# Stored data for abelian variety isogeny class 2.59.j_w, downloaded from the LMFDB on 05 September 2025. {"abvar_count": 4044, "abvar_counts": [4044, 11986416, 42536587536, 146762684362944, 511117209422753124, 1779169095220605993216, 6193393638887428905145044, 21559178441779680406212428544, 75047498505462474256807283133456, 261240334773977850598140400251889776], "abvar_counts_str": "4044 11986416 42536587536 146762684362944 511117209422753124 1779169095220605993216 6193393638887428905145044 21559178441779680406212428544 75047498505462474256807283133456 261240334773977850598140400251889776 ", "all_polarized_product": false, "all_unpolarized_product": false, "angle_corank": 1, "angle_rank": 1, "angles": [0.365905935355286, 0.967427397978048], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 69, "curve_counts": [69, 3445, 207108, 12111769, 714924939, 42179862166, 2488654468761, 146830444651249, 8662996043915292, 511116751871201125], "curve_counts_str": "69 3445 207108 12111769 714924939 42179862166 2488654468761 146830444651249 8662996043915292 511116751871201125 ", "curves": ["y^2=56*x^6+21*x^5+12*x^4+39*x^3+39*x^2+40*x+20", "y^2=28*x^6+50*x^5+14*x^4+x^3+6*x^2+57*x+16", "y^2=43*x^6+25*x^5+53*x^4+57*x^3+42*x^2+56*x+43", "y^2=26*x^6+37*x^5+57*x^4+8*x^3+8*x^2+53*x+18", "y^2=48*x^6+49*x^5+3*x^4+40*x^3+11*x^2+40*x+1", "y^2=54*x^6+40*x^5+5*x^4+28*x^3+35*x^2+2*x+32", "y^2=33*x^6+47*x^5+33*x^4+48*x^3+57*x^2+54*x", "y^2=5*x^6+13*x^5+47*x^4+9*x^3+42*x^2+14*x+3", "y^2=9*x^6+22*x^5+7*x^4+38*x^3+37*x^2+58*x+54", "y^2=41*x^6+53*x^5+14*x^4+51*x^3+35*x^2+12*x+36", "y^2=21*x^6+42*x^5+23*x^4+56*x^3+24*x^2+29*x+45", "y^2=41*x^6+47*x^5+5*x^4+33*x^3+49*x^2+36*x+29", "y^2=22*x^6+33*x^5+58*x^4+41*x^3+29*x^2+12*x+35", "y^2=x^6+19*x^5+19*x^4+58*x^3+41*x^2+2*x", "y^2=51*x^6+29*x^5+17*x^4+17*x^3+21*x^2+53*x+35", "y^2=35*x^6+50*x^5+35*x^4+29*x^3+44*x^2+21*x+4", "y^2=42*x^6+48*x^5+53*x^4+50*x^3+30*x^2+27*x+42", "y^2=39*x^6+9*x^5+49*x^4+44*x^3+44*x^2+4*x+49", "y^2=54*x^6+57*x^5+22*x^4+9*x^3+43*x^2+53*x+26", "y^2=20*x^6+42*x^5+46*x^4+38*x^3+45*x^2+27*x+11", "y^2=7*x^6+50*x^5+32*x^3+15*x^2+9*x+7", "y^2=24*x^6+34*x^5+44*x^4+41*x^3+4*x^2+29*x+3", "y^2=6*x^6+41*x^5+17*x^4+3*x^3+50*x^2+28*x+14", "y^2=29*x^6+12*x^4+24*x^3+13*x^2+26*x+23", "y^2=30*x^6+12*x^5+6*x^4+18*x^3+5*x^2+7*x+39", "y^2=3*x^6+9*x^5+48*x^4+28*x^3+8*x^2+32*x+30", "y^2=3*x^6+23*x^5+17*x^4+33*x^3+50*x^2+29*x+4", "y^2=56*x^6+36*x^5+23*x^4+28*x^3+38*x^2+54*x+29", "y^2=28*x^6+32*x^5+16*x^4+29*x^3+2*x^2+30*x", "y^2=26*x^6+45*x^5+19*x^4+6*x^3+39*x^2+23*x+29", "y^2=29*x^6+31*x^5+3*x^4+32*x^3+22*x^2+39*x+57", "y^2=50*x^6+57*x^5+52*x^4+9*x^3+23*x^2+28*x+12", "y^2=41*x^6+13*x^5+4*x^4+41*x^3+35*x^2+26*x+22", "y^2=45*x^6+6*x^5+6*x^4+37*x^3+36*x^2+28*x+39", "y^2=39*x^6+47*x^5+11*x^4+49*x^3+55*x^2+54*x+8", "y^2=19*x^6+45*x^5+7*x^4+38*x^3+8*x^2+10*x+19", "y^2=38*x^6+24*x^5+3*x^4+56*x^3+15*x^2+43*x+15", "y^2=14*x^6+38*x^5+35*x^4+20*x^3+55*x^2+46*x+14", "y^2=25*x^6+50*x^5+17*x^4+4*x^3+19*x^2+55*x+4", "y^2=46*x^6+51*x^5+38*x^4+48*x^3+8*x^2+22*x", "y^2=9*x^6+14*x^5+39*x^4+48*x^3+15*x^2+26*x+57", "y^2=54*x^6+47*x^5+40*x^4+44*x^3+25*x^2+57*x+47", "y^2=33*x^6+19*x^5+10*x^4+28*x^3+4*x^2+13*x+56", "y^2=5*x^6+11*x^5+2*x^4+3*x^3+41*x^2+4*x+22", "y^2=57*x^6+32*x^5+26*x^4+18*x^3+36*x^2+15*x+27", "y^2=52*x^6+10*x^5+16*x^4+2*x^3+17*x^2+36*x+56", "y^2=3*x^6+39*x^5+5*x^4+25*x^3+42*x^2+28*x+47", "y^2=7*x^6+44*x^5+10*x^4+18*x^3+56*x^2+21", "y^2=24*x^6+36*x^5+32*x^4+8*x^2+58*x+9", "y^2=4*x^6+48*x^5+55*x^4+20*x^3+12*x^2+46*x+52", "y^2=57*x^6+16*x^5+2*x^4+22*x^3+30*x^2+45*x+25", "y^2=49*x^6+27*x^5+8*x^4+36*x^3+47*x^2+44*x+8"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 4, "g": 2, "galois_groups": ["4T2"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 3, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.155.1"], "geometric_splitting_field": "2.0.155.1", "geometric_splitting_polynomials": [[39, -1, 1]], "group_structure_count": 2, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 52, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 52, "label": "2.59.j_w", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 12, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.216225.3"], "p": 59, "p_rank": 2, "p_rank_deficit": 0, "pic_prime_gens": [[1, 3, 1, 12], [1, 3, 2, 12], [1, 13, 2, 12]], "poly": [1, 9, 22, 531, 3481], "poly_str": "1 9 22 531 3481 ", "primitive_models": [], "principal_polarization_count": 52, "q": 59, "real_poly": [1, 9, -96], "simple_distinct": ["2.59.j_w"], "simple_factors": ["2.59.j_wA"], "simple_multiplicities": [1], "singular_primes": ["2,F-5", "11,-9*F^2+5*F+V+13"], "size": 72, "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.216225.3", "splitting_polynomials": [[1521, -39, -38, -1, 1]], "twist_count": 6, "twists": [["2.59.aj_w", "2.3481.abl_addg", 2], ["2.59.as_hr", "2.205379.com_cnvxu", 3], ["2.59.a_bl", "2.42180533641.abmfia_ynzkgtfy", 6], ["2.59.s_hr", "2.42180533641.abmfia_ynzkgtfy", 6], ["2.59.a_abl", "2.1779197418239532716881.ahbprqzoe_cpqhyjjqbsqpquqg", 12]], "weak_equivalence_count": 4, "zfv_index": 22, "zfv_index_factorization": [[2, 1], [11, 1]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_pic_size": 48, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 484, "zfv_singular_count": 4, "zfv_singular_primes": ["2,F-5", "11,-9*F^2+5*F+V+13"]}