L(s) = 1 | + 2·5-s + 7-s + 3·11-s + 6·13-s − 14·17-s − 2·19-s + 4·23-s + 5·25-s − 4·29-s + 10·31-s + 2·35-s − 12·37-s + 7·41-s + 11·43-s − 8·47-s + 8·53-s + 6·55-s − 9·59-s − 4·61-s + 12·65-s + 9·67-s + 26·73-s + 3·77-s + 10·79-s − 28·85-s − 20·89-s + 6·91-s + ⋯ |
L(s) = 1 | + 0.894·5-s + 0.377·7-s + 0.904·11-s + 1.66·13-s − 3.39·17-s − 0.458·19-s + 0.834·23-s + 25-s − 0.742·29-s + 1.79·31-s + 0.338·35-s − 1.97·37-s + 1.09·41-s + 1.67·43-s − 1.16·47-s + 1.09·53-s + 0.809·55-s − 1.17·59-s − 0.512·61-s + 1.48·65-s + 1.09·67-s + 3.04·73-s + 0.341·77-s + 1.12·79-s − 3.03·85-s − 2.11·89-s + 0.628·91-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9144576 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9144576 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.540960728\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.540960728\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.908293110457171107099946544314, −8.556445886798652543988696304271, −8.336712215107773586376515877181, −8.033888584706591706501465227680, −7.05008913603601239231417484614, −6.98023831082236461962561096866, −6.67389264911134285087102454765, −6.19711627725221995093528450979, −6.12950406590261967610152802013, −5.50782758879027996837679472859, −4.97867657599210088956583438386, −4.66196834961513079603373925205, −4.11992831882643716261625713497, −4.00387616593165110208195189123, −3.33514538041801455050910422042, −2.68873000176216713956614496240, −2.25866294302774042266442266518, −1.83607417044362600874233249935, −1.29535007741208165161316550300, −0.61249580301976883138315263209,
0.61249580301976883138315263209, 1.29535007741208165161316550300, 1.83607417044362600874233249935, 2.25866294302774042266442266518, 2.68873000176216713956614496240, 3.33514538041801455050910422042, 4.00387616593165110208195189123, 4.11992831882643716261625713497, 4.66196834961513079603373925205, 4.97867657599210088956583438386, 5.50782758879027996837679472859, 6.12950406590261967610152802013, 6.19711627725221995093528450979, 6.67389264911134285087102454765, 6.98023831082236461962561096866, 7.05008913603601239231417484614, 8.033888584706591706501465227680, 8.336712215107773586376515877181, 8.556445886798652543988696304271, 8.908293110457171107099946544314