Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 9 x + 22 x^{2} + 531 x^{3} + 3481 x^{4}$ |
Frobenius angles: | $\pm0.365905935355$, $\pm0.967427397978$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{-155})\) |
Galois group: | $C_2^2$ |
Jacobians: | $52$ |
Isomorphism classes: | 72 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4044$ | $11986416$ | $42536587536$ | $146762684362944$ | $511117209422753124$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $69$ | $3445$ | $207108$ | $12111769$ | $714924939$ | $42179862166$ | $2488654468761$ | $146830444651249$ | $8662996043915292$ | $511116751871201125$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 52 curves (of which all are hyperelliptic):
- $y^2=56 x^6+21 x^5+12 x^4+39 x^3+39 x^2+40 x+20$
- $y^2=28 x^6+50 x^5+14 x^4+x^3+6 x^2+57 x+16$
- $y^2=43 x^6+25 x^5+53 x^4+57 x^3+42 x^2+56 x+43$
- $y^2=26 x^6+37 x^5+57 x^4+8 x^3+8 x^2+53 x+18$
- $y^2=48 x^6+49 x^5+3 x^4+40 x^3+11 x^2+40 x+1$
- $y^2=54 x^6+40 x^5+5 x^4+28 x^3+35 x^2+2 x+32$
- $y^2=33 x^6+47 x^5+33 x^4+48 x^3+57 x^2+54 x$
- $y^2=5 x^6+13 x^5+47 x^4+9 x^3+42 x^2+14 x+3$
- $y^2=9 x^6+22 x^5+7 x^4+38 x^3+37 x^2+58 x+54$
- $y^2=41 x^6+53 x^5+14 x^4+51 x^3+35 x^2+12 x+36$
- $y^2=21 x^6+42 x^5+23 x^4+56 x^3+24 x^2+29 x+45$
- $y^2=41 x^6+47 x^5+5 x^4+33 x^3+49 x^2+36 x+29$
- $y^2=22 x^6+33 x^5+58 x^4+41 x^3+29 x^2+12 x+35$
- $y^2=x^6+19 x^5+19 x^4+58 x^3+41 x^2+2 x$
- $y^2=51 x^6+29 x^5+17 x^4+17 x^3+21 x^2+53 x+35$
- $y^2=35 x^6+50 x^5+35 x^4+29 x^3+44 x^2+21 x+4$
- $y^2=42 x^6+48 x^5+53 x^4+50 x^3+30 x^2+27 x+42$
- $y^2=39 x^6+9 x^5+49 x^4+44 x^3+44 x^2+4 x+49$
- $y^2=54 x^6+57 x^5+22 x^4+9 x^3+43 x^2+53 x+26$
- $y^2=20 x^6+42 x^5+46 x^4+38 x^3+45 x^2+27 x+11$
- and 32 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59^{3}}$.
Endomorphism algebra over $\F_{59}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-155})\). |
The base change of $A$ to $\F_{59^{3}}$ is 1.205379.bhg 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-155}) \)$)$ |
Base change
This is a primitive isogeny class.