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(57))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
57.2.a \(\chi_{57}(1, \cdot)\) 57.2.a.a 1 1
57.2.a.b 1
57.2.a.c 1
57.2.d \(\chi_{57}(56, \cdot)\) 57.2.d.a 4 1
57.2.e \(\chi_{57}(7, \cdot)\) 57.2.e.a 2 2
57.2.e.b 6
57.2.f \(\chi_{57}(8, \cdot)\) 57.2.f.a 8 2
57.2.i \(\chi_{57}(4, \cdot)\) 57.2.i.a 6 6
57.2.i.b 12
57.2.j \(\chi_{57}(2, \cdot)\) 57.2.j.a 6 6
57.2.j.b 24

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(57))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(57)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 2}\)