Properties

Label 76.2
Level 76
Weight 2
Dimension 87
Nonzero newspaces 6
Newform subspaces 6
Sturm bound 720
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 76 = 2^{2} \cdot 19 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 6 \)
Sturm bound: \(720\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(76))\).

Total New Old
Modular forms 225 123 102
Cusp forms 136 87 49
Eisenstein series 89 36 53

Trace form

\( 87 q - 9 q^{2} - 9 q^{4} - 18 q^{5} - 9 q^{6} - 9 q^{8} - 18 q^{9} - 9 q^{10} - 9 q^{12} - 30 q^{13} - 9 q^{14} - 18 q^{15} - 9 q^{16} - 27 q^{17} - 21 q^{19} - 18 q^{20} - 39 q^{21} - 9 q^{22} - 9 q^{23}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(76))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
76.2.a \(\chi_{76}(1, \cdot)\) 76.2.a.a 1 1
76.2.d \(\chi_{76}(75, \cdot)\) 76.2.d.a 8 1
76.2.e \(\chi_{76}(45, \cdot)\) 76.2.e.a 2 2
76.2.f \(\chi_{76}(27, \cdot)\) 76.2.f.a 16 2
76.2.i \(\chi_{76}(5, \cdot)\) 76.2.i.a 12 6
76.2.k \(\chi_{76}(3, \cdot)\) 76.2.k.a 48 6

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(76))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(76)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(38))\)\(^{\oplus 2}\)