Properties

Label 252.2
Level 252
Weight 2
Dimension 718
Nonzero newspaces 20
Newform subspaces 40
Sturm bound 6912
Trace bound 11

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 20 \)
Newform subspaces: \( 40 \)
Sturm bound: \(6912\)
Trace bound: \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(252))\).

Total New Old
Modular forms 1968 810 1158
Cusp forms 1489 718 771
Eisenstein series 479 92 387

Trace form

\( 718q - 3q^{2} + q^{4} - 3q^{5} - 6q^{6} - q^{7} - 15q^{8} + O(q^{10}) \) \( 718q - 3q^{2} + q^{4} - 3q^{5} - 6q^{6} - q^{7} - 15q^{8} - 10q^{10} + 9q^{11} - 24q^{12} + 10q^{13} - 9q^{14} - 6q^{15} - 11q^{16} - 9q^{17} - 48q^{18} + 29q^{19} - 54q^{20} - 3q^{21} - 36q^{22} + 27q^{23} - 18q^{24} + 36q^{25} - 42q^{26} + 18q^{27} - 39q^{28} - 6q^{29} - 6q^{30} + 5q^{31} - 3q^{32} - 78q^{33} - 52q^{34} - 51q^{35} - 18q^{36} - 69q^{37} - 54q^{38} - 30q^{39} - 118q^{40} - 162q^{41} - 60q^{42} - 74q^{43} - 120q^{44} - 102q^{45} - 156q^{46} - 81q^{47} - 114q^{48} - 71q^{49} - 171q^{50} - 72q^{51} - 142q^{52} - 87q^{53} - 108q^{54} - 54q^{55} - 99q^{56} - 108q^{57} - 76q^{58} - 45q^{59} - 30q^{60} + 7q^{61} - 81q^{63} - 59q^{64} - 114q^{65} + 54q^{66} + 63q^{67} + 84q^{68} - 42q^{69} + 102q^{70} - 24q^{71} + 96q^{72} - 29q^{73} + 210q^{74} - 72q^{75} + 144q^{76} - 126q^{77} + 84q^{78} - 3q^{79} + 198q^{80} - 132q^{81} + 80q^{82} - 66q^{83} + 66q^{84} - 158q^{85} + 126q^{86} + 198q^{88} - 201q^{89} + 90q^{90} - 10q^{91} + 102q^{92} - 144q^{93} + 144q^{94} + 3q^{95} + 48q^{96} - 158q^{97} + 111q^{98} + 6q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(252))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
252.2.a \(\chi_{252}(1, \cdot)\) 252.2.a.a 1 1
252.2.a.b 1
252.2.b \(\chi_{252}(55, \cdot)\) 252.2.b.a 2 1
252.2.b.b 4
252.2.b.c 4
252.2.b.d 4
252.2.b.e 4
252.2.e \(\chi_{252}(71, \cdot)\) 252.2.e.a 12 1
252.2.f \(\chi_{252}(125, \cdot)\) 252.2.f.a 4 1
252.2.i \(\chi_{252}(25, \cdot)\) 252.2.i.a 2 2
252.2.i.b 14
252.2.j \(\chi_{252}(85, \cdot)\) 252.2.j.a 6 2
252.2.j.b 6
252.2.k \(\chi_{252}(37, \cdot)\) 252.2.k.a 2 2
252.2.k.b 2
252.2.k.c 2
252.2.l \(\chi_{252}(193, \cdot)\) 252.2.l.a 2 2
252.2.l.b 14
252.2.n \(\chi_{252}(31, \cdot)\) 252.2.n.a 4 2
252.2.n.b 84
252.2.o \(\chi_{252}(95, \cdot)\) 252.2.o.a 88 2
252.2.t \(\chi_{252}(17, \cdot)\) 252.2.t.a 4 2
252.2.w \(\chi_{252}(5, \cdot)\) 252.2.w.a 16 2
252.2.x \(\chi_{252}(41, \cdot)\) 252.2.x.a 16 2
252.2.ba \(\chi_{252}(155, \cdot)\) 252.2.ba.a 72 2
252.2.bb \(\chi_{252}(11, \cdot)\) 252.2.bb.a 88 2
252.2.be \(\chi_{252}(107, \cdot)\) 252.2.be.a 32 2
252.2.bf \(\chi_{252}(19, \cdot)\) 252.2.bf.a 4 2
252.2.bf.b 4
252.2.bf.c 4
252.2.bf.d 4
252.2.bf.e 4
252.2.bf.f 8
252.2.bf.g 8
252.2.bi \(\chi_{252}(139, \cdot)\) 252.2.bi.a 4 2
252.2.bi.b 4
252.2.bi.c 80
252.2.bj \(\chi_{252}(103, \cdot)\) 252.2.bj.a 4 2
252.2.bj.b 84
252.2.bm \(\chi_{252}(173, \cdot)\) 252.2.bm.a 16 2

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(252))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(252)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(84))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(126))\)\(^{\oplus 2}\)